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a cluster and by hypothesis, not bound. Thus, there is a 11 €8 such that
W < 9, ~ X. This implies that I < ol < A, and Ay e 8™

Among all semi-uniformities compatible with a given topology there
is a finest, namely the fine semi-uniformity. We will define (X, 8) to
be a fine space provided 8 is the fine gemi-uniformity compatible with z(8).
A fine space is complete.

TEEOREM 5.2. Every continuous function from a fine space into a semi-
uniform space is a MAPPIng.

TaEoREM 5.3. The fine spaces form @ coreflective subcategory of the
category of semi-uniform spaces.

Proof. If S is a semi-uniformity on X, let o8 denote the compatible
fine semi-uniformity. It is easy to see that if (¥, 8,) is a fine space, then
any map fr (¥, 8,)—~(X, 8,) factors uniquely f= cof’ where f: (¥, 8)
(X, aS,) and ¢: (X, o8,) (X, 8,).

A fine uniform space is a fine semi-uniform space if and only if the
semi-uniform topology is paraebmp&et.

A subspace of a fine space will be called subfine. For each semi-
uniformity § on X, let ¢§ denote the finest semi-uniformity on X' whose
completion is topologically equivalent to that of .

THEOREM b.4. The subfine spaces form a coveflective subcategory of
the category of semi-uniform spaces. )

Proof. If (¥,S,) is a subfine space and f: (¥, 8)—>(X,S,) is
a mapping, then f has a unique extension to a mapping f* from (XY, §;)
to (X*, 8F). Since completions are unique, (Y™, 8;) must be a fine space,
80 f*=coh where h: (¥* 85— (X* 08)) and e (X%, 085) (X", §;).
If e Y Y* is the embedding, then ¢o(hoe)=f ce=Ff, and hoe:
(¥, 8)~(X, 08) and c: (X, 68,)>(X, S,).
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On the extension of continuous functions
) oy
David F. Wooten (Sioux City, Ia.)

Abstract, The principal result is the following. Let X be a dense subspace of Z.
Let f be a continuous function from X to a complete semi-uniform space (¥, 0). Then
f can be continuously extended to Z iff, for 7 = {I} ¢ 0, {Intzel;f(T)} covers Z.
In particular, let X be a dense subspace of Z and f a continuous funection from X to
a regular T, space Y. Then f can be continnously extended to Z iff, for z = {7} an open
covering of ¥, {Intzclyf~(7T)} is an open covering of Z. Well-known applications will
also be discussed.

1. Introduction. This paper contains a theorem which gives very
specific circumstances under which a continuous function, whose image
is regular Ty, can be continuously extended from a dense subspace onto
an entire space. Before this theorem can be given, however, it is necessary
to mention some recent results in structural theory.

2. Semi-uniform spaces. In [11] E. F. Steiner and A. K. Steiner have
introduced the concept of semi-uniformities. Here, only those points
essential to this paper will be discussed. A semi-uniform space consists
of a pair X, ¢ where X is a space and € is a collection of coverings of X
satisfying:

(i) If 7 « O then there exists 7’ € (' such that: for each I” ¢ 7’ there
exist T et and 7'* €« ¢ where St(71",7"") C T. (If ¢ is a covering of a set ¥
and ACY, then St(4d,a)= J{Tea: Tn4 @} If A consists of
a single point @, then St(z, a) = St(4, a)). " is said to semi-star refine 7.

(ii) If 7,7 € O then there exists 7'/« ¢ such that 7'’ refines both
7 and 7'.

(iii) If +' ¢ ¢ refines a covering z, then e C.

(iv) For each x ¢ X, {St(®, 7): 7 ¢ 0} is a base of neighborhoods for .

(v) For #,y ¢ X where & 5 ¥, there exists 7 ¢ ¢ such that y ¢ St(z, 7).

Tf the pair X, O satisties (i) through (v), then C is said to be a semi-
wuwiformity on X. This is denoted by (X, (), and (X, 0) is said to be
a semi-uniform space. Note that, if (i) is replaced by: for v « ¢ there exists
7' ¢ ¢ such that, for each T’ e’ there exists T e v where St(I1",7")C T,
then O is a uniformity on X (see [9]).
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Each semi-uniform space (X, €) has a unique completion denoted
by (X, ¢). If X=X then (X, C) is said to be a complete semi-uniform
space. It can be deduced from [1] that: if @ is 2 filter on X containing
a member of each covering in (, and if (X, () is complete, then
N g4 + 0.

Ade
¢ If (X, 0) and (¥, ') are semi-uniform spaces and f is a function

from X to ¥, then f is said to be semi-uniformly continwous if, for each
te(, {f[T]: TetleC. Semi-uniformly continuous functions are
always eontinuous. If f has an inverse and both f and f~ are semi-uni-
formly continuous, then f is said to be an isomorphism. An isomorphism is,
in particular, & homeomorphism.

The following facts (found in [11]) make semi-uniformities quite
interesting: k

(1) A space is regular T, iff it is semi-uniformizable. In fict, if X ig
a regular T, space, then the collection of all coverings of X which are
refined by cpen coverings of X is a complete semi-uniformity on X.

(2) If (¥, C) is a complete semi-uniform space and X iy dense sub-
space of ¥, then the completion of (X, C'), where (" is the trace of ¢ on X
(i.e. 0'= {r: v= {T ~ X} where {T} ¢ (}), is isomorphic to (¥, €) under
an isomorphism which is the identity on X.

(3) If (X, () is a semi-uniform space, (¥, ') is a complete semi-
uniform space, and f is & semi-uniformly continuous function from (X, 0)
to (¥, C’), then f can be semi-uniformly continuously extended to (X, {).

The following lemma will also be needed.

Leywa 2.1. Let (X, O) be a semi-uniform space. Then (X, C) has the
following properties:

(1) If v € C then {IntxT: T ¢t} e C. Hence, each covering in C can be
refined by an open covering in C.

' (i) If 0" = {{lxIntxT: Tev}: e 0) then O'C 0, and each covering
in O can be refined by a covering in O,

(" is therefore a base for C (the members of ¢ are commonly known
a8 regqularly closed coverings). :

) Proof. The proof of these statements are easy consequences of the
axioms of a semi-uniformity. The possession of these properties by a uni-
form space are well-known.

Let (X, €) be a semi-uniform space and (X, 0) be its semi-uniform
completion. It can be deduced from [1] that € is simply the trace of @
on X. For v e ( let 7« { be such that v is the trace of 3 on X. From (ii)
of the previous lemma, there exists 7’ ¢ ¢ which refines 3 and which is
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a regularly closed covering of X. It is easy to show that 7’ refines
{clT: T e7}. Hence,

(a) for 7€ 0, {dgT: Tet}el.

3. Main theorem and applications.

THEOREM 3.1. Let X be a dense subspace of a space Z. Let f be a continu-
ous function from X inio a complete semi-uniform space (¥, O). [ can be
continuwously extended to Z iff the following holds: for each zeC,
{Int,cl,f[T]: T et} is an open covering of Z.

In particular, since ¥ is complete relative o the semi-umiformity
generated by oll open coverings, f can be continuously ewtended to Z iff, for
each open covering v of Y, {Intycl,f [T T e7} covers Z.

Proof. The proof of the necessity is trivial. Assume then that X, ¥,
(¥, C), and f are as in the hypothesis. Let t « Z. Define D,= {V nX:V
is open in Z and ¢ eV}. Define B, = {A C ¥: f[U]C A for some U € Dy}
Clearly, B, has the £.i.p. If v « 0 is a closed covering of ¥, then there exists
T et such that te K = Intycl, 7). Since f~[T] is closed in X and
K ~X eD,, it follows that f{K ~X]C T eXK;. Since, by Lemma 2.1,
¢ has a base of closed coverings, a member of each covering in C iy in ;.
Since E; has the f.ip. and Y is complete, S= (N clyd #@. If ¥ # %

AeEg

belong to ¥, then there exists a closed covering 7 e C such that ¥, € St(yy, 7)
C Y—{y,}. It Tev is in B,, then T cannot contain both y, and y,. It
follows that & consists of a singleton. Let § = {y;}. Extend f by defining f
from Z to Y so that 7(#) = y;. Clearly, f restricted to X is f. It remains
to show that f is continmous. For ¢ e Z, assume that tecl,4 for A CZ.
Suppose that y; ¢ clyf[A]. Then there exists a closed covering t € C such that
Yy e St(ys, 7)C ¥— cll,fc [A]. There exists T ¢ v such that € Int el f~[T].
Sinee ¢ cl, 4, there exists #, ¢ A such that #; e Int,clzf ~[T]. Thus, F@)
=y, < T~Fl4] and y; T. This is in contradiction o St(y:, 7) CY—
—clyf[A]. Thus, f(f) e clpf[A]. Hence, f is continuous.

For X a dense subspace of a space Z, Y a regular T; space, and f
a continmous function from X to ¥, necessary and sufficient conditions
for continuously extending f to Z are given in many general topology
texts (e.q. [1]). The conditions in these texts, however, are less specific
than the condition given in the previous theorem. The necessity for the
regularity of the image space is indicated in [2]. TFrolik [7] states a theorem
analogous to Theorem 3.1. Rather than the image being & complete
semi-uniform space as in Theorem 3.1, he demands that the image be
complete relative to another type of structure.

The previous theorem has an alternate which is easier to apply in
gome cages.
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TEEOREM 3.2. Let X be o dense subspace of a space Z. Let f be a continu-
ous function from X into complete semi-uniform space (¥, O). f can be
continnously extended to Z iff the following holds: if v  C, then {cl,f YT
T ez} has emply intersection.

In particular, f can be continuously extended to Z iff, for each collection
of closed sets {A.} in Y with empty intersection, {clzf {4} has empty
intersection.

Proof. The 1)r50f of the necessity is trivial. For the sufficiency,
It X, Z, (¥,C), and f be as in the hypothesis. Let = e C. Since

{cgf [Y—1T]: Ter}
has empty intersection, it follows that
{Z—clf7{Y—T]: Ter}
is an open covering of Z. For each T e,
Z— el f Y —T1C Intzel,f ~[T].

Thus, {Intzel,f " [T]: T et} is an open covering of X. Hence, the con-
dition of Theorem 3.1 is satisfied.

Several applications of these two theorems will now be mentioned.

ArpricaTioN 31. Let (X,0) and (Y, (") be semi-uniform spaces.
Let (Y, (") be complete and f be a semi-uniformly continuous function
from X to ¥. Let (X, 0) denote the semi-uniform completion of (X, 0).
Then f can be continuously ewtended to X (see [11]).

_ Proof. If ve ¢, then v' = {f "[T]: T e} ¢ 0. By (a), {clgT: T e’}
€ 0. By (i) of Lemma 2.1, {clx 7": T 7'} can be refined by an open covering
of X. Theorem 3.1 then gives the result.

APPLICATION 3.2. Let X be a complete metric space. Then X is a G, sub-
set of each of its Hausdorff extensions (see [3]).

Proof. Let X be as in the hypothesis. Let ¥ be a Hausdorff extension
of X. Let ¢ be the complete uniformity on X generated by the metric.

Then ¢ has a countable base D. Define § = | Intyely 7. By Theo-
€D Ter
rem 3.1, the identity function from X to X has a continuous extengion

from § to X. Since § is Hausdorff and X is a dense subspace of 8, X = §.
It follows that X is a G, subset of ¥.

In [12] Taimanov has given an extengion theorem for continuous
funetions into eompact spaces. General extension theorems concerning
Wallman compactifications (see [6] for a general reference) and the
Smirnov ecompactification of a proximity space (see [10]) are corollaries
of this result. Consequently, they will not be mentioned separately.
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If the image space Y is compact, the word “finite” may be placed
in the appropriate positions in the previous two theorems. The following
is a stronger result. '

APPLICATION. 3.3. Let X be o dense subspace of o space Z. Let Y be
a compact Hausdorff space and f be a continuous Sfumetion from X to Y.
1 ean be continuously extended to Z iff the following holds: if cly 4 A cly B
=@ for subsets A and B of ¥, then clzf ~[A] ~cl,f " [B] =0 (see [12]).

Proof. The proof of the necessity is easy. Assume then that X, Z, f,
and Y are as in the hypothesis. Let {4,} be an arbitrary collection of
closed sets in Y. et ¢ belong to the interseetion of {cl,f~'[4,]}. By Theo-
rem 3.2, it suffices to show that {4,} has non-empty intersection. Let 6 be
the family of all open sets in Z containing ¢. Define 8’ = {0 ~ X: 0 « 8}
Define 0" = {f[0]: 0¢0'}. Since 6" has the fip., 8” does also. Define

U={FCY: 0CH fof 0e¢§"}.

Since Y is compact, there exists y e ¥ such that y (") cly 4. Tt suffices
Aell
to show that y belongs to each 4, in {4}. If, for some a, y ¢ 4,, then

there exists an open set ¥V in ¥ such that y eV CclyV C ¥— 4,. Since
[el]yV]~ 4, =0, it follows from the hypothesis that [el,f~[elpV]] ~
nelf[A4,]= 0. Since tecl,f ' [4,], teZ—ecl;f [elyV]. This implies
that D = [[Z— cl;f"[elyV]] ~ X] belongs to 6§ and that y belongs to
clyf[D]. But this is contradictory to the easily proven fact that clyf[D]
CY—V. Hence, y e 4,.

If the image space Y in Theorem 3.2 iy Lindelof, then the conditions
in the theorem can clearly be restricted to a countable collection of closed
sets. A stronger result by Engelking [5] states that this same restriction
suffices when Y is only realcompact. There is, in fact, a slightly stronger
result using only countable collections of zero-sets.

APPLICATION 3.4. Lot X be a dense subspace of & space W. Let f be
a continuous function from X into a realcompact space X . f can be continu-
ously emtended 1o W iff the following holds: if {Z} is a countable collection
of zero-sets in Y with emply intersection, then {clyf'[Z:]} has empty inter-
section (see [B]). )

Proof. Since Y is realcompact, Y is complete relative to a uniformity
with a base of countable cozero-set coverings. This is shown in Chapter 15
of [8]. Since every uniformity is a semi-uniformity, Theorem 3.2 gives
the result.

A particular consequence of the next application of Theorem 3.2
is that the Tychonoff preimage of a realcompact space under a perfet?t
mapping (continuous, closed, onto, and the preimage of a singleton is
compact) is realcompact.
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(8] L. Gillman and J. Jerison, Rings of Continuous Functions, Princeton 1960.

APPLICATION 3.5. Let X be a Tychonoff space and f be a continuous [o] J. Isbell, Uniform Spaces, Providence 1964.

Junction Jrom & 010 realoompat ¢pace T Assume' fhat 2 is a—zf 110'8?1 [10] Y.Smirnov, On prowimity spaces (translated from Russian), Mat. Sb. 31 (1952)

in X, then f[Z] is closed in Y. Also, assume that, if y < Y then f~(y) is op. 543-574. )

Lindeldf. Then X is realcompact (see [4]). ) (1] A K. Steinor and E. T. Steiner, On semi-unifomilies, Tund. Math, 83 (1973),
Proof. Let 6 be an arbitrary zero-set ultrafilter on X which is closed pp. 47-58.

g - A . . . [12] A. Taimanov, On extension of continuous mappings of topological spaces (trans-
under ecountable intersections and which has empty intersection. Define lated from Russian), Mat. Sb. 31 (1952), pp. 459~463{ o o (frans

§' = {f[A]: Aeb}. T ye[) A, then, since f~Y(y) is Lindelof, since § is
A’ et

closed under countable intersections, and since 6 hag empty intersection, Regu par la Rédaction le 7. 9. 1972
there exists Z ¢ 6 such that f~(y) ~n Z = @. But y € f[Z] implies that this

is impossible. Thus, it must follow that M A= 0. If »X is the Hewit}
Al gt’
realcompactification of X, then f has a continuous extension to ».X.
Then, by Theorem 3.2, [\ el,xf '[4']=@. But, since g ;éjli’] cl,x A
A’ et €l

C N el,xf '[4"), this is impossible. It follows that § must have empty
A et

intersection.. Hence, X is realcompact.

The following theorem is interesting because it essentially combines
a condition analogous to that given in Theorem 3.1 and a condition given
by Talmanov in [12]. The theorem will not be proven here, but the ap- .
proach is similar to that used in proving Taimanov’s result.

TasoreM 3.3. Let X be a dense subspace of a space Z. Let (¥, C) be
o complete semi-un‘form space. Let f be o continuous function from X
to Y. f can be continuously ewtended to Z iff the following conditions hold:

i) If 70, then {clyf [T]: T ez} is a covering of Z (compare
this with the stronger condition in Theorem 3.1).

(ii) If cly A nclyB = @ for subsets A and B of Y, then clyf~[4]~
Acl,fT'[B]=0.

Let ¥ be a compact Hausdorff space and let ¢ be the complete semi-
uniformity on ¥ generated by all open coverings. Since Y is compact,
(i) holds in the previous theorem. In this case, the previous theorem
reduces to the condition used in Application 3.3.
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