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generic extension of a model-class M implies the existence of an extension
which is hereditarily ordinal definable over M (thus, the definability of 0%
is not an exception).
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On semi-uniformities
by
A. K. Steiner (Ames, Ia.) and E. F. Steiner (Ames, Ia.)

Abstract. Regular Hausdorff extensions of topological spaces are studied as
completions of generalized uniformities.

Key words. Regular extensions, completions, semi-uniform spaces.

Introduction. In this paper we will consider a generalization of uniform
space first defined by Morita [2] which plays an important role in the
completion and extension theory of topological spaces. Morita’s paper
is little known and consequently his original ideas are not referred to
as often as they should be.

Qur point of view is that one of the most important kinds of infor-
mation a structure on a space X provides, besides a topology for X, is
a topological extension of X. The most satisfactory extension theory
appears to us to lie in the setting of regular Hausdorff spaces and the
fundamental structures are the semi-uniformities presented here.

1. Preliminaries. In [2, T-IV], Morita considers families of open covers
of a topological space which satisfy certain uniformity conditions. In
this paper, the theory of semi-uniform spaces will be developed independ-
ently of a topology. Much of the terminology is that used in uniform
space theory, and the reader is refered to [1].

If S is a family of coverings of a set X, and U, and U, € 8, then 1, is
said to locally star-refine U, in 8 (and written U, < si,) if for each 4 €1
there is a covering M, ¢ 8 and a set B e, such that st(4,u,)C B.

A family of coverings in which each covering has a local star-refine-
ment is called a semi-normal family. :

A semi-uniformity 8 on a set X is a family of coverings of X which
satisfies '

(i) § is a filter with respect to local star-refinement and (ii) for
distinct points @,y e X, there is a covering in 8, no member of which
contains both # and y. .

The concepts of a base and a subbase for a semi-uniformity are
analogous to those for a uniformity, [1].
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The set X, together with a gemi-uniformity 8 on X, Wﬂl be called
a semi-uniform space and will be denoted by (X, §8), or sometlmgs mfarely
by X. The members of a sermi-uniformity will be called semi-uniform
coverings. .

Since star-refinement implies local gtar-refinement, a uniformity
on X is a semi-uniformity and every uniform space i8 & semi-uniform space.
The eonverse is not true. :

Rach semi-uniformity 8 on X determines 2 topology z(8) on X as
follows: U < ©(8) if and only if for each v < U there is a W € § such that
st(z, M) C U. Two semi-uniformities on X are said to be compatible if
they determine the same topology.

The family {st(z,): W eS8} is a neighborhood system at @ in z(S).
IE stst(w, W), 1) C st(z, Up), then cl[st(z, Uy)] C st(wx, W), where closure
is with respect to 7(8).

PrmorenM 1.1. For each semi-uniformity S, (X,%(8)) is @ Ty-space.

Proof. If & € X and 1, ¢ §, there is a U; ¢ 8 such that st(st(w, W), W)
C st(w, ). The preceding remarks show that 7(8) is regular. Property (ii)
implies that z(8) is T}.

TaEoREM 1.2. Bach semi-uniform covering in 8 has an open (m 1:(8))
semi-uniform refinement.

Proof. Tf 1,4, ¢S and U, <"y, then for each A e, there is
a M, e8 and a B ell, such that st(4,Uy,) C B. For each @ € 4, st(z, W )
C B. Thus A CintB and 1, refines B = {intB: B e}, which refines ;.
Since § is a filter, B 3. ‘ L

By observing that for each 4 C X and for each U € §, cld Cst(d,N),
one ean conclude that each covering in § has a semi-uniform refinement
composed of regular open sets (i.e. sets which are the interiors of their
closures).

A topological space (X, 7) is said to be semi-uniformizable if there
is a semi-uniformity § on X such that == 7(§). Such a semi-uniformity
is said to be compatible with the topology.

TamoreM 1.3. Bach T, space is semi-uniformizable.

Proof. The family of all open coverings is a base for a semi-uniformity
which is compatible with the original topology.

A semi-uniformity generated by the base of all open coverings of
a T,-topology will be called a fine semi-uniformity.

In view of Theorem 1.2, Theorems 1.1 and 1.3 are the same a8
Theorem 1 of Morita [2, I], and semi-uniform spaces are the regular
T -uniformities of Morita.

2. The category of semi-uniform spaces. A function f from a semi-
uniform space (X, 8) to a semi-uniform space (¥, R) is called a mapping
if for every covering B e R, fYB) = {f}(4): A B} is a covering in §.
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THEOREM 2.1. Hvery mapping is continuous.

The composition of mappings is a mapping; thus, the collection of
semi-uniform spaces and mappings forms the category of semi-uniform
spaces, which has the uniform spaces as ‘a full subcategory.

As in uniform spaces, subspaces, free sums, direct products-and
quotients exist, and are defined analogously. The definitions will be
restated here for the purpose of unity and completeness.

If S, snd 8, are semi-uniformities on X, 8, is said to be coarser than 8,
(and 8, finer than 8;) if 8, CS,.

A function e from a semi-uniform space X into a semi-uniform space
Y is an embedding if the semi-uniformity on X is the coarsest one making e
2 mapping. A subset A C Y is a subspace if the identity : A->Y is an
embedding (i.e. the structure on 4 is the relativized structure of Y).

If {X,: A € A} is a family of semi-uniform spaces, the sum X is defined
to be the ordered pairs (s, 1), where 2e A and x e X;. The cannonical
injections ¢,: X;— X are defined as iy(#) = (x, A), and the semi-uniformity
of X is all coverings whose inverse image under i, is a semi-uniform
covering for each ieA. If ¥ is any semi-uniform space and f: 2->Y
and g: Z- Y are two different mappings, then there is a 24 ¢ A such that
foiy # get,. For any family {f;} of mappings fi: X;~> Y, there is
a mapping f: - Y such that foi;=f;.

The product II of a family {X;: 1« A} of semi-uniform spaces is the
Qartesian product set with the coarsest semi-uniformity making each
projection p,: IT-X; a mapping. The existence of such a semi-uniformity
is gnaranteed by the following theorem.

TaEOREM 2.2. Let {fy: A € A} be a family of functions on a set X into
various semi-uniform spaces (¥,,8;) which separates points. Then there
is a coarsest semi-uniformity on X making each f; a mapping.

Proof. For each AeAd, {fi*U): UeS;} is a semi-normal family.
Since {f;} separates points, the family of finite intersections of covers
in {fi*(A): UWeS§;, 1ed} is a base for the desired semi-uniformity. ‘

Tf Y is any semi-uniform space and f: ¥—II and g: Y—II are dif-
ferent mappings, then there is a Ae A such that p,e f # p;0g. Also,
for every family {f;} of mappings f;; ¥—>X,, there exists & mapping
fr Y¥—IT such that p; o f=f; namely, F@ha= filw)-

A quotient map ¢: X->Q is an onto mapping such that whenever
g=g-fand g: @' —@ is one-to-one and onto, then ¢ is an isomorphism.
Every map f: X Y has the form g o ¢ where ¢: X @ is a quotient map
and g: §— Y is one-to-one. The space Q is simply the set f[X] with the
finest semi-uniformity making f a mapping, ¢ agrees with f, and g is the
identity.

4 — Fundamenta Mathematicae, T. LXXXIII
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TEEORENM 2.3. The semi-uniform topology of & subspace, sum, or product
is the subspace, sum, or product fopology, respectively.

As is the case for uniform quotients, the quotient topology need not
agree with the semi-uniform topology on quotient spaces.

Exawprm. Let R denote the real numbers with the usual uniformity,
Jet X=(0,1)u (1,2)CR and ¥ =(0,1]CR, each with the subspace
semi-upiformity. The function f: X->Y defined as floy=2, 0<a<1
and f(@) =1 for 1< @< 2 is a mapping. The singleton {1} is open in
the quotient topology on ¥, but mot in the topology of the quotient
semi-upiformity, since every semi-uniform covering of X contains a set
which intersects both (0, 1) and (1, 2).

3, Complete spaces and completions. A family 5 of subsets of a semi-
wniform space (X, 8) is said to be bound if every covering in 8§ contains
some element which intersects each member of &. & is called a cluster if
it contains at least one member of each semi-uniform covering and is
maximal with respeet to being bound.

In [2, I], Morita defines an equivalence class of Cauchy families
as follows: A family G of subsets of a semi-uniform space (X, 8) is a Cauchy
family if C has the finite intersection property and for any covering U, ¢ 8
there is a set F G and a covering W, e 8 such that st(F, W,) C U ;.
Cauchy families G and €' are equivalent if for any F e C and any ;¢ 8
there is any B’ eC’ and U, e § such that st(F', U,) Cst(F, Uy).

Leama 3.1, Bach cluster contains a unique equivalence class of Cauchy
families.

Proof. Let  be 2 cluster and define § to be the family of all members
F e F such that there is 2 A e ¥ and a We§ and st(4, W) CF. If Iy, ...
vy Fn€§, then st(d:, Us) CF; for 4;eF and Wy e 8. Let U e § be a com-
mon refinement of the ;. Since {44} is bound, @ # () st(4q, W) T Fi.
Thus § has the finite intersection property. It is easy to verify that §
contains at least one member of each semi-uniform cover, and is & Cauchy
family. Suppose C is a Cauchy family equivalent to § and C <C. For
each U eS8, there is a Wy €8 such that U <® U. Let Aelly ~6. Then
there is a U e and U, € 8 such that st(4,U,) C U. Since B ~ st(4, U ,)
# O for each F e &, U intersects each member of . By the equivalence
of Cto G, thereis a (" ¢ C and a U’ « § such that st(0", ') Cst(4, U,) C U.
Since ¢~ 0’ # @, it follows that U~ 0 # @. Thus Fu {C} is bound,
which implies that (e F. ’

If € and €' are Cauchy families and Cu €' is bound, then G~C'.
Let CeCand W eS. There is a €' €@ and W e § such that st(C, U)C T
for some U el. Since {C, 0"} is bound, @ # 0 ~st(¢',U)CCu T.
?l?hus s6(0°, W) C UCst(0, U) and the equivalence is shown. As a cluster
is a bound family, it can contain only one equivalence class.
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LemMA 3.2. Bach equivalence. class of Cauchy families is a cluster.

Proof. Let 3 be an equivalence class of Cauchy families. Since
each Cauchy family is contained in a Cauchy ultrafilter, & contains
at least one member of each semi-uniform cover.

Let WeS and let 1, ¢ § such that W, <®U. If A U, ~F, there is
a Uell and Uy e 8 such that st(4,U,)C U. If B « X, then B and A are
in equivalent Cauchy families € and C’, respectively. Thus there is a BeC
and a 1, S such that st(B, ;) Csti(d,U,)C T. Since En B # 0,
EAU#@. It follows that 3 is a bound family.

Suppose ¥ U {4} is bound. If § is the family of all ¥ ¢ ¥ such that
$6(7, ) CE for some Fede, UeS, then §o {4} is a Cauchy family.
To see this, it suffices to show that §u {4} has the finite intersection
property. If By, ..., Bn ¢, then as in Lemma 1, there is a We§ and
Fy, ..., Fn € 3€ such that st(F;, W) C B for each i. Since {Fy, ..., Fn, A} is
bound, @ # A~ [ st(Fe, W) C A~ By

From Lemma 3.1 it follows that the equivalence class containing
§u {4} and J are contained in the same cluster and are thus identical.
Therefore 4 ¢ & and % is maximal with respect to being bound.

From Lemmas 8.1 and 3.2 it follows that clusters and equivalence
clagses of Cauchy families are identical.

A cluster F is said to converge to # ¢ X if st(w, W) e F for each W €8
(or, what is equivalent, if () {F: F e §} = {z}). Distinet clusters cannot
converge to the same point. The family F,= {4 CX: v e 4} is a cluster
converging to ®. A space (X,8) is said to be complete if each cluster
converges.

TesorEM 3.1. Every T, space has a compatible semi-uniformity which
is complete.

The fine semi-uniformity defined in Theorem 1.3 is complete, as
was noted by Morita [2, I, Theorem 8] ;

THEOREM 3.2. A closed-subspace of a complete space is complete.

Proof. A cluster in the subspace is contained in a cluster in the
large space, which must converge to a point in the subspace.

TrmoreM 3.3. The product of complete spaces is complete.

Proof. If ¥ is a cluster in a product I7X, of complete spaces, then
P,(F) is a cluster in X, and must converge to z, e X,. Tt is easy to see
that & converges to o= (a,).

Remark. The relation between clusters and Cauchy filters, Lem-
mas 3.1 and 3.2, shows that a semi-uniform space is complete if and only
it each Cauchy filter converges. Thus the concepts of completeness agree
in uniform spaces and semi-uniform spaces.

4
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A semi-uniform space ¥ is a completion of a space X if ¥ is complete
and contains a dense subspace isomorphic to X.

The existence and uniqueness of completions were established by
Morita [2, I, IT]; we will simply outline their construection.

THEOREM 3.4. Bach semi-uniform space (X, 8) has o wnique completion.

Let X* be the set of all clusters of X. For each FC X, define F*
= {FeX*: FeF), and for each UeS, let U= (U™ UelU}. The eol-
lection {i*: I € 8} is & base for a semi-uniformity §* on X* which is
complete. The embedding e(z) = F, for #¢X is an isomorphism and
¢[X] is a dense subspace of X* For each 4 CX, A™ is the closure of 4
in X* with respect to 7(8%).

The above construction of the completion differs slightly from Morita
since he did mot assume 7(8) to be 7., and thus he defined X* to be
X U {nonconvergent equivalence classes}.

The uniqueness of the completion follows from the following theorem.

TEEOREM 3.5. If f is a mapping on a subspace X of o semi—amz'fo'rm
space into a complete semi-uniform space X, then f may be extended uniquely
to a mapping on the closure of X. -

Proof. Since X is dense in cl.X and Y is T,, f has at most one continu-
ous extension.

. For each e clX, the collection F,= {4 CX: wecld} is a cluster
in X. Since f is a mapping, f[F,] is contained in a unique clugter in ¥,
which converges to a point, #(x).

Thus F: clX—»Y is defined and coincides with f on X. If A,BCY
and cly A C B, then clf “{(4) CF*(B). Thus if 1, Y, are semi-uniform
eovei‘i;gs of ¥ and U, < si,, then elf (1) < F~X(1,) and F is & mapping
on clX. g

COROLLARY. A mapping f: XY has an extensio ]
4 : n 0 @& mappin,

f*: X*»Y* [2, I, Theorem 3]. ) e

The 'completion functor is thus a reflector and has the following
preservation properties.

THEOREM 3.6.

(a) If X is a uniform space, then X* is also.

(b) If XC Y, then X*C Y*.

(¢) (IIX,)" = IIX} (= means isomorphic).

(@) (ZX)* = ZX*. '

(e) If ¢ is a quotient, then ¢* is also.

Proof. (a) If tar-refi .
refines 107, (a) It ¥, star-refines U, and Uy star-vetines 1y, then 1} star-
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(b) Since e[X]Ce[¥]C X*, and since cle[X] is complete, the
uniqueness of the completion implies X*=cle[X]C X*.

(e) IIX, is a dense semi-uniform subspace of both IIX} and (JIX,)".
As these two spaces are complete, they must be isomorphie.

The proof of (d) is identical to the proof of (c).

(e) Tf ¢*: X*— ¥* factors into g o b where h: X*>4 and g¢: A->T*
with g one-to-one and onto, then g factors into g’ o »’, where b': X g [ Y]
and ¢': ¢ [Y]— Y. Clearly ¢’ is one-to-one and onto, and is thus an
isomorphism. Sinece g{¥] is a dense subspace of 4, g '[Y] is a dense
subspace of A*. Tt follows that A* is isomorphic to ¥ and hence that g is
an isomorphism.

THEOREM 3.7. For each Ty emtension Y of a topological space X, there
is a compatible semi-uniformity 8 on X, such that the completion of (X, 8)
is topologically equivalent to Y.

Proof. Y is complete with respect to the semi-uniformity generated
by the base consisting of all open eovers of Y. The trace of this semi-
uniformity on X (i.e. the subspace semi-uniformity) is the desired one.

4. Properties of the induced topologies. In this section we are concerned
with the problem of determining the topological properties of X and x*
with respect to struetural properties of the semi-uniformity. Throughout,
all topolegical spaces are assumed to be T,.

If (X, 7) is a topologieal space and C is a family of coverings of X
generated by the finite open covers, then an extension of X may be
obtained (in an identical manner as X*) whose topology is compact
[2, IT, Theorem 4]. However, C may not be a semi-uniformity and the
topology of the extension need not be Ts. It is known that the family
of all finite open covers of a topological space (X, ) generates a com-
patible upiformity if and only if = is normal. The same result is true for
semi-uniform spaces. )

TeEoREM 4.1. The family of all finite open covers of a topologica
space (X, 7) is a base for a compatible semi-uniformity if and only if v is
normal.

Proof. If 7 is pormal, the finite open covers generate a compatible
upiformity. Conversely, suppose the finite open covers are a base for
a compatible semi-uniformity. Let A and B be disjoint closed subsets of X.
Then {X— A, X— B} is a semi-uniform covering and has a finite, open
local-star refinement U = {Ui, ..., Un}. For each Ui, clliCX—A4 or
AU;CX—B. I V= J{Us clU;CX— B}, then ACVCelVCX—B,
ie. A and B are separated by disjoint open sets V, X— clV, respectively.

The next few theorems are concerned with the consequences of
a semi-uniformity having a base of finite covers.
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TEEoREM 4.2. If the finite coverings in a semi-uniformity 8 form a base
for 8, then 8 is a precompact wniformity.

- Proof. It suffices to show that the finite coverings form a base for
a uniformity. Let U be a finite covering locally-star-refined by a finite
covering W' = {4;, 4,, ..., Az}. For each A;, there is a finite covering
Wie$ and a U; el such that st(4q, We) C Us. There is a finite covering
U, ¢ $ which refines Y’ and Uy, 1< i< n Clearly U, star-refines 1.

TuEOREM 4.3. A compact topological space (X, t) has only one com-
patible semi-uniformity.

Proof. There exists at least one compatible semi-uniformity, Theo-
rem 1.3. Suppose § is a compatible semi-uniformity on X, and let o be
any open cover of X. For each @ ¢ X, there is a U, ¢ § and an A, € A such
that st(st(z, Us), Uy) C A5 Since 7= 7(8) is compact,

X C U {sb(me, Un)| 1<i<E}.

If U € § refines each Uy, then U refines A and e S.

THEOREM 4.4. A semi-uniformity 8§ on X has a base of finite covers
if and only if the completion (X*, 8%) is a compact fopological space.

Proof. The sufficiency follows from Theorem 4.2. If 7(8*) is compact,
the family of all finite open covers of (X*, 7(8%) is a base for §*. Thus §
has a base of finite covers. '

As a partial generalization cf compact extensions we have the
following

TEEOREM 4.5. If 8 is a complete semi-uniformity on X with o base
of countable covers, then every ultrafiller of closed sets with the countable
intersection property converges.

Proof. Let & be an ultrafilter of closed sets having the countable
intersection property and let U be any countable covering in 8. Since
X = {J{Ui: Uiel}, and F has the countable intersection property,
some member Uj e U intersects each set in &. Thus el U; ¢ F. BEach cover-
ing in § is refined by a countable closed covering in §, and thus F can be

extended to a cluster. This cluster, and hence ¥, must converge since § is
complete.

CoROLLARY A. If 8 is a complete semi-uniformity on X with o base of

countable covers and (X, <(8)) is mormal, then (X, 7(8)) is realcompact.

P‘roo‘f. It suffices to point out that if (X , T(S)) is permal, then every
covering in § can be refined by a zero-set covering in S.

COBOI:LARY B. If*S is a semi-unijormity on X with a base of count-
able coverings and (X*, 7(8%) is normal, then (X*,%(S*)

padtification of (X, (). ) is 4 redloom:
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Remark. The converse of Theorem 4.5 (and the corollaries) is nof
true. For example, let X Dbe the discrete space of eardinal ¢ and let 8 be
the fine semi-uniformity on X. Then (X,8) is complete, every ultra-
filter of closed sets with the countable intersection property convefges
(since (X, 7(8)) is realcompact), but the covering of singletons is in §
and has no countable refinement.

This example shows that it is not necessary for each covering in § to
have a countable semi-uniform refinement for 7(8*) to be realcompact.
However, we have the following.

THEOREM 4.6. Bach realcompact extension of a topological space (X, 7)
is topologically equivalent fo (X*,7(S%)), where 8 is a compatible semi-
uniformity on X possessing a base of countable covers.

Proof. If R denotes the usual uniformity on the reals, then for
each continuous real-valued function f on a realcompact space ¥, f “HR) is
a normal family with a countable base. The uniformity on Y generated
by {fR)} has a countable base, is compatible with the topology of ¥,
and is complete. The trace of this uniformity on a dense subspace X has
the required properties.

We turn now to the question of when z(8) and ©(8*) are completely
regular. Clearly z(8) is completely regular if and only if § is compatible
to a uniformity. An answer of this kind says nothing about the structure
of S itself. If S contains a compatible uniformity, z(8) is completely
regular. We do not know if the converse holds, except in the following case.

TEworEM 4.7. If (X, ©(8)) is completely reqular and locally compact,
then § contains a compatible uniformity.

Proof. The family of finite open covers of sets whose complements
or closures arve compact is a base for a compatible precompact uniformity
on X. To show that this uniformity is contained in 8, it suffices to prove
that if X =7V u U where ¥V, Uez(8) and ¥ and X—T are compact,
then {V,U}eS. If @weX —U, then there is a Uz e8 such that
st(st(z, Uz), Us) C V. Since XU is compact, there are a finite number
of @ such that {st(m:, Uy): 1<i<<n} covers X—U. There is a Ue$§
which refines Y, for each 4. Then, since st(X— T, W) C V, U refines {V, U},
and {V,U}eS.

The condition that § contain a compatible uniformity is not suf-
ficient to guarantee complete regularity of 7(8*) as the following ex-
ample shows. :

Let (¥, 7) be a T, space which is not completely regular and which
has a dense, locally compact subspace X. See 18G of [3] for such a space.
Tf S is the fine semi-uniformity on Y compatible with , then Sy, the
subspace semi-uniformity on X, containg a compatible uniformity- by
Theorem 4.7. However, since 8k = 8, 7(8%) = © is not completely regular.
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A cover W of X is star-finite if for each A eU, the card
{Uell: Un A # 0} =[st(4,U)] is finite. A family D of covers is said
to be a mutually star-finite fomily if for Uy, Us e D, |st(A4, Wy)| is finite
for each A e11;. Bach cover in a mutually star-finite family is star-finite.

THEOREM 4.8. If $ is a mutually star-finite base for a semi-uniformity 8
on X, then ©(8) is completely regular.

Proof. We will show, that for each element U ¢ B, there is a sequence
=1, U,, 0, ... of open covers of X such that Wi, <*U; (ie. Ui,
star-refines 1[;). The semi-uniformity generated by these normal sequences
is a uniformity equivalent to §.

‘Without loss of generality, we may assume that % consists of open
coverings.

Let 1, U, € B such that U, < sU;. For each 4 1, there is a cover-
ing I, and U, 1, such that st(4,U,) C U,. Choose U} ¢ B such that i
refines Uy for each B <1, for which B ~st(4, ;) # @, and having the
property that if ¢ el and 0~ A # @, then 0CB for some B ell,.
Since only finitely many B U, intersect st(4,U,), there is at least one
covering in $ which refines each Uy and .

Define Wy = {V: Vell, and V~ 4 # @, 4 ¢1,}. 1; is an open cover
of X, is star-finite, and ;<" 1. For each 4 <1, there is a 1, ¢ $ such
that U, <*1. Define Wy ={V: Vell’;y and VA4 £ @, 4 e} Uy is
a star-finite open cover of X, 1, locally star-refines 1f; with respect to 3,
and {i,, W} is mutually star-finite.

For each 4 ¢, coverings U, ¢ B and sets U, ¢, may be chosen
a8 before. Since U, refines 1U,, each 4 €1, is contained in some 4, el,.
Let U « B refine Wy for all B in W, for which B ~st(4, ;) # G, and
let U7 refine U, Then if C e, and O n A # @, there is a B ¢ U, con-
taining C.

The star-finite-open covering 1f; is derived from 2, as U} was from 2,
and ¥;<* ;. The procedure may be continued inductively.

CoROLLARY. If for each a ¢ 2, D, is a mutually star-finite family which
Jorms a filter base with respect to local-star refinement, and the family of
all finile intersections from {D} is a base for o semi-uniformily 8, then
7(8) is completely regular.

.The usual uniformity R on the reals has a base satisfying the hypo-
thesis of Theorem 4.8, so each realcompaect space has a compatible com-
plete semi-uniformity satisfying the conditions of the corollary.

If § has a subbase {D,} as in the corollary, then so does S*, and
7(8%) is completely regular. 7

. THE*OREM 49. If B is a mutually siar-finite subfamily of S, then
&= {U": UeB}is a mutually star-finite subfamily of §*.
Unfortunately, not all completely regular spaces have a compatible
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complete semi-uniformity with a subbase of star-finite covers. For
example, each star-finite open cover of a countably compact space must
be finite, so a countably compact, non compact space has no compatible,
complete semi-uniformity as above.

Morita [2, IV] pointed out that if a semi-uniformity 8§ on X has
a countable base, then ¢(8) is metrizable. A semi-uniformity with a count-
able base need not be a uniformity, as the following example shows.

Let X be the real numbers. For each pair of integers n>1, i>1
let Ui(n) be an interval of length 1—27" with center n--4. Let U;
= {Ui(n): n=1,2,..}u {a]l intervals of length 27%. Then {U,} is
a base for a semi-uniformity on X which is not a uniformity.

THEOREM 4.10. For each semi-uniformity with a countable base, there
is a compatible finer uniformity with a countable base.

Proof. If {U,} is a countable base for a semi-uniformity 8, we can
assume 1, refines U,. For each y ¢ X, and each integer u, let Wa(y)
= sb(y, Wn). Then {Waly): n=1,2,..} is a nested neighborhood base
at y having the property: (Q) for any n, there is a m(n, y) >n such thab
W) » Waly) # @ implies that Wa(z) C Wal(y).

Let 4 e X. For each n there is a p(n) >n and a U e, such that
Woly) C U. Let k(n) = max(p(n), m(n)). Define Vy(y) = Wi(y) and Vi(y)
= Wyjo(y), where ¥/(1) = k(k"~*(1)) for j >1. Clearly *(1)>j+1 and
Vily) C Wily)-

For each ¥ we have another nested neighborhood base {Va(y)} satis-
fying (Q). Let Ap = {Valy): ¥ € X}. The covers A, are open, A, refines U,
and if V(%) »V,4.(y) # @, then either V,.,(¥) CVa(z) or V,. (o)
CVuly)- '

If G,= {st(w, An): weX}, then €, ,<*Cp and G, , <U, <U,.
Thus {C} is & countable base for a uniformity which is finer than 8. Since
each cover €, is open in 7(8), this is a compatible uniformity.

5. Fine and subfine spaces. In general, distinet semi-uniformities on
a set X can give topologically equivalent extensions. However, among
those giving equivalent topological extensions, there is a finest, namely
the trace on X of the fine semi-uniformity compatible with the topology
of the extension. This semi-uniformity can be characterized as follows.

TrEorEM 5.1. 8* is the fine uniformity on [X*, v(8) if and only if
every bound family in (X, 8) is contained in a cluster.

Proof. Let §* be the fine uniformity on (X, z(8*)) and & a family
of subsets of X which is not in a cluster. Then {X*—F™: Fe¢ 5} is an
open cover of X* and is thus refined by U* for some W eS. Thus no
member of I intersects each Fe & and & is not bound.

Conversely, let 20, %, be open covers of X* such that el < ;.
Sinece () {X*—4: AeW}=0, {X—A: A<} is not contained in
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a cluster and by hypothesis, not bound. Thus, there is a 11 €8 such that
W < 9, ~ X. This implies that I < ol < A, and Ay e 8™

Among all semi-uniformities compatible with a given topology there
is a finest, namely the fine semi-uniformity. We will define (X, 8) to
be a fine space provided 8 is the fine gemi-uniformity compatible with z(8).
A fine space is complete.

TEEOREM 5.2. Every continuous function from a fine space into a semi-
uniform space is a MAPPIng.

TaEoREM 5.3. The fine spaces form @ coreflective subcategory of the
category of semi-uniform spaces.

Proof. If S is a semi-uniformity on X, let o8 denote the compatible
fine semi-uniformity. It is easy to see that if (¥, 8,) is a fine space, then
any map fr (¥, 8,)—~(X, 8,) factors uniquely f= cof’ where f: (¥, 8)
(X, aS,) and ¢: (X, o8,) (X, 8,).

A fine uniform space is a fine semi-uniform space if and only if the
semi-uniform topology is paraebmp&et.

A subspace of a fine space will be called subfine. For each semi-
uniformity § on X, let ¢§ denote the finest semi-uniformity on X' whose
completion is topologically equivalent to that of .

THEOREM b.4. The subfine spaces form a coveflective subcategory of
the category of semi-uniform spaces. )

Proof. If (¥,S,) is a subfine space and f: (¥, 8)—>(X,S,) is
a mapping, then f has a unique extension to a mapping f* from (XY, §;)
to (X*, 8F). Since completions are unique, (Y™, 8;) must be a fine space,
80 f*=coh where h: (¥* 85— (X* 08)) and e (X%, 085) (X", §;).
If e Y Y* is the embedding, then ¢o(hoe)=f ce=Ff, and hoe:
(¥, 8)~(X, 08) and c: (X, 68,)>(X, S,).
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On the extension of continuous functions
) oy
David F. Wooten (Sioux City, Ia.)

Abstract, The principal result is the following. Let X be a dense subspace of Z.
Let f be a continuous function from X to a complete semi-uniform space (¥, 0). Then
f can be continuously extended to Z iff, for 7 = {I} ¢ 0, {Intzel;f(T)} covers Z.
In particular, let X be a dense subspace of Z and f a continuous funection from X to
a regular T, space Y. Then f can be continnously extended to Z iff, for z = {7} an open
covering of ¥, {Intzclyf~(7T)} is an open covering of Z. Well-known applications will
also be discussed.

1. Introduction. This paper contains a theorem which gives very
specific circumstances under which a continuous function, whose image
is regular Ty, can be continuously extended from a dense subspace onto
an entire space. Before this theorem can be given, however, it is necessary
to mention some recent results in structural theory.

2. Semi-uniform spaces. In [11] E. F. Steiner and A. K. Steiner have
introduced the concept of semi-uniformities. Here, only those points
essential to this paper will be discussed. A semi-uniform space consists
of a pair X, ¢ where X is a space and € is a collection of coverings of X
satisfying:

(i) If 7 « O then there exists 7’ € (' such that: for each I” ¢ 7’ there
exist T et and 7'* €« ¢ where St(71",7"") C T. (If ¢ is a covering of a set ¥
and ACY, then St(4d,a)= J{Tea: Tn4 @} If A consists of
a single point @, then St(z, a) = St(4, a)). " is said to semi-star refine 7.

(ii) If 7,7 € O then there exists 7'/« ¢ such that 7'’ refines both
7 and 7'.

(iii) If +' ¢ ¢ refines a covering z, then e C.

(iv) For each x ¢ X, {St(®, 7): 7 ¢ 0} is a base of neighborhoods for .

(v) For #,y ¢ X where & 5 ¥, there exists 7 ¢ ¢ such that y ¢ St(z, 7).

Tf the pair X, O satisties (i) through (v), then C is said to be a semi-
wuwiformity on X. This is denoted by (X, (), and (X, 0) is said to be
a semi-uniform space. Note that, if (i) is replaced by: for v « ¢ there exists
7' ¢ ¢ such that, for each T’ e’ there exists T e v where St(I1",7")C T,
then O is a uniformity on X (see [9]).
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