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Characterization of generic extensions
of models of set theory
by
Lev Bukovsky (KoSice)

Abstract. We prove the following theorem: For a model-class M the following two
conditions are equivalent: a) there is an a-C.C. M-complete Boolean algebra Be M
and an M-complete ultrafilter Z on B such that ¥ = M(Z), b) for every function feV,
there exists a function he M such that for each « from the domain of f, flw)e h(z)
and the cardinality of k(%) is smaller than a. Some related problems and results are
discussed, e.g. the existence of a complete totally non-homogenous Boolean algebra
with prescribed properties is proved.

Among all the methods of constructing an extension of a given model
of the theory of sets, Cohen’s method of generic extensions is the most
powerful one. The main subject of this paper is to characterize those
extensions of a model of the theory of sets, which are of the above-
mentioned type, i.e. generic ones.

P. Hijek and P. Vopénka in [22] have proved that every extension
(with the class form of the axiom of choice) is “generic”, but over a class
of forcing conditions. Since in this case one can obtain very poor infor-
mation, we preserve the notion of generic extension for the case of a set
of forcing conditions and we shall be interested in such extensions only.

Historieally, one of the first characterizations of generic extensions
has been given by P. Hajek and P. Vopénka in [22], p. 207 (see also the
remark preceding our Theorem 3.3). We have found a seemingly weaker
condition (already known in literature), which is equivalent to the
genericity of an extension. Namely (“Apr” is defined in (1.6)):

THROREM A. Let M be a model-class, a e Card™. Then the following
two conditions are equivalent:

(i) V is an a-C.C.-generic extension of M,

(i) Apra,p(a). )

The theorem has two aspects: 1) Apry, (o) implies that V is a generic
extension of M (in our opinion, this fact is a little suprising) and 2) this
extension is constructed by using an a-C.C. set of conditions.

In § 1, we recall all the definitions and results which are needed in
the other parts. § 2 is devoted to the proofs of two, more or less technical,

3*


GUEST


36 L. Bukovsky

theorems on Booleans algebras. § 3 is the main part of the paper. We
suppose that Corollary 8.2 is of its own interest. In§ 4 we prove Theorem A
and some related results.

The construction of a real # C w, such that “L(x) is a generic ex-
tension of L, 8& is collapsed to 87 but all the other cardinals are preserved”
(owing to J. Silver and R. Solovay [9], p. 103) has turned out to be
a good counterexample for our false hypotheses (see the remark after
problem 3). Using elementary properties of the “Apr”, we have concluded
that in L(z) there exists a non-constructible hereditarily ordinal definable
get. § B is devoted to a slight generalization of this reasoning, which leads
to (a sketch of) a proof of the following

TemoREM B. For every infinite cardinal o, there ewists a complete

- Boolean algebra B such that
(i) B possesses & set of generators of the power a,

(i) B satisfies (2%)*+-0.0,

(iii) B s totally non-homogenous.

In literature, there are known examples of small totally non-homogen-
ous complete Boolean algebras (none of them allowing a non-identical
automorphism) in the constructible universe I, but the constructions
use special properties of L andfor o, (the Boolean algebra constructed
in K. McAloon [14] is relatively “large”). Anyway, we consider the simple
proof of this theorem as more interesting than the theorem itself.

Finally, in § 6 we present some open questions closely related to
the subject of this paper.

We congider this paper as a (free) continuation of our previous
note [3]. During the summer session of the Prague set theory seminarium
at Gingov in June 1971, we discussed the result of note [3] with B. Balcar
and P. Vopénka. The work on this paper has been strongly influenced
by that discussion, namely the results presented in § 3 (which may be
considered as a direct generalization of the results contained in [3]).
I would like to express my thanks to them.

The methods of constructions used in this paper imply interesting
results on Boolean algebras, which we shall eventually publish elsewhere.

§ 1. Preliminaries. All the reasonings of this paper are applicable
to any sufficiently strong theory of sets (e.g. to the Zermelo-Fraenkel
set theory ZFC or to the theory of semisets — see [22]). In order to express
our results in a precise way, we shall formulate them all in the Godel-
Bernays set theory GB with the axiom of regularity (see [7]) and with
the set form of the axiom of choice AC: “every set can be well-ordered”.

We use the standard set-theoretical notations. An ordinal is the
set of all smaller ordinals, a cardinal is an initial ordinal. £, 5, denote
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ordinals, a, f, v, d denote cardinals. §(z) is the set of all subsets of =,
zy is the set of all mappings from & into y. V is the universal class: the
class of all sets. ot is the first cardinal greater than a.

A class M is called a model-class iff M is transitive, closed under
Godel’s operations, and almost universal, and the axiom of choice holds
true in M. In other words, M is a model-clags iff (M, > is a model of ZFC.
If we define

Olsy(X) = XC M & (Vo) (y e M>y ~X e M),

we obtain a model of GB. If (1 is some concept of the set theory, then (i
means the corresponding concept constructed in this model. E.g. Card™
is the class of all infinite ordinals which are cardinal numbers in the sense
of the model Clsy,¢, ie. the class of those infinite ordinals which cannot
be mapped in a one-to-one way on some smaller ordinal by a map belong-
ing to M.

If M,, M, are model-classes, M; C M,, we say that M, is an extension
of M,. If #is a set and M, is an extension of M, we write M, = M,(x)
iff M, is the smallest model-class containing both If; and ie. M;C M,
and # e M,. Compare A. Lévy [12], where also the existence of M(»)
has been proved for some classes M, e.g. for M = L — the class of all
constructible sets.

We suppose that the reader is familiar with the absoluteness of some
concepts (see e.g. [8]) and we shall use the corresponding results without
any commentary.

Let (P, <> e M be a partially ordered set. A set QCP, G#Pis
said to be M -generic over P iff

a) we@, a<yeP>yel,

D) 2,y e G>(Ae)ze G &< &e2<y),

¢)if ACP, AeM, A is dense in P (Le. (Va)weP, ©#0
S(@Py <z &yecd &y +# 0))), then A G £ 0.

Tt is well known that if 3 is a model-class, then

(1.1) it G is an M -generic set, then there exists a model class N such
that N = M(&).

For the proof see e.g. [4], [8], [10].

DEFINITION 1.1. Let M, be an extension of M, I, is said to be a generic
extension of M, iff there exists a partially ordered set (P, <)>e M; and
an M, -generic set GC P such that M,= M(&).

If card™(P) < a, we say that I, is an a- generic extension.

If (P, <) satisfies the a-chain eondition in M, (P is a-C.C., i.e. for
every set X C P, X e M of pairwise incompatible elements, card™(X) < a),
we say that B, is an a-C.C.-generic extension.
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Tt B e M is an M-complete Boolean algebra (i.e. a Boolean algebra
such that \/X exists for each XCB, XeM), then an M-generic set ¢
over B is actually an M -complete ultrafilter on B. From well-known
results it follows that
(1.2) M, is a generic extension of M, iff there exist an M, -complete

Boolean algebra B e M; and an MM, -complete ultrafilter G on B
such that M,= My(@). The “a-generic” and “a-C.C.-generic”
extensions correspond to the case of a Boolean algebra with
a dense subset (in M) of M;-cardinality less than o and an
a-0.0.-Boolean algebra, respectively.

‘We shall need the following fact (see [2], [17], [22], for the notion of
Pdistributivity” see also [18]):

(1.3)  Let M, be a generic extension of M;. Then §(a) n My = F(a) n M,
if and only if the Boolean algebra in (1.2) can be chosen to be
(a, 2)-distributive (in ).

Now we recall some notions and results from [22]. Let M be a model-
class, #, y C M. We say that » is M -dependent on y (DepM(w, 'y)) iff there
exists a relation re M such that o= "y = {u: (Hv)(vey & <vu) er)}.
A set 2C M is an M -support iff for every x,y C M which are I/ -de-
pendent on z also a—y is M-dependent on z. A set 2@ C M, 2 ¢ M,, is
a total M,-support for M, iff (Vo)lw C M, & ¢ My—~>Depy(, 2)).

(14) If zis an M -support, then there exists a generic extension ¥ of M
such that ¥ = M (2) and z is a total M -support for N. Moreover,
if 2C ae M, card™(a) < g, then N is an a-generic extension of M.

The first part of (1.4) is proved in [22], p. 222. The second part
follows from [1]. :

B. Balear and P. Vopénka have proved a theorem (see [21]) which
essentially simplifies our considerations:

(1.5) Let M, N be two model-classes. If M and N have the same sets
of ordinals, then M = ¥.

- Let M, be an extension of My, a, 8,y e Card®®. The various con-
ditions for. the “generieity” of this extension will be formulated by using
the following properties of this extension (see [22]):

Biyy,, (@) = (Vo C My, 0 € My)(Ey ¢ My)(Hae My)(yCad
&eard™ (o)< a & | Jy =),
(1.6)  Aprasag(a, B,9) = (VFeB,f e My)(Hg e “ﬂ‘(ﬁ))(g «M, &
& (V¢ e a)(f(£) € () & card™(g (8) < 7)) ,
APras, an (y) = (Va) (VBYADTyr, ar, () B,y 9) -
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It is well known that an «-generic (a-C.C.-generic) extension M,
of M, possesses the property By, a,{a) (ADTay ar,(0)) (see e.g. [22])..
Let us remark that

1.7y if a<pB, feCard™, then each of the econditions “M, is an
a-generic extension of M,”, “M, is an a-C.C.-generic extension
of M,”, Bdy, »,(a); ADry, a,(8, B, @) implies that B < Card ™=,

Tf M is a model-class, then HDf(M) denotes the class of all heredi-
tarily M -definable sets. This class is defined similarly to the class HDf
= HDf (D) of hereditarily definable sets (= hereditarily ordinal definable
in [14]), but allowing parameters from M (see [22], p. 186).

Tt is easy to see (compare [22], . 186) that HDE(M) is a model-class.
By a slight modification of the proofs on pages 304 and 320 in [22] one
can easily show that

(1.8) If V= M(z), #Ca, then ¥ is an f-C.C.-generic extension of
HDE( M), where g = (29*.

(1.9) IfV = M(z), where z is an -complete ultrafilter on an M -com-
plete Boolean algebra Be M, then HDE(M)= M(z ~ By,
where By, = {ueB: for every fe M, an automorphism of B,

flu) = u}.

Tet us recall that a complete Boolean algebra B is said to be iotally
non-homogeneous if there is no partition {u;: te T} of B such that Blu,
= {z ¢ B, © <} is homogeneous for every teT.

We shall need the following simple fact:

(110) If B, is not completely distributive then B is totally non-
homogeneous.

§ 2. Two theorems on Boolean algebras.

THEOREM 2.1. Let B be a complete a-C.C. Boolean algebra. Assume
that B is not atomic (and thus not completely distributive). Let § be the first
cardinal such that B is not (B, a)-distributive. Then f< a.

Remark. The theorem for o« = %, has been (implicitly) proved by
H. Gaifman in [6]. In fact, H. Gaifman proves that the Souslin hypothesis
implies that every complete %;,-C.C., (&, 2)-distributive Boolean algebra
is atomie. From an - C.C., x,-distributive, %;-non-distributive complete
Boolean algebra, it is easy to construet a Souslin tree (and vice versa).
Thus, one needs Theorem 2.1 to pass from “not atomic” to “wx-non-
distributive”.

In our case, the theorem plays an important role in the proof of
Theorem A. )
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Proof of the theorem. Let B be a complete «-C.C. Boolean algebra.
Assume that B is not atomic and that f is the first cardinal such that
B is not (8, «)-distributive. Evidently, g is a regular cardinal. Assume
B>a

Sinece B it not (B, a)-distributive, there exists a system {a, e B:
Eep &nea} such that (see [18])

(2.1) for every &eB, Ag={ay,: nea} is a partition, i.e. Vo, =1
nea
and @, A G, = 0 for o, # 7,
2.2) for every &< £ <<, A, is a refinement of A, ie.
(V) (Te) {2y, ny < Bgyypa)s

(2.3) the set {4, &ep} of partitions has no common refinement, i.e.
u=\ Nt # 1L

ceBy Eef

We may suppose that w=0 (if not, consider B|—u).

It A C B is a partition, a ¢ B, a # 0, we say that A divides « iff there
are @y, Ty e A, @y # By, B AGF 0, BmAa # 0.

By (2.3) and =0, for every a ¢ B, a # 0, there is an &e¢f such
that 4, divides a.

We define a sequence of ordinals {6 £ ¢} by transfinite induction.
We set §,= 0 and §; = {}355 for the limit 1. If §, is already defined,
Iet 7, be the first ordinal ¢ such that A, divides a .. Let gy,
= sup{z,: 5  a}. Since f is regular, &; can be defined for every &< §. By
definition, A‘,§+1 divides each element of Aag Let acd,, a+#0. For
every £ < a there exists an ordinal v (%) << o such that a < a; o Since Ade
divides every o eA,ﬂ, n< & the sequence {a[,f,,,,m: £ea} is strietly
decreasing — a contradiction with the «-chain condition, q.e.d.

The second theorem will be used in the construction of a suitable

ultrafilter on the free <a-complete Boolean algebra U, , with  gener-
ators (see L. Rieger [16] and also R. Sikorski [18]; %, 4 = ot p)-
] i M is a model-class, then every mapping f e M of genemtérs of %
into an M-a-complete Boolean algebra Be M can be extended to an
M-a-complete homomorphism. R. Solovay has shown (see [19]) that,
roughly speaking, in the case of a = f = K, the same holds true without
the assumptions “fe M and Be M”. For mappings in the two-element
Boolean algebra {0,1} a similar result follows from a theorem in [22]
(see pp. 210-221). Following the :ideas of [22], we extend the above-
mentioned results.

THROREM '2.2. Let M be a model-class, o e Card, peCard™, o being
regular. Let C = Q[lfa, s be the free <a-complete Boolean algebra with B gener-
ators constructed imside M. Let OF = W, p (2.0 the same algebra constructed
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in the whole universe V). Then the identical mapping of gemerators of C
onto the set of generators of C*F cam be extended to o one-to-one M -<a-com-
plete homomorphism 3: C->OF, i.e. if XC C, X e M, card™(X) < a, then
# (VI = V@)

Proof. The proof is rather complicated. We outline itz idea
(ecompare [22], pp. 211-214). Let us recall the construction of the
algebra %, ;. For every £ < a, we definz a set H, of Boolean polynomials:
H, is the set of generators, H,={—a: ze JH}v{VX: ICUH:&

&<z E<a
& card (X) < o}. The canonical congruence relation “~” on H = | JH,
. i<a
is defined by induction as in [22], pp. 211-212. Thus s ~.y iff 1) 2=y
or2) o=10(0= \/8)and y = — \/{u, —u} for some u e H or 3) s = \/.X
and y = \/ ¥, where each u ¢ ¥ is such that u= \/U, and X = | ) U,.

ze¥

Let o~ _.y denote (Hye &)s~,y and let X~ ~_, Y denote
(Ve X)(Ev e T)(~ ) & (Vue Y)(Hr e X) (6~ ) -
We define: #~,y iff one of the following conditions is satisfied:

B~y Yog®y, Bl

(E[u')(m"‘<£u&u~<ey)a
(X, I X~ ~v  Y&o= VX &y=\VT),
(Hw, V) (uV—v~—0 & =uVvo &Yy =1},

(Hu, v)(uvo~u&e=uv—v&y = —0).

We let #~y iff (H£ < a)(z~,y). Then the Boolean algebra A, p is the
set of the sets of congruent polynomials H/~ = {[#]: © ¢ H}. It is easy
to show that e.g. \/[z,]=[V =] for i<

2 nei

7€
Evidently HY (i.e. the set of corresponding polynomials constructed

in ) is a subset of H. Also, for any z,y e« H¥, 3 is congruent to y iff z is
congruent to y in M. Thus, the identity mapping of H* into H induces
the homomorphism #: C—C¥# ge.d. :

§ 3. How to find a support. The strongest information contained in
Theorem A is the fact that Apry ,(a) implies the existence of a set of
conditions and of an M -generic subset of that set with suitable properties.
The problem is essentially simplified by (1.4). In this part we present
two methods for obtaining an 1 -generic set (see the proofs of Theo-
rems 3.1 and 3.3). The first method is a generalization of that presented
in [8], the second one is due to P. Hajek and P. Vopénka [22].

The proof of Theorem A heavily depends on
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Trmors 3.1. Let M be a model-class, & C 8, a « Card™, o being regular,
et 6= card™(|J B~ M), y = card™(F(8) ~ M). If Apryp(y,0,a), then
there ewists @ 'r;:adel-class N such that

a) N is an a-C.C.-generic estension of M,

b) N = M(z).

Proof. By (1.7), a, 8,8,y are cardinal numbers (in V). We set D
=uM , O=AY,, DF=U_,, CF=9 ;. Let {g;: Ecf} be the set
of generators for all ¢, D, C¥, D¥. Evidently D is a (regular) subalgebra
of ¢, D¥ is a (regular) subalgebra of (¥, By Theorem 2.2, there exists an
M-y-complete one-to-one homomorphism #: ¢ 0%, Let = be the y-com-
plete homomorphism of % in {0, 1} induced by =(g;) = L = £ € 2. We define

ueZz—ueO’&n(-ﬂ:(u)):l.

Evidently, Z is an M -y-complete ultratilter on . :

Let &= {X,: £ey} be an enumeration (in' M) of those subsets X
of D for which \/’X=1 and XeM. Since card(X)<< <y, the
union \/®X does exist (it need not be equal to 1!) for any X ¢ . Let
X, =X,v{—VC°X}. By a suilable emimeration in M, we have X,
= {u; ,; ned}. Since \/°X;=1 and Z is an M-y-complete ultrafilter,
there is an 7 € d such that u, , € Z. We set f(£) equal to the first ordinal ¢
for which u;,e¢Z. By Apry, y(y,d,a) there exists a function he M,
h: y->$(8) such that (Ve y)(f(E) e h(£) & card™{h(8)) < a). The inter-
section u = A® \/? u,  belongs to Z .

Eey neh®

Now we show that B = {uAv: v e D}is an a-C.C. (in M) M -complete
Boolean algebra and M (Z n B)y= M ().

If YeM is a set of pairwise disjoint elements of B, then there is
a set X e M, X C D such that ¥ C {uAv: v e X}. By the definition of F,
there is an ordinal £ e y such that X = X,. Evidently Y C {uhug 2 neh(é)}
Thus, B is ¢-C.C. in M and also M -complete.

It is easy to see that Z ~ B is an M -complete ultrafilter on B (note
that e Z!). Hence the model-class M(Z ~B) does exist. Since @
={£ greZ} = {&: uig. e Zn B}, we have ve M(Z ~ B).

If ¥ is an extension of M, » < N, then we can define an I -complete
ultrafilter Z’ in N in the same way as we have defined Z in V. Evidently,

we obtain Z'C Z and, since Z' is an ultrafilter, 2’ = Z. Thus also Z ~
nBeN. qe.d.

As. a direct consequence of the theorem we obtain the following
generalization of our theorem proved in [31:
COROLLARY 3.2. Let V= M(w), C B, aeCard™, a being regular. Lot
8, v be the same as in the theorem. Then the following conditions are equivalent:
(i) ¥ is an a-0.C.-generic extension of M,
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(ii) Apra,y(a),

(iif) Apra,p(y, o, a)-

For a= f* and M = L, this theorem follows from our theorem
in [3], as J. L. Krivine has remarked.

The proof of Theorem 3.1 is a slight modifieation of the proofs in [3].
In fact, one can show, in the same way as in [3], that Z ~ D is an M -sup-
port and then prove a theorem analogous to Proposition 3 in [3].

In [22] p. 207, P. Hijek and P. Vopénka have proved that V is
a generic extension of M iff BdM,V( = (Ha)BdM,V(a)). This result may
be refined in an almost trivial way. We state it explicitly, hoping that
it may be useful in a comparison with Theorem A.

THEOREM 3.3. Let M be a model-class, a « Card™. Then'V is an a-generic
extension of M if and only if Bdy y(a).

Proof. Let f be a one-to-one mapping of §(a) onto some cardinal p.
Let g = {<&y>: nef (&)} Using Bdy, p(a) (namely the fact that every
set M -depends on a subset of ), one can easily show that g is a total
M -support for V. Again by Bdy, p(a), there are #C a € M, card™(a) < a
such that Dep,,(g,2). Thus z is also a total M -support for V. The theorem
follows by (1.4). g.e.d.

§ 4. Proof of Theorem A. Theorem A follows directly from Corollary 3.2
and the following

TreorEM 4.1. Let M be a model-class. If Apry »(a), then V = M (F(a)).

Proof. Assume ¥V # M(F(a)), i.e. there is a model-class ¥ such that
F(a)eN, MCXN and N # V. By (1.5), there exists a set #C N, x¢ N.
Evidently Apry y(a) implies Apry y(a). Thus, by Theorem 3.1, there
exists a model-class N' = N (x) such that N’ is an a-C.C.-generic extension
of N. Since ¥(a) C N CN', by (1.3) there exist an «-C.C. (a, 2)-distri-
butive N -complete Boolean algebra Be N and an N-complete ultra-
filter Z on B such that N' = N (Z). By Theorem 2.1, B is atomic. Hence
N'= N—a contradiction. g.e.d.

As the strongest consequence of Theorem A, we consider the fact
that Apry ;(a) implies 7 = M (x) for some set # C M. There is a natural
problem: find some estimate for the power of the set #. More precisely,
let Apry y(a), V= M(x), Cp. Give an estimate for the cardinal §.

Of course, there is no estimate of # inside the model-class M. (For
any f, one can construet an o¥-C.C.-generic extension in which 2° > g
and V # L(z) for any xCp.) From Theorem 4.1 it follows that
B < card(f(a)). Using an idea of K. Kunen (see K. Kunen [11], p. 89)
we give a befter estimate for g in terms of the weak power of a.

We recall the definition of a partition relation (see Erdoés-Hajnal-
Rado [5]). y—(a)j means that for every function f defined on [y
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= {&Cy: card(s) =2} with values in the cardinal g, there exist a get
Y Cy and an ordinal £ ¢ § such thatb card(Y)= a and f(») ==& for each
ve[YP
TrEoREM 4.2. Let M be a model-class, and let Apry, y(a) hold true.
Let = 3 2. If y+—>(B%): holds true in M, then card(F(a)) < y.
i<a

] Proof. Let us suppose that eard(if(a)) >y, ie, there iz a set
{ys: Eeyt} of distinet subsets of a. For {&, &} e[yt we set f(&, &)
equal to the least ordinal 5 € a for which 7 g, # 7 " yg. By Apry »(a),
there is a function ge M, g: [yTF—a such that f(&, &) < g(&, &) for
each {&, &} e[yt]% Since ge M and y*—(B7)2 holds true in M, there
exist YCy* and an ordinal g e ¢ such that eard™(¥) = card” (¥) = gt
and g(&, &)= gy for {&, &} e [Y T Thus {y, ~n: £ e Y} are distinet sub-
sets of 5 < a — contradiction. g.e.d.

For example, if the generalized continuum hypothesis (GOH) holds
true in M, then gt*—(g+)2 also holds true in M (see [5], p. 130). Thus
CorOLLARY 4.3. If M is a model-class, GOE holds true in M and
Apray pla), then card(F(a)) < (3 297 .
N é<a

§ 5. Proof of Theorem B. In this part we outline the proof of Theo-
rem B. The reader familiar with R. Jensen's and R. Solovay’s [9] paper
can easily fill the details.

The main idea of the proof is contained in the following simple
observation:

Let M Dbe a model-class, V= M(#), #Ca, aeCard™. If

(5.1) TApry H{(24*T), then HDE(M) = M.

In faet, by (1.8), ¥ is an (2%*-C.C.-generic extension of HD(M);
thus Aprgpean, »((2)*). Since TApry, 4{(29)7), Wwe obtain HDE(M) # M.

Now we shall slightly modify a construction due to J. Silver and
R. Solovay (see [9], pp. 103-104). Let g, = 2% By= pf. Let 0, be the
complete Boolean algebra of regular open subsets of the topological
space 18, with < a-product topology. In the Boolean exfension %V there
exists a set 4,Cf; such that OV = V(4,). Moreover, TTADPIy ooy (fa)-
Now we user“almost disjoint sets” method (inside the model é“V) to
construct a Boolean algebra 0, « *V such that %(%V) = V' (4,) for a set
4, C a. It is well known (see e.g. [8]) that there exists a complete Boolean
algebra B ¢V such that ®V is isomorphic to %(CF). Hence, FV — V(4)
where 4 C o and "Apr, z,(8,). ,

Evidently B possesses a set of generators of power a. By a simple
computation (see [9]), B is f7-C.C. By (6.1), HDE(V) # V in BV. Since
by (%.9) HDi(V) = 2V in 2V, we conclude that By, is not completely
distributive. The theorem follows by (1.10). *

H

icm°®

Characterization of generic ewiensions of models of set theory 45

§ 6. Some open problems. The simplest example of an extension which
is not a generic one is the Easton type model. However, in that model
V # L(=) for any set # and the “genericity” is destroyed in an uninteresting
way. We are interested in small extensions only, i.e. in such an extension
N of M that N = M(%) for some set .

Of course the firgt problem connected with the subject of this paper is

ProBLEM 1. Assume V = L(x), # C w,. If V is not a generic extension
of I, what can we say about z?

The existence of non-generic small extensions follows from the
axioms of large cardinals, e.g. L(0¥) is not a generic extension of Z.

ProeLEM 2. Let V = L(%), # C w;, ¥ not being a generic extension
of L. Does a set y C w, exist such that L(y) is not a generic extension of L?

For all known small extensions which are not generic, we can find
a set y C o, with this property, namely 0%.

Let V = L{x), C oy, V being a generic extension of L. Then there
exists a cardinal e such that Bdy y(«). Evidently, no estimate for the
cardinal a« can be given in L (counter-example: collapse a sufficiently
big cardinal). Therefore

ProBrEM 3. Give (if possible) an estimate for o in V.

Generalizing J. Silver’s and R. Solovay’s construction in [9], one
can see that generally o > &, (there is a model of ZFC in which V = L(x),
2 C w, and TIADTL 5 (8,), 7 ewy; thus neither Bd(s,,)).

As direct consequences of our results we obtain Bd(a)—>Apr(a) and
Apr(a)»Bd((2“)+). The proofs of both implications are based on the
properties of generic extensions. Thus

PROBLEM 4. Prove those implications directly.

We do not know whether the estimate given in Corollary 4.3 is the
best possible. The simplest related question may be formulated as

PrOBLEM 5. Let Apry y(o,), 2% = 8;,. Does 2 = s, hold true?

(Let us remark that by Corollary 4.3 we have 2% < &,).

The axiom of the simultaneous collapse ASC says that

(Vo) (HB) (B = o & B « Card” & B ¢ Oard) .
If V is a generic extension of I, then 1ASC. In every known small

extension which is not a generic one, the axiom ASC holds true. Thus

PROBLEM 6. Let V = L(z). If V is not a generic extension of L, does
ASC hold true?

Finally, let us remark that, by (1.8), if M, = M,(z), then M, is
a generic extension of HDf(M,). Hence, the existence of a small non-
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generic extension of a model-class M implies the existence of an extension
which is hereditarily ordinal definable over M (thus, the definability of 0%
is not an exception).
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On semi-uniformities
by
A. K. Steiner (Ames, Ia.) and E. F. Steiner (Ames, Ia.)

Abstract. Regular Hausdorff extensions of topological spaces are studied as
completions of generalized uniformities.

Key words. Regular extensions, completions, semi-uniform spaces.

Introduction. In this paper we will consider a generalization of uniform
space first defined by Morita [2] which plays an important role in the
completion and extension theory of topological spaces. Morita’s paper
is little known and consequently his original ideas are not referred to
as often as they should be.

Qur point of view is that one of the most important kinds of infor-
mation a structure on a space X provides, besides a topology for X, is
a topological extension of X. The most satisfactory extension theory
appears to us to lie in the setting of regular Hausdorff spaces and the
fundamental structures are the semi-uniformities presented here.

1. Preliminaries. In [2, T-IV], Morita considers families of open covers
of a topological space which satisfy certain uniformity conditions. In
this paper, the theory of semi-uniform spaces will be developed independ-
ently of a topology. Much of the terminology is that used in uniform
space theory, and the reader is refered to [1].

If S is a family of coverings of a set X, and U, and U, € 8, then 1, is
said to locally star-refine U, in 8 (and written U, < si,) if for each 4 €1
there is a covering M, ¢ 8 and a set B e, such that st(4,u,)C B.

A family of coverings in which each covering has a local star-refine-
ment is called a semi-normal family. :

A semi-uniformity 8 on a set X is a family of coverings of X which
satisfies '

(i) § is a filter with respect to local star-refinement and (ii) for
distinct points @,y e X, there is a covering in 8, no member of which
contains both # and y. .

The concepts of a base and a subbase for a semi-uniformity are
analogous to those for a uniformity, [1].
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