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C-separated sets and unicoherence
by
R. F. Dickman, Jr. and L. R. Rubin (Blacksburg, Va.)

Abstract. We say that a subset 4 of a topological space X is C-separaied provided
there exist disjoint closed and connected sets H and K of X such that 4 C(H U K)
and 4 meets both H and K. A connected space X has Property C provided that every
separated closed set is O-separated. In this paper we give a conjecture concerning
unicoherence for locally connected, connected normal spaces and show it is equivalent
to a special case of a conjecture of A. H. Stone. We show that our conjecture holds
in spaces which have Property C. As the major result of this paper we show that every
locally compact, locally connected, connected Lindelof Hausdorff space has Property C.

1. Definitions and terminology. Let X be a topologieal space. By a con-
tinuum of X we mean a non-empty closed and eonnected subset of X and
by a region we mean an open and connected set. Note that a continnum
is not necessarily compact. A set A C X is conditionally compact provided
A is compact. ’

A set A CX is C-separated provided there exist disjoint continua H
and K of X suchthat AC(Hu K)and A ~H #0 # A K. We say X
has Property € provided that every separated closed subset of X is
C-separnted. Recall that X is wunicoherent if whenever X = H w K
where H and K are continua, H n K is a continuum. Definitions not
given herein may be found in [2] or [7].

2. Some conjectures. In [5] A. D. Wallace proved that a Peano con-
tinuum § is multicoherent (i.e., not uniccherent) if and only if there
exist continua 8;, 8,, and S; of § such that § = §;v 8, v §; and for
i,je{1,2,3}, 8inS;# @ while §; n S, N §;=@. A. H. Stone has made
the following conjecture: :

(#) Let X be a locally connected, connected normal space and let n > 2
be an integer. If X is not unicoherent, X can be expressed as the
union of n continua A4,, 4,, ..., A, whose nerve is a closed n-gon
(i.e., with indices taken modn, 4; meets A; ; and 4,;.; and no
others and no three of these sets have a non-empty intersection).
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In [4] Stone proved (x) for n= 3. He also. hag established that () is true

when X is finitely coherent or when X is compact.

We offer the following conjecture:
Tet X Dbe a locally connected, connected normal space. Then X is
unicoherent if and only if for each digjoint pair {4, B} of continua
of X there exists a continuum ¢ of X such that C separates 4
and B in X.

(3ex)

In a private communication A. H. Stone reported his conjecture to
us and at the same time he stated that he believed that (x) for n =4
was equivalent to (x).

Leya 1. Let X be a unicoherent, locally connected, connecied normal
space and let A and B be disjoint continua of X. Then there exists a continuum
C of X that separates A and B in X.

Proof. This follows from a well-known characterization of uni-
coherence. See [7, pp. 47-49]. .

TrroreEM 1. Let X be a locally conmected, connected normal space.
Then (%) for n=4 is equivalent to (xx).

Proof. Suppose that (x) for m =4 holds. By Lemma 1 we need
only show that if every pair of disjoint continua of X can be separated
by a continuum in X, then X is unicoherent. Suppose to the contrary
that X is not unicoherent. Then by (*) there exist continua A4;, 4,, 4, 4,
such that X = | A4, 41~ 4; # @ if and only if |[¢(mod4)—j(mod4)| <1,
and no three of the 4;’s have a rion-empty intersection. By our assumption
there exists a continuum € such that ¢ separates 4, and 4; in X. But
then CC A4, 4,, 4,n A, =@ and O meets each of the continua 4,
and A,, implying C is not connected. This contradiction implies
(%x) holds.

Now suppose (#x) is true and X is not unicoherent. Then by ()
there exist disjoint continua A’ and B’ in X such that no continuum of X
separates A’ and B’ in X. Let 4, and B, be disjoint continua such that 4’
is interior to A, and B’ is interior to B,. Now if X\A4, is connected, let
A = A if IN4, is not connected let U be the component of X\4, that
contains B, and in this case let A = X\U. In either case 4’ is interior
to 4, A~B,=% and X\A is connected. In a similar fashion we can
find a continuum B such that B’ is interior to B, 4 ~nB= @ and X\B ig
connected. Let T = X\(4 v B) and note that 7 is not connected. For
otherwise 7' would be a continuum separating 4’ and B'. Thus T—= H v K
where H and K are disjoint non-empty closed sets. Let P denote the
union of the components of T which lie in A and let @ denote the union
of the components of T which lie in K. Observe that since neither A nor B
separates X, and X is locally connected, then the closure of every com-
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ponent of T meets both A and B. Thus Z = A u QuBand Y=4v
v Pw B are continua. Furthermore note that ¥ is locally connected
(in the relative topology of Y) at every point of P. Let R he any open
subset of X containing 4 such that B~ B = and let F denote the
frontier of B relative to ¥. Let L be the component of Y\F containing 4
and let M be the component of ¥\L containing B. Finally let D, = Y\M
and D,= M. Then D, and D, are continua, A C IntyD,, B C IntyD,,
Y=D,v D,and D; ~ D,CFC ¥\(4 v B). Repeat the above construction
for Z and obtain eontinua D, and D, such that 4 CIct,D,, B C Int,D;,
Z = Dy Dyand Dy~ D, CZ\(A © B). Then X = D, v Dyu Dyu D, is
the desired representation of X.

Levma 2. If X s a connected space, X has Properly C, and every
disjoint pair of continua of X can be separated by a connected subset of X,
then X is unicoherent.

Proof. Suppose X = H oK where H and K are continua and
H ~ K is separated. Since H n K is also closed and X has Property C,
there exist disjoint continua C and D such that H ~ K C (¢ v D) and
On(HnEK)# O #D~(H~K). By hypothesis there exists a con-
nected subset M of X such that M separates ¢ and D in X. But this
implies I meets each of the separated sets A\(C v D) and E\(C v D),
and since M is contained in their union, M is not connected. This contra-
diction proves the Lemma.

The next theorem is obtained from Lemmas 1 and 2.

THEOREM 2. If X is a locally connected, connected normal space which
has Property O, then X is unicoherent if and only if every pair of disjoint
continua in X can be separated by a connected subset of X.

3. C-separated sets and Property C. In this section we establish some
basic properties of C-separated sets.

Lievma 3. Let A and B be subsets of X, suppose A C B and that every
component of B contains a component of A. Then if B is C-separated so
also is A.

The proof follows easily from the definitions involved.

Lemma 4. Let X be locally connected, connected and normal. If A is
a separated closed subset of X and A has only finitely many componenis
then A is C-separated.

Proof. Let @y, ..., @, be the components of 4 and let V,, ..., V, be
a collection of regions such that for4,je {1, ...,n}, Q: CViand V; nV;= &
if 4 # . Let {W_}, a € I', be a covering of X\4 by regions no one of which
intersects more than one V;. Let K = {Vifie1 v {Wolaer and let S be
a simple chain [7, p. 33] of elements of K from @, to @, and let 8, be the
subchain of § such that §; contains V; and exactly one V; different from V,.
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Let @' denote the closure of the union of the. links of §;. Then
B= U{Q @@= @} v @’ is a separated set with n—1 components
and every component of B contains a component of A. The result now
follows by induction.

LeniA 5. Let X be a locally compact, locally commected Hausdmff
space and suppose A is a compact subset of a region V of X. Then there is
o continuum L of X with ACLCYV.

The proof of this lemma is routine.

TEmua 6. Let A be o closed, disconnected subset of a locally eomnected,
connected Hausdorff space X. Then if A has a component @ having a compact
neighborhood, A s O -separated.

Proof. Let V be a conditionally compact region of X such that
QCV, itV ~nA=0, and A ¢ V. Choose V so thatb V. has a compact
neighborhood. Let W be a conditionally compact neighborhood of V
such that FrW A =0 and TY NA=VnA Let § denote the set
of complementary domains of V. If UeS and UnA # @, then Un
~FrW = @. Since § is a pairwise disjoint set and 8 is an open cover of
the compact set FrW, there is a finite set, say {81, 8, ..., Sa}, of elements
of § that covers FrW. Thus A C (U 8:)w V. Applying Lemma 5, there
is a continnum L of X with VA ACLCYV. Let B=Lu§v§u..
..uR,. Then B has at least two components, one of which is L; and T
and at least one other component of B intersects 4. In fact, 4 C B. By
Lemmas 3 and 4, 4 is O-separated since B has only finitely many com-
ponents.

DEFINITION. A continuous function f of X onto a space ¥ is non-
alternating provided that for every ye¥, if XINfWy) =Ho K is
a separation, then f(H)~ f(K)=0© [6, p. 127]. When Y =0, 1],
2 continuous surjection f: X+ ¥ is non-alternating provided for every
¥ €(0,1), T\f(y) has exactly two components [1, Lemma 1].

Lemuma 7. Let X be a locally connected, connected normal space. Then X
has Property C if and only if for every pair of disjoint non-empty closed
sets 4 and B of X there exists a non-alternating map f: X [0, 1] such that
fld v B)={0,1}.

This is Lemma 4 and Remark 5 of [1].

4. C-separation in locally compact Lindelof spaces. In this section we
prove the major result of this paper.

Suppose U is an open subset of a space X; C,D,Q,,...,Q, are
continua in X that meet U; and B is a closed subset of X contained in U
such that Bu CvDu @y v ..v@y=0,vD, where ¢; and D, are
disjoint continua, ¢ C C; and D C D,. Then we say (C,, D,) is a division
of {J@Q: in U relative to (C, D).
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Levma 8. Let X be a locally connected regular space, U be a region
of X, and {0, D, @y, ..., Qu} be a pairwise disjoint set of continua of X
all intersecting U. Then there evists a division (C, y D) of Qs in U re-
lative to (C, D).

_ Proof. Let B be a covering of U by regions such that for each V « H,
VCU and 7V meets at most one element of {C,D,@,, .., @.}. Let
{¥1, -, V,} be a simple chain of elements of E from Q, to ¢ D. Choose
s so that 7, is the first element of {7, ..., 7,} that intersects C v D, say 7,
intersects C. Then no element of {Vy, ..., V,} intersects D. Let {1, ..., Q..}
be the members of {@,, ..., @} which intersect 7; w7, u .. w ¥,. Then
let ¢'=CuV,u..uF,u@u..uQ,. We see that ' is a continuum,
Qv C0CC and ¢'~D=@. With (" replacing C, we proceed by in-
duction.

Luwwa 9. Let X be a locally connected, paracompact Hausdorff space
and F be a closed subspace of X having the property that X is locally compact
at each point of F. Then there exists a collection {R,} of conditionally compact
regions of X covering F, such that {R, ~F} is a locally finite subset of X
and each R, ~F intersects at most finitely many elements of {R,~F}.

Proof. We see that F is a locally compact, paracompact subspace
of X. By [2, X1.7.3] F is a free union {F;} of ¢-compact spaces. Let
o0

Fy ¢ {Fg} and using [2, X1.7.2] write ¥ = {J U; where U, is open in F,,
1
U: is compact, and U,;C Uy,. Let U_,= U,=@. We then write F,
0
= {J(UNU,;_,). For each 7 > 1 there is a finite open cover {R!, Rf, ..., R}
by .

-of UNU,_, where each R! is a conditionally compact region of X and

RinFy=RinFCU, U, ,. It is clear that {Ri ~F}= {Ri ~F5} is
a locally finite subset of F; and hence of X because F, is closed in X.
Furthermore R} ~F, can meet RE ~F, only if i—1 < k< i+1. 85 each

Ri~F,= RinF intersects at most finitely many elements of {RI ~ T

Let us construct such open sets {Rf for each Fj, and call the totality
of these sets {R,}. Then {R,} satisfies the required conditions.

Lemya 10. Let X be a paracompact, locally connected, connected Haus-
dorff space and suppose P is a couniable, discrete, closed subspace of X.
If XN\P is locally compact, then P is C-separated.

Proof. Let {P;] i=1, 2, ...} be a countable, locally finite collection
of open subsets of X with pairwise disjoint closures and such that for
each 7, Py contains exactly one element of P. If {P;} is (-separated then
80 is P; we shall prove {P;} is (-separated.

By Lemma 9 there exists a collection {R,} of relatively compact
regions of X covering F = X\{J P; such that {B, ~ F} is a locally finite
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subset of X and each B, ~ F intersects at most finitely many elements
of {R ~F}. We note that if ¥YCX can be written as a union of a col-
lection {¥,} of closed subsets of F such that each R, 1nteljsec’cs at ¥nost
finitely many ¥, then {¥g} is locally finite and hence ¥ is closed in X
12, I11.9.2].

Since {P;} is countable, {Pi} v {R,} is an open cover of X, miod X is

connected, there is a countable subset, say {R:} of {E,} such that (E J Py v

v (DR,) is connected. Bach P; must intersect at least one & and since

eaeh1 Ry is conditionally compact, it can intersect only finitely many Py. Let
C,= P, and D, = P,. Let §; e the first element of {R:} that intersects
Gy Dy. Let A, = {P;| P; ¢ Cyv Dy and P;n 8, + @}. Let (Cy, Dy) be
o division of 4, in §; relative to (Cy, D), which is possible by Lemma 8.
Thus ¢, is the union of ¢, elements of {P;}, and a closed subset _Q',’ of X
with 01 C 8, ~F. Similarly D, is the union of D, elements of {P;}, and
a closed subset D, of X with D;C S, ~F.

Now suppose A, C,, Dy, On, Dy, 8, have been chosen. Let S, be
the first element of {R;\{Si, S, ..., S»} that intersects Cn w Dy. Let
An+1= {PJ'] P.?' ¢ 0y Dy and Pf a Sn,+1 #* @} Let (0n+17 'Dn—i-l) ‘be
a division of 4,,, in §,,, relative to (Cu, Dn). Thus C,,, is the union
of Cr, elements cf {P;} and a closed subset C,., of X with €y .y C 8ppy n F.
Similarly D, ., is the union of elements of {P;}, Dy, and a closed subset
D, cf X with D,,,C8,,, ~F.

Let 0= 0; and D= | JD;. Then ¢ ~ D=0, (¢ and D are con-
nected, and P, C ¢ and P, C D. By a straightforward inductive argument
it can be proved that | J P;C ¢ w D. If we can prove € and D are closed
in X, the proof will be complete.

But € can be written as (| 0;) v B where B is the union of a col-
lection of elements of {P;}. Thus B is closed. Now each R, can intersect
at most finitely many elements of {C;} because each C;C 8; ~F, 8; e {R,},
and R, ~ F intersects at most finitely many elements of {R, ~ F}. Thus
by a previous remark, | 0} is a closed subset of X. Therefore C is closed.
By a similar argument D is closed. The proof is complete.

Leswa 11. Let X be a locally compact, locally commected, Lindeldf,
Hausdorff space and suppose A is a disconnected closed subset of X. Then
there exists a closed neighborhood B of A whose components form a locally
finite set of at least two and at most countably many elements each of which
intersecls A.

Proof. Let 4 =H v K where H and K are disjoint, non-empty
closed sets. Since X is locally compact and Hausdorff, X is regular; and
this condition along with the Lindelof property implies X is paracompact
and hence normal. Furthermore there is a sequence {V;} of conditionally
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compact open subsets of X such that X = | V; and Tor each i, 7; C Vin
[2, X1.7.2].

Using the normality, let E and F' be open sets with & ~ F = @,
HCEand KCF.LetVy=V_;=0.Foreachi >0, let d;= A4 ~ (FAV,_,).
Let B; be the closure of a finite union of conditionally compact regions
such that every component of B; meets 4; and 4,CIntB;C B
C (Vi \V,_o) n (Ew F). Define B= {J Bs. It is routine to check that B
satisfies the required conditions.

TuroREM 3. Let X be a locally compact, locally connected, connected,
Lindelof, Hausdorff space. Then X has Property C.

Proof. Let A be a separated closed subset of X. By Lemma 11
there is a closed set B containing 4 such that the components of B form
a locally finite set of at least two and at most countably many elements
each of which intersects 4. If B has only finitely many components,
then, applying Lemmas 3 and 4, 4 is C-separated. Thus, suppose B has
a countable number of components.

Let @ be the decomposition of X obtained from the relation, » is
equivalent to ¥ if and conly if » and y are in the same component of B.
Since the set of components of B is locally finite, G is upper semicontinuous.
Thus the quotient map p: X - X/ is a closed map. By Theorem VIIL.6.5
of [2], we kmow that X is paracompact and that since p is closed, X/@ is
paracompact and Hausdorff. The quotient map p is monotone, X/@ is
connected and locally connected, and X/@ is locally compact cutside the
countable, closed, discrete subspace p(B). By Lemma 10, p(B) is (-sepa-
rated. Under a monotone identification the inverse image of a connected
set is connected. Therefore B is C-separated. By Lemma 3, 4 is C-sepa-
rated and the proof is complete.

In the following we shall use implicitly results and terminology
from [3]. By a polyhedron we mean a space homeomorphic to the space
|K] of a simplicial complex K. We note that although every polyhedron
is paracompact and Hausdorff, polyhedra need not be locally compact
or Lindelof.

THEOREM 4. Hrery connected polyhedron has Property C.

Proof. Let X be a connected polyhedron and assume X = |K|
where K is a simplicial complex. Suppose 4 is a disconnected, closed
subset of X. Let H and K be disjoint closed and non-empty sets such
that 4 = H v K. Since X is paracompact it is normal, so let E and F
be neighborhoods of H and K respectively such that Z ~F = @. There
exists a subdivision I of K such that every simplex of I that meets 4 is
contained in E o F. Let Cgx be the subcomplex of I consisting of all
simplexes of T that intersect H and all faces of such simplexes; let Ox be
defined similarly for K. Then H C |Cz|CF and K C |Cg{CH.
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Let O, be a component of Of and D, be a component of Cg. Let M

be the seb of all ordered pairs (M, M,) such that M is a component of -

Oy v Og and I, is a closed path in I intersecting M and C; but 1?,015
intersecting D,. Let C be the union of all the subcomplexes of L which
are elements of an ordered pair of M. Then C is connected, C,C C, and
0nDy,=0. Now if M is a component of Cpy v O and the.re is not
a closed path in I intersecting D, and M but not C,, then there is a closed
path M, in L intersecting D, and M but nog intersecting C. Thus, let R
be the set of all ordered pairs (M, M,) such that M is & component of
Cgv Cg and M, is a closed path in L intersecting M and D, but not
intersecting €. Let D be the union of all the subcomplexes of L which
are elements of an ordered pair of 9. Then D is connected, D, C.D and
DnC=0.

We see that every component of Oy v O is either in 0 or D. Since ¢
and D are connected subcomplexes of L, both. |C| and |D| are continua
of X. Since 0 ~nD =0, |C]|~|D|=0. But A=Ho KC|0|n]|D| and
|C]~H # @ # K ~ |D|. Therefore 4 is C-separated.

CoroLTARY. Let X be o connected polyhedron or a locally conmected,
connected, Lindelif, locally compact Hausdorff space. Then the following
are equivalent.

a. X is unicoherent.

b. Every pair of disjoint continua in X can be separated by a connected set.

If in addition X is separable, then using Theorem 2 of [1], (a) and (b)
are equivalent to:

c. For every pair of disjoint non-empty closed sets A and B of X there
exists a continuous function f of X onto [0,1] such that f(4 v B) = {0,1}
and for some dense subset D of [0,1], f~Xd) is connected for every d e D.

Remark. Recently the authors have obtained an example of a lo-
cally connected, connected separable metric space that fails to have
Property C. They also have an example of a connected CW-complex
that fails to have Property C.
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