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(i) g(gk(d), 8ydy, S)/\ Ek:l(sk(d), Sl(d), c) , k>1,
i &)y DG o), 812 ¢
H(SHd), §1d), o)A T E(8d), SUd),¢), E>1.

In R(#,)— R(#,) there exist elements d, and d; such that for no
natural number % is d, the kth successor or predecessor of d,. The formulas
H(8%dy), 84ds), u) define prineipal types in Th(,, d;, d;) which are
realized by 2 points. That is, * holds in A, so |Aut(#4,)] = 2%

Easy variations on this example will give theories T with f(0) =1,
fn) =%, 0<n<< N and f(n)= 2% for n» > N, for any choice of N. Is
there a theory T such that for some natural number ¥ > 1, f(n) is finite
for n << N, f(n) = 8, for some segment beginning with ¥, say N <n < M
and f(n) = 2% for n > M? That is, is it possible in other than the trivial
case when all elements of the prime model are named for the value
of f to jump from finite to countable to uncountable?
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On certain homological properties of finite-dimensional
compacta. Carriers, minimal carriers and bubbles (*)

by
W. Kuperberg (Stockholm)

Abstract. A compact metric space X is g-¢velic (¢ = 1,2,...) provided that there
sxists a coefficient group G such thab the Vietoris-Cech homology group H (X, &)
of X is non-trivial. An irreducibly g-cyclic compact metric space is called a g-dimen-
sional clogsed Cantorian manifold, or a g-bubble. The following question, asked by P. 5.
Alexandroff, is considered in the paper: Given a g-dimensional ¢-cyelic compact metric
space X, does X contain a g-bubble? As is known, the answer is not always positive,
but by adding some assumptions on X a positive result iz obtained. A class of spaces,
the so called WSCq~compacta, is exhibited in the paper and it is proved that each
g-dimensional g-cyclic WSC -compactum contains at least one and at most countably
many g-bubbles. Furthermore, some other properties of WSC,-compacta are studied.

1. Introduction. By a compactum is meant & compact metriec space.
Ag is well known, the Gech and the Vietoris homology theories are equiva-
lent in the algebraic sense (see for instance [13], p. 273). The ¢-dimensional
Vietoris-Cech homology group of a compactum X with coefficients in
an Abelian group G will be denoted by Hy(X, ). This group will be
sometimes represented as the limit of the inverse system of the (simplicial)
gth homology groups of the nerves of all finife open coverings of X, with @
as the coefficient group (the well-known (ech construction) and sometimes
as the group of homology classes of g-dimensional true cycles in X with
coetficients in @ (the Vietoris construction). In the first case, the notations,
symbols and terminology from [9], chap. IX will be applied here, in the
second case, we shall base ourselves on the construetion desecribed in [4],
chap. II, sec. 3. In particular, the concepts of infinite chains and infinite
cycles are very useful. By means of these concepts the following charac-
terization of the dimension of compacta has been established:

(*) This is the present writer’s doctoral thesis (in a modified form), defended 911;
the University of Warsaw, Poland, in February 1069. The original title of the thesis
was “Dimensional properties of ANR-spaces”.
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(1.1) TEEOREM (Alexandroff [1]). A compacium X is of dimension <n
if and only if for any closed subset ¥ of X and any Abelian group G, any
infinite g-dimensional cycle lying in F is homologous to zero in F whenever
it is homologous to zero in X.

The coefficient group %, of rationals reduced modulo 1 is of special
importance for the combinatorial methods in the dimension theory of
compacta. In fact, in the above theorem the arbitrary group G can be
replaced by ®, and the term “infinite cycle” by “true cycle”. Thus, the
dimension of a compactum can also be characterized as follows:

(1.2) TEmoREM (Alexandroff [1]; see also [15], p. 246). 4 com-
pactum X is of dimension <n if and only if, for any closed subset F' of X,
the homomorphism isx: Hy(F, R;)>Hn(X, Ry), induced by inclusion ¢: F' - X,
i8 @ monomorphism.

(1.3) DEFINITION. A compactum X is said to be cyclic in dimension g
(or shortly: g-cyelic) if there exists an Abelian group G such that
the group H (X, @) iz not trivial. Otherwise, X is called acyclic in di-
mension q (or g-acyclic). A g-dimensional compactum X i called & ¢-di-
mensional closed Cantorian manifold (see [1], p. 227) if it is irreducibly
g-cyclie, ie. if X is ¢-cyclic and if any closed proper subset of X is
g-acyclic. A g-dimensional closed Cantorian manifold will be called here,
for simplicity, a g-dimensional bubble, or shortly: a g-bubble.

P. 8. Alexandroff [1] has raised the question: Does any g¢-di-
mensional, g-cyclic compactum X contain a ¢-dimensional closed Can-
torian manifold% The answer is, in general, negative (see [12]). However,
by some additional assumptions on X, a positive result can be obtained.
In this paper a class of compacta is studied, namely the so called com-
pacta without small ¢-dimensional cycles (abbreviated to: WS8C,, see
Section 3) and it is proved that if a g¢-dimensional compactum X ig

g-cyclic and WSC,, then X containes a ¢-bubble. Moreover, the number

of all g-bubbles contained in a ¢-dimersional compactum X, which
is WBCq, is at most countable. The class of compacta WSC, is rather
large; for instance any ANR-space is WSC,. This paper containg
furthermore a construction of a 2-dimensional ANR-space whith an
infinite number of 2-bubbles.

By a mapping we shall always understand a continuouns function.

The gth homology group of a compactum X with the coefficient group R,

will be denoted, for simplicity, by H(X).

2.-Carriers of an element of the homology group. ¥rreducible and minimal
carriers. Let X be a compactum and @ an Abelian group, and let @ be
an element of the group H, (X, @). A closed subset F of X is called
a carrier of the element a if there is an element a’ e Hy(F, G) such
that ix(a’) = a, that is, if & e Tmi,, where i HyF, @)—>Hy(X, q) is the
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homomorphism, induced by the inclusion 4: FF—X. A carrier F of g is
said to be drreducible if no proper subset of F is a carrier of a.
A carrier F' of a is said to be minimal if any carrier of a contains F. Thus,
any minimal carrier of @ is irredve’ble (but not conversely). Observe
that if there exists a minimal carrier of a, then it is unique. It is easy to
prove (for instance, by the continuity of the Vietoris-Cech homology
theory) that

(2.1) any carrier F' of an element a ¢ Hy(X, @) containg an irreducible
carrier of a.

The proof of the following theorem will be based on the Vietoris
construction of the homology groups.

(2.2) TEEOREM. Suppose that X is a q-dimensional com;pactum If 7y
and F, are carriers of an element a € HyX , @), then the intersection Fy n F,
18 also a carvier of a. '

Proof. Suppose that a is the homology class of a ¢-dimensional
true cycle ¢ in X. By the assumptions of the theorem, there are true
cycles o, and a, lying in 7, and F,, respectively, such that o, and a, are
homologous to o in X. Thus, a;—a,~0 in X. The g¢-dimensional true
cycle a,— o, lies in F,w T, and dim X = g; therefore, by (1.1), ¢,—a, is
homologous to zero even in F, v F,. Let § be a (¢-+1)-dimensional in-
finite chain lying in ¥, w ¥, and such that 88 = a;—a,. Now, define an
infinitely small' displacement (see [1], p. 180) of # as follows: for any
vertex v of the chain g, if v belongs to a simplex of g which meets both
and F,, then replace » by a point & of F; n F, with the minimal distance
from »; otherwise, let v stay at the same place, that is, = v. Let B denote
the displaced chain., Observe that if a vertex » of hes in F; (i=1,2),
then the vertex 7 of f also lies in Fy. Thus 8f = a,— a, Where a; (i=1,2)
is the displaced true cycle a;. Therefore o; is a true cycle lying in Fy and
homologous to a; in F;. On the other hand, the infinite chain B can be
presented in the form §= fi+f,, where f; is an infinite chain lying
in ¥y (i=1,2). For instance, f, can be defined as that infinite chain
which conswts of all (g+1)-dimensional simplexes of B lying in F, and
B, — all other simplexes of B. The equalities

BB = EL“ 0 = 2p,+0p,
imply that a,—08p, = a,—8B; -

Therefore the infinite cycle a= a;—8p, = 0,—0f, lies in F; ~ F, and
a—a,~0 in F,. In particular, & is a true cycle in F;. But dimF, < g,
which implies that the infinite cyele o ig true even in H; nF,. Thus,
F, ~F, is a carrier of a, since a~a;~o;~a in X.

(2.3) CororLARY. If dimX = ¢, thm any irreducible carrier of an
element a e Hy(X, &) is minimal.

a, and
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Proot. Let F, be an irreducible carrier of & < Hy(X, @) and let F be
an arbitrary carrier of the same element a. Then, by (2.2), the set Fy ~nF
is a carrier of @ and, by the irreducibility of Fj, the equality FoynF=F,
holds, that is, Fy C F, which proves the minimality of F.

Tt follows by (2.1) and (2.8) that if dimX = ¢, then for any ele-
ment a of H{X, ) there exists a (unique) minimal carrier of a; denote
this carrier by C(a). It is easy to see that the following formulas hold: -

Cla+b)C C(a)w O(),
O(—a)= C(a).
Formulaé (2.4) and (2.5) yield:
(2.6) O{a)=C(b) C O(a+b)C O(a) v C(b),

where the sign - -denotes the symmetric difference between sets.

(2.4)
(2.5)

3. Compacta without small g-dimensional cycles. In this section the
Cech construction of the homology theory will be used. All notations
related to this construction are adopted from [9], chap. IX.

By a covering of a compactum we shall always mean a finite open
covering. Let ¢ be a covering of a compactum X. Then X, denotes the
nerve of a (as a simplicial complex) and H(X,, @) denotes the gth
simplicial homology group of X, with the coefficient group &. For any
refinement 8 of a there is a simplicial projection p: X;— X, and the homo-
morphism =f: H(X;, ¢)>H(X,, &), induced by p. The collection
{H,/X,, @), nf} is an inverse system of groups, and the homology group
H,(X, @) is the limit of this system. The canonical projection of Hy(X, &)
into Hy(X,, &) is denoted by =,. )

(3.1) DEFINITION. A compactum X is said to be without small q-di-
mensional cycles (shortly: X is WSC,) if there is a covering « of X
such that, for any coefficient group @, the projection =,: H (X, &)
—H(X,, ¢ is a monomorphism. If X iz WSGC, for any ¢=0,1,2, ...
then X is said to be without small cycles (shortly: WS().

(3.2) ExamPLE. Any polyhedron is WSC. Moreover, if P'is a poly-

hedron with a triangulation T and if v is the open star covering of P, -

then z: H (P, @)—>H,P,, @) is an isomorphism for any ¢ and any coef-
ficient group G (see [9], pp. 250-251).
. (3.3) THEOREM. Let X and Y be a pair of compacia and suppose that ¥
is WSCq. If there ewists a mapping f: XY such that, for any coefficient
group G, the homomorphism fu: Hy(X, G)—Hy(Y , @) induced by f is a mono-
morphism, then X is WS(,.

Proof. Let « be a covering-of the compactum Y such that
wet Hy(Y, §)>Hy(Y,,# is a monomorphism. By the definition of the
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homomorphism fx induced by f there exist a covering «’ of X and a sim-
plicial mapping f, of X, into ¥, .such that the diagram

HX, @) —I s 7Y, @
N v
HY( Xy, O BT, &)

is commutative. The composition f, =, is a monomorphism, since =,f, is
a monomorphism. Therefore x, is a monomorphism, which completes
the proof. i

(3.4) CorROLLARY. If a g-dimensional compactum X is WSC,, then
any closed subset of X is WSC(,.

(3.5) CororLLARY. If X is WSC, and Y is acyclic in all dimensions,
then the product X x Y is WSC,. In particular, any prism (that is, the
product of a polyhedron and the Hilbert-cube) is WSC.

(3.6) CororramrY. If X is WSO, then any reiract of X is WSC,.

(3.7) CorROLLARY. Any ANR-space is WSC.

Corollary (3.7) is a simple consequence of (3.5), (3.6), and the
characterization of ANR-spaces as retracts of prisms, [4], p. 105.

(8.8) TumorEM. Supposes that X is a compact subset of a locally com-
pact metric space M and X is WSC,. Then there ewists a compact neighbour-
Tiood W of X in M such that the inclusion i: X—~W induces a monomorphism
i HyX,G)—Hy(W, &) for any coefficient group G. ]

Proof. Let a= {U;, Uy, ..., Un} be a covering of X such that
ng HiX,d)—>HyX,, @ is a monomorphism. By a known Cech theo-
rem ([8], p. 171) there exist open subsets U, Uy, ..., U, of M such that
U,=U,nX(k=1,2,..,%) and Uy, ~ Uz, .. n U, =@ if and only
it Uyn Uy Uy, =@ for any system ki, ko, .oo) knm of indices
(1< < n for 1=1,2,..,m). The set

n
U=UT,
k=1

is a neighbourhood of X in M. By the local compactness of M and the
compzetness of X, the neighbourhood U contains a compact neighbour-
hood W of X. The family :

o = {U. AW, Uy W, .., Uy~ W}

is a covering of W and the simplicial mapping iy X,>W, defined by

i(Up)=Up W (k=1,2,..,%) is a simplicial homeomorphisAm. "l‘hus,
the homomorphism 4,,: Hy(X,, &)->H(W,, &), induced by i, is an

1


GUEST


192 W. Kuperberg

isomorphism. By the definition of & homomorphism induced by a mapping,
the diagram

H(X, Q) —F—> H(W, &)

l

7z Tl

@

I

v
H(X,, 6y Hf W, &)

Task

is commutative. The composition 4,7, is & monomorphism, which implies
that 4, is a monomorphism.

(8.9) THEOREM. Suppose that X is a closed subset of the Hilbert-cube .
Then X is WSCy if and only if there exists a compact neighbourhood W of X
in Q such that, for any coefficient group G, the homomorphism ix: Hy(X, @)
> H(W, &), induced by the inclusion i: X—~>W, is a monomorphism.

Proof. Necessity follows immediately by (3.8).

Sufficiency. Let P be a prismatic neighbourhood of X in @ (see [4],
p. 105) contained in W and let 4,: X— P and 4;: P—W denote the re-
spective inclusions. Then 4, = fpuiie, Where iy Ho(X, G)>Hy(P, &) and
s Hy{P,@)—~HyW,@) are homomorphisms induced by 4; and 4,
respectively, and therefore 4;, is a monomorphism. Thus, by (3.5) and (8.3),
the compactum X is WSC,.

Theorem (3.9) makes possible the statement that the property “to
be WSC,” is a so called shape invariant in Borsuk’s theory of shape (see,
for instance, [5], or [6]). Moreover, Theorem (3.3) has the following generali-
zation (with a similar proof) in the theory of shape:

(3.10) CorOLLARY. Let X and Y be a pair of compacta and let ¥ be
WRC,. If there exists a fundamental sequence f from X to Y such that the
homomorphism f,: Hy(X, Q)—Hy( ¥, @) induced by f is a monomorphism
(for any coefficient group @), then X is WSGCy. h

(3.11) TrrorEM. If a compactum X is WSCy, then the group Hy(X) is
at most countable.

Proof. Suppose that X is a closed subset of the Hilbert-cube Q.
By (3.9), there exists a compact neighbourhood V of X in @ such that
the inclusion of X into ¥ induces a monomorphism of the respective
homeology groups with any coefficient group, in particular with R, as
the coefficient group. Let P be a prismatic neighbourhood of X contained
in V. Then the inclusion i: X-»P induces a monomorphism i,: Hy(X)

- H(P). The group H,(P) is at most countable; hence H,(X) is at most
countable. .

4. g-cyclicity of ¢-dimensional compacta. P. S. Alexandroff [2] has
proved the following so called convergence theorem, formulated in the

.
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langnage of e-chains, e-cycles and e-homologies (see the Vietoris con-
struction of the homology theory) with coefficients in R, (or certain other
coefficient groups):

(4.1) THEOREM ([2], p. 31, the Convergence theorem). If X is a com-
pactum, then for any number ¢ >0 there is a 6 >0 (6 < &) such that any
8-cycle in X is e-homologous to a true cycle in X.

(4.2) COROLLARY (see [2], p. 31). If there emisis an infinite q-di-
mensional cycle in X with coefficients in R, which is not homologous to
zero in X, then there exists a true q- dimensional cyle in X with coefficients
in Ry which is not homologous to zero in X, that is, the group HYX) is not
trivial. : ’ .

If X is a compact subset of a finite-dimengional Euclidean space H,
or of the Hilbert-cube @, then the Convergence theorem (4.1) can be
equivalently expressed in the following form:

(4.3) CONVERGENCE THEOREM. For any compact neighbourhood V of X
(tn B, or in @, resp.) there exists a compact neighbourhood W of X contained
in V and such that jo{HAW)) = iHyX)), where je: Hy(W)->Hy(V) and
ix: Hy(X)=>Hy(V) are homomorphisms induced by the respective in-
clusions j: WV and i: X->V.

As in (4.1), the coefficient group R, can be replaced in (4.2) and
in (4.3) by certain other groups. The proof of the equivalence between
the expressions (4.1) and (4.3) of the Convergence theorem is rather
simple, and thus we omit it.

Let 87 denote the g-dimensional sphere. A mapping f: X 87 is
called inessential if it is homotopic to a constant mapping; otherwise it
is called essential.

Suppose that X is a subset of a metric space M with a distance .
A mapping f of X into M is called an e-displacement (&> 0) if
o(w, f(#) < ¢ for any @eX. As is well known, any finite-dimensional
compactum can be imbedded into a finite-dimensional Euclidean space,
and moreover (see [1], p. 73): :

(4.4) TEBOREM. If X is af most g-dimensional compact subset of
a finite-dimensional Buclidean space E, then for any e>0 there exists
a g-dimensional polyhedron P CE and an e-displacement of X into P.

Let X be a compact subset of a locally compact metric space M and
let @ be an Abelian group. Then the following theorem holds (see, for
instance, [4], p. 39):

(4.5) TumorEM. For any element ae H(X, @), a+#0, there exists
a compact neighbourhood V of X in M such that ix(a) # 0, where iy: Hy( X, &)
= Hy(V, @) is the homomorphism induced by the inclusion i: X->V.

(4.6) CoROLLARY. Let X be a closed subset of a compact metric space M.
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Then, for any non-zero element & e Hy(X, Q) there ewists an & >0 such
that, for any &-displacement f of X onto f(X)C M, the element fu(a) of the
group H{f(X), G) is non-zero.

Proof. Assume that [ is a subset of the Hilbert-cube @. Certainly,
this assumption does not restrict the generality of the proof. By (4.5),
there exists a compact neighbourhood ¥ of X in @ such that 4.{a) # 0,
where iy Hi{X, @) ->Hy(V,q) is the homomorphism induced by the
inclusion 4: X —V. There exist an ¢ >0 and a compact neighbourhood
WCV of X in @ such that any linear segment of length less than ¢ and
with an endpoint in X is econtained in W. Let j: X —W be the inclusion
and j.: Hy(X, G)>H{W, G) the homomorphism induced by j. Olearly
§s(a) # 0 since WCV. Now, let f: X>f(X)C M be an e-displacement.
Observe that f(X)C W; let j; denote the inclusion of f(X) into W. For
any « ¢ X, the linear segment with endpoints # and f(=) is contained in W;
therefore the composition §,f: X~W is homotopic to the inclusion j.
Thus, j« = jixfx, which yields fu(a) # 0.

(4.7) TrrEoREM. If X is a g-dimensional compactum, then the following
conditions are equivalent:

(i) X is g-cyclic;

(i) There exists an essential mapping of X into 8%

(iii) Hy(X) 4 0.

Proof. Suppose that X is a subset of a finite-dimensional Huclidean
space E.

1° (i)= (ii). Suppose that O is an Abelian group such that Hy(X, &)
%0 and let @ hbe a ncn-zero element of the group Hy(X, @G). Let
f.: X-f,(X) be an e-displacement of X into a ¢-dimensional polyhedron
PCE (see (4.4)), where ¢ is a positive number such that f, (a)# 0
(see (4.6)). Let j: f(X)—P be the inclusion and let f = jf,, f: X—P. By
(1.1), the homomorphism j.: Hyf(X), G)>Hy(P, @) is & monomorphism,
since dim P = ¢. Thus, the element fi(a) of the group Hy(P, G) is non-zero.
There exists 2 mapping.g: P> 87 such that g. fe(a)) # 0, where g.: Hy(P, &)
- H,y(8% @) is the homomorphism induced by ¢ (see [3], p. bl4) since
the polyhedron P is ¢-dimensional. Therefore, the composition gf: X - 8%
is essential.

2° (ii)= (ili). Let f: X—>8% be an essential mapping. There exist
a compact neighbourhood V of X .in E and an extension ¢: V—8% of f,
gince 87 is an ANR-space. Let W be that compact neighbourhood of X
contained in V the existence of which is stated by the Convergence theo-
rem (4.3). Leb ¢ be a positive number such that any linear segment in H
of length less than ¢ and with an endpoint in X is contained in W; further-
more, let g: X—+P be an e-displacement of X into a ¢-dimensional
polyhedron P. Let ¢: X >V, j: WV, k: X+W, and k;: P-»W denote
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the respective inclusions. The composition %,g: X W is homotopic to
the inclusion &; therefore the restriction h = gp: P 8% ig essential. Thus,
by the well-known Hopf theorem ([3], p. 513), the homomorphism
st Hy(P)—>H (8% is not trivial, i.e. Imh, 5% 0. On the other hand, & is
equal to the compogition fjk;, which implies that j, is a non-trivial homo-
morphism. This implies that Imiy, 5 0, since Imi, = Imj,, by the Con-
vergence theorem. Therefore, the group Hy(X) is not trivial.

3° The implication (iii)=> (i) is obvious.

Let X be a compactum, let X; and X, be closed subsets of X with
X, v X,=X and write X, =X, n X,.

(4.8) PROPOSITION. If Hy(X,) 56 0 and Hy(X,) = Hy(X,) =~ 0, then
H, 4(X) # 0.

Proof. Let o« be a ¢-dimensional true cycle in X, with coefficients
in R,, which is not homologous to zero in X,. By the assumptions on X;
and X,, a is homologous to zero both in X; and in X,, thatis,fori=1,2,
there is an infinite (g--1)-dimensional chain 1; in X; with coefficients
in R, such that éi; = a. By the well-known so called Phragmen-Brouwer
theorem (see [7], p. 546), the infinite cycle 4,— 1, is not homologous to
zero in X and, by (4.2), the group H,,,(X) is not trivial.

(4.9) ProposrrioN. If HyX,) ~ HypilXy) = Hyyy(Xo) = 0,  then
+1(X) = 0.

Proof. Let « be a (g-+1)-dimensional true cycle in X with coef-
ficients in R,. By means of an infinitely small displacement of a, & true
cycle o' homologous to a can be obtained such that.a’ = f,— fa, Where f;
is a (g+1)-dimensional infinite chain in X; (i =1, 2) with coefficierts
in R,. The g-dimensional infinite cyele df; = 9f, lies in X, and, by (4.2)
it is homologous to zero in X,. Thus, there is a (g -+1)-dimensional in-
finite chain y in X,, with coefficients in ®,, such that gy = 8p,. The in-
finite cycle p; = fi—y les in X; (i=1,2) and therefore it is homologous
to zero in X;. Thus, @’ = y;— y, is homologous to zero in X, which eom-

pletes the proof.

(4.10) TeroreM. If X is a q-acyclic compactum of dimension at most ¢
(g=1) and if Y is a compactum of dimension at most p, then the product
X x Y is (p+g)-acyclic. :

Proof. Suppose first that ¥ is a polyhedron with a fixed triangu-
lation T. )

I. For p = 0 the theorem is obvious (the assumption ¢ > 1 is needed
here). : :
II. Let an integer %> 1 be given and suppose that the theorem is
true for ary p < k. Now, put p =k and denote by » the number of all
p-dimensional simplexes of T. : ‘

H

a
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1° I n=20, then dim¥Y<p, dim(Xx ¥)< p+gq and therefore
X x Y is {p-+g)-acyelic.

2° Suppose that » >0 and the theorem is true for any p‘olyhed?on
of dimension at most p which contains less than n p-dimensional sim-
plexes. Choose a p-dimensional simplex A4 of the triangulation T and
denote Y;= |d]|, ¥,= ¥ \4]|. The polyhedron ¥, contains n—1 SiYI.l-
plexes of dimension p; hence, by assumption 2°, the compactur(} Xx Y, 1s
(p+ g)-acyclic. The compactum X X ¥y is (p-+¢) -acyeclic, since Y, is
contractible. Moreover, dim (¥, n ¥,) < p—1; hence, by assumption IT,
the compactum X X (¥, n¥,) = Xx Y, ~nXxY,is (p+q—1)-acyclic.
Thus, by (4.9), Hyp o XX ¥) =0, which means, by (4.7), that XX Y is
(p+ ¢)-acyelic.

Thus, by induction, the theorem is frue for any polyhedron Y. Sup-
pose now that X and ¥ are arbitrary compacta contained in finite-di-
mensional Euclidean spaces B’ and B, respectively. Then X X Y is
contained in B = B'x B”. Let & be a positive number and let f be an
¢-displacement of ¥ into a p-dimensional polyhedron P C B'. The mapp-
ing g XX Y—>E defined by the formula g(s, ) = (e, fl) s an e-dis-
placement of X X ¥ into the set X x P. By the first part of the proof,
the compactum X X P is (p-+ ¢)-acyclic. The image g(X X Y) is therefore
also (p-+gq)-acyclie, since dim (X x P) <p+g. Thus, by (4.6), the com-
pactum X x ¥ is (p-+g)-acyclic, since the number & can be arbitrarily
small,

(4.11) TeeorEM. Suppose that a compactum X is q-dimensional
and WSC, and let X,D X,D X,D ... be a decreasing sequence of closed

o
subsets of X. Then, the intersection X, = () Xn 8 g-cyclic whenever all

=1

X, are q-cyclic.
Proof. Suppose that X is a subset of a finite-dimensional Euclidean
space F and let V be a compact neighbourhood of X in F such that the

inclusion i: X ->V induces a monomorphism 4. HQ(X)—>'Hq(V). By the-

Convergence theorem (4.3), there exists a compact neighbourhood W
of X, confained in ¥ and such that Imj, = Imdg, where ju: Hy(W)->Hy(V)
and ige: Hy(X,)—Hy(V) are homomorphisms, induced by the respective
inclusions j: W—V and i X,—V. Choose a positive integer &k such that
X3 CW. Then, the following diagram, consisting of inclusions

X, —" . x

i

-

<

¥
w —>

7
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/4

is commutative, which implies that the diagram counsisting of the homo-
morphisms induced by these inclusions

HiXy) —2 s B(X)
i

H

Tk

M .
HyW) ——5—H(V)
is also commutative. The homomorphism ji. is & monomorphism, since
dimX = ¢. Consequently,
Hy(X}) = Imiyfps = Imjaige CImjy = Imig,
which implies, by the non-triviality of the group H,(X), that the homo-
morphism 4y is not trivial. In particular, the group Hy(X,) is not trivial.

Remark. In addition to the above proof, consider the commutative
diagram

Grd)x

Hq(X{) /Iri’q(V)
J'a*\ /in*
N/

Hy(Xo)

consisting of homomorphisms induced by the respective inclusions
Jri: Xp—>V, i Xy—V and j: Xy—X;. All homomorphisms of this diagram
are monomorphisms and, moreover, Imiy = Im(jx?)s, which implies
that ju is an isomorphism.

5. Irreducibly ¢-cyclic ¢-dimensional compacta (g-bubbles). By (4.7)
a ¢-dimensional compactum X is a ¢-bubble if and only if there exists
an essential mapping of X into the g-dimensional sphere 87 and for any
closed proper subset X’ of X there is no essential mappings of X’ into 8¢
or (equivalently: if and only if the group H,/X) is non-trivial and, for any
closed proper subset X’ of X, the group Hy(X') is trivial).

In this section some properties of bubbles will be studied and, in
particular, the problem of the existence of g-bubbles in a ¢-dimensional
compactum without small g¢-dimensional eyeles will be solved.

Let 8SX denote the suspension (see [10], p. 336) of a compactum X
with the suspension-vertices v and w and let &: X X[0,1]->8X be
a mapping such that o(X x {0}) = {»}, ¢(X x {1}) = {w} and the restric-
Hon o|gx gy 18 & homeomorphism of X' (0,1) onto SX\{v, w}. Denote
by X, the set o(X x {f}) for any ¢ (0,1).

(5.1) ProrosITION. The suspension SX Mmpactum X is a (g+1)-
bubble if and only if X is a g-bubble. o

2 — Fundamenta Mathematicae, T. LXXXIII
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Proof. As is known, dimSX = dimX +1.

1° Suppose that X is a g-bubble, The decomposition of SX into two
cones (X x [0, 3]) and o(X x [, 1]) shows, by (4.8), that 8X is (g4+1)-
cyclic. Suppose now that ¥ is a closed proper subset of SX. Then there
exists a te(0,1) sueh that X, ~ X is a proper subset of X;. The set
X, ~ ¥ is g-acyclic, since X, is a ¢-bubble; in particular H(X;~nY) ~0.
The set o(X x[0,1]) ~ Y is (¢g-+1)-acyclic as a closed subset of the
(g+1)-dimensional, (g+1)-acyclic compact set ¢(X X [0, {]). Analogously,
a(Xx[t,1]) n Y is (¢g+1)-acyclic. The decompogition

Y =[e(Xx[0,1]) » ¥Y]w [o(XX[t,1]) ~ Y]

shows by (4.9) that H,,,(Y) ~ 0 and, by (4.7), ¥ is (¢-+1)-acyeclic. Thus,
SX is a (g-+1)-bubble.

2° Assume now that 8X is a (¢+1)-bubble. The decomposition of SX
into the cones ¢(X x [0, 1]) and o(X x[%,1] shows by (4.9) that Hy(X)
s 0. On the other hand, if a closed proper subset X’ of X would be ¢-cyelie,
then the suspension §X' would be a (g-+1)-cyclic closed proper subset
of 8X, which is impossible.

(5.2) TeEoREM. The product XX Y of a gq-bubble X (¢=1) and
a p-bubble ¥ (p = 1) is either (p+ q)-acyclic, or a (p- q)-bubble.

Proof. Let Z denote the product X X ¥ and suppose that Z is
(p+gq)-cyclic. Let Z' be a closed proper subset of Z. In order to prove
that Z' is (p+- g)-acyelic, if is sufficient to show that H,.,(Z') ~ 0, since
dimZ’ < p+4q. Let (», y) € Z be a point of the complement of Z’. There
is'an open neighbourhood U of # in X with dimBd U < ¢—1 and an open
neighbourhood V of y in ¥ such that the sets U XV and Z’ are disjoint.
In order to show that H, ,(Z") ~ 0, it is sufficient to show that
H,, (ZNUX V) = 0. Write Z, = (X\U)X Y and Z,= U X (¥\V). Then
INUXV = Zyv Zy and Z; ~ Z, = BAd U x (¥\V). Observe that X\U is
g-acyclic, since X is a g-bubble. Therefore, by (4.10), Z, is (p+ ¢) -acyclic.
By the same argumentation, Z, is (p + ¢) -acyclic and Z, ~ Z, is (p+qg—1)-
acyclic. Thus, by (4.9), Z; v Z, is (p+q)-acyclic, which completes the
proof.

(5.3) PROPOSITION. Let X be a closed g-cyclic subset of a compactum M
and suppose that for any positive number ¢ there ewist a q-bubble X, C M
and an e-displacement f, of X into X,. Then X is a q-bubble.

Proof. It is easy to see that dimX = ¢. Indeed: dim.X > ¢, since
X is ¢-cyelic. On the other hand, for any ¢ > 0 there exists an e-displace-
ment of X into a ¢-dimensional set; thus dimX < g.

In order to prove that X is a g-bubble, suppose, on the contrary,
that a closed proper subset X’ of X is g-cyclic. Let #, ¢ X be a point of
the complement of X’ and put &, = Inf{g(x,, 2'): #" ¢ X'}, Let a e Hy(X')

icm°
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be a non-zero element. By (4.6), there exists an &, > 0 such that, for any
e~ displacement f: X'—>f(X')C M, the element fu(a)e Hf(X")) is non-
zex0. Put e = min{{e,, &} and consider the &-displacement f, of Xinto X,.
The formula f(#')=f(«") for any #' ¢X’ defines an ¢-displacement
fi X'—f(X") CX,. Observe that f,(z,) ¢ f(X’), since o(x,, ') > 2¢ for any
&’ ¢ X'. Thus, the set f(X’) is g-acyclic as a closed proper subset of the
g-bubble X,. But on the other hand, fi(a) is a non-zero element of the
group Hy{f(X’)). This contradiction completes the proof.

(5.4) COROLLARY. The inverse limit of an inverse sequence of q-bubbles
is either g-acyclic or a q-bubble.

(5.5) THEOREM. Any g-dimensional, g-cyclic compactum X which

is WSCy contains a q-bubble. Moreover, the number of all q- bubbles contained
in X is at most countable.

Proof. Consider the family & of all g-eyclic closed subsets of X
with the inclusion-relation C as a partial ordering on F. Any g-bubble
contained in X is a minimal element of . In order to prove that there
exists a minimal element in &, it is sufficient to show by the well-known
so called Brouwer reduction theorem (see [11], p. 161) that, for any

o

decreasing sequence F; D F, D ... of elements of &, the intersection (| Fa

=1
belongs to F. But just this is stated by (4.11).

Concerning the second part of the theorem, observe that any
g-bubble contained in X is a minimal carrier (see sec. 2) of an element
of the group H,(X). This group is, by (3.11), at most countable; therefore
the family of all g-bubbles contained in X is at most countable.

(5.6) Remark. Any g-bubble contained in a ¢-dimensional poly-
hedron with a fixed triangulation is a subpolyhedron under the same
triangulation. Thus, the number of all g-bubbles contained in a g¢-di-
mensional polyhedron is finite.

The conclusion of Remark (5.6) cannot be extended onto the class
of all ¢g-dimensional compacta WSC,, not even onto all ¢-dimensional
ANR-spaces. The aim of the next section is to describe a suitable counter-
example.

6. An example of a 2-dimensional ANR-space which contains infinitely
many 2-bubbles.. Let {p,} be the increasing sequence of all primes. Con-
sider the following subsets of the complex plane C:

D={zeC: 2| <2}, D ={eC: |2g[<1}
and

Apn=1{2e0: 2=0, or 0<<argz""<= and [¢s|<1}
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(see Fig. 1 for n=23 ie. pn= 5). Leb gu: An—C be a mapping defined
by the formula ¢u(2) = 2% for any # e 4,. Observe that both A, and the

image ¢n(4n) are AR-sets (n=1,2,..).

Fig. 1

Let S° denote the unit 2- dimensional sphere in the Euclidean 3-space,
8= {(&;, %, @y): 2i-+ai+aj=1}. Consider the sequence of points
on = (1/2",V 1—1/4", 0) lying on 8 and the sequence of positive numbers

Fig. 2

=127 n= 1,2,.. The set Dp={we8 o(w,0n) <7a} is 2 disk
lying on §2. Let hy be a homeomorphism of D onto D, and write Ba
= hy(4,), Dy, = h,(D") and b, = h,(0) (see Fig. 2). Now, define an equiva-

e ©
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lence relation = on §2 as follows: for z # y the relation # = y holds if
and only if there exists an integer n such that » and y are in B, and
Pl (@) = @u(h7'(9))- The decomposition of §* into equivalence eclasses
is upper semi-continuous. Let K denotes the factor-space Sj_ and let
n: §2->K be the natural projection. Observe that B,, B,, ... are mutually

disjoint AR -sets, the sets n(82\'J Bn), n{B,), 1(B,), ... are mutually dis-
n=1

joint and their diameters converge to zero. Moreover, the restriction

is a homeomorphism, the ima. By), for an: =1,2,..
n](S!\GBn) 0’ I‘p 3 ge n(By), for any n=1,2,..,
n=1

is an AR-set, and K = 5{8?) is a finite-dimensional compactum (indeed,
dim K = 2). Thus, the following theorem can be applied here:
(6.1) TeEOREM (Lelek [14]). Let X be an ANR-space and {Xi}
a sequence of disjoint AR-sets lying in X. Let f be a mapping of X onto
o0

a finite-dimensional compactum Y such that the sets f(XN\_| Xi), f(Xy),
i=1

f(Xy), ... are disjoint and their diameters converge to zero. If the resiriction
is a homeomorphism and if f(Xi)e AR for i=1,2,..., then
fl(X\;_JDX;) OMmee0 P if f(X:) e fi y Sy oenny
=1
Y ¢ ANR.

This theorem implies that the compactum K constructed above is
an ANR-space. Write Cp = n(B,) and K,= K\IntC, (n =1,2,..).
It will be proved that each K, is a 2-bubble.

The restriction 7 o is a homeomorphism; hence, let any
HS*\U Tt D)

point # ¢ (82\ | Int.D,) be identified with the point #(z) ¢ K. By means
=1

of this identification a compactum M = §2v K is obtained such that
the equality

SN Int Dy = EN'_n(IntDy) = 82 n K
n=1 n=1

holds. Observe that there exists a retraction r: M — 82 with the following
properties:

(i) 7'(77(-D;1)) = {bn},

(ii) 7(n(Dn)) = Da.

The number &, = Suap{e(w, 7 (@)): © ¢ | n(Dy)} is positive (n= 1,2, ...)

k=n

and the sequence {e,} converges to zero. The subset P,= (82\D,)v
U (n(Du)NInt Cy) of M is a polyhedron (n=1,2,...). Denote by %, the
group of integers reduced modulo p,. It is easy to verify that the group .
HyP,, N,,) is not trivial; indeed, it is isomorphic to the coefficient
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group 9,,. Consider the mappings f: Pp—>K, and g: Kn—>Py defined by
the formulas

) n(x) for any xe 8N\Dy,
f@)= @ for any & € n{Du)Nnt Oy

and

__fr(@ for any x e Ky N\n(Dy) ,
glo) = z for any # e 9(Du)NInt 0y ,

and observe that the composition gf: Pn— Py is homotopic to the identity-
mapping on P,. Thus, the homomorphism (gf)« induced by gf is the
identity-homomorphism on the non-trivial group Hy(P,, Ny,). Therefore,
the group Hy(K,, R,,) is non-trivial, which yields that

(6.2) " the compactum K, is 2-cyclic '(n= 1,2,..).

The subset

k
Pt = (PNUD) v
=1

of M is a polyhedron (k,n=1,2,..) (k> n). It is simple to verify that
any PF is a 2-bubble (it is important here that the integers p, and pm
are mubually prime whenever n  m). Fix an integer #» > 1 and define
mappings fy: K,—~PE (k= n) by the following formula:

r(x)  for any we |Jn(Dy),
fula) = R
/] for any » e K\ 5(Ds) .
i=k+1

The mapping fr is an e-displacement; hence, it is proved that

(6.3) for any positive number ¢ there exists an s-displacement of K,
(the integer n is fixed here) into a 2-bubble lying in M.

It follows by (6.2), (6.3) and (5.3) that K, is a 2-bubble (n =1, 2, ...),
which implies that

(6.4)  the compactum K is a 2-dimensional ANR -space which contains
an infinite number of 2-bubbles.

(6.5) ProBLEM. Is it true that if a ¢-dimensional compactum X is
‘WSCq, then any family of mutually disjoint g-bubbles contained in X is
finite?

(6.6) ProBLEM. Does any (g--1)-dimensional compactum contain
a ¢-bubble?
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