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Triangle contractive self maps of a Hilbert space

by
D. E. Daykin and J. K. Dugdale (Reading)

Abstract. The well known Banach contraction mapping theorem says that if
distances go down under a gelf map of a complete metric space then the self map has
a unique fixed point. The purpose of this paper is to generalize to maps which contract
three or more points. We show that if triangles go down under a self map of a Hilbert
space then the self map has either a fixed point or a fixed line (or both).

1. Introduction. The well known Banach confraction mapping
theorem says that if distances go down under a self map of a complete
metric space then the self map has a unique fixed point. Roughly speaking
the object of this paper is to show that if triangles go down under a self
map of a Hilbert space then the self map has either a fixed point or a fixed
line (or both). We believe that if tetrahedrons go down then the self map
will have a fixed point, line or plane and so on. However, we have not
yet pursued this investigation.

2. Triangles and lines. Throughout this paper H denotes a Hilbert
space. If ¢, 2 « H we define the line L(y, 2) passing through y and 2z by

L(y, 2) = {#] ©= ay-+pe for a, scalars with a+p= 1}.

When 4 # 2z the «, § are uniquely determined by the point » of L(y, 2),
but when y = # then L(y, 2) is the single point y. Any two distinet points
are sufficient to determine a line, for if @y, 2, L(y,#) and m # @, then
Liw,, m) = L(y, 2). Also two distinet lines intersect in at most one point.
Thus lines are simply linear varieties, they are closed convex gets, and
we get the expected line geometry in H.

For arbitrary points @,y,2 of H put a=2—Y, b=y—z and
¢==g—q, then

War—(a, )0, a) = 1VPeE—(b, )¢, b) = 1Vt~ (0, ) (@, 0) -
The distance IT of x from L{y,#) is
ol # y=g2,

II(x,Iz(?/:z))= ”—iﬁl/azb“‘—(a,b)(b,w) iy £z,
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50 we define the area A(2, y, #) of the triangle 2, y, # to be half the base [[b]}
times the height I7, and the area is the same whichever side of the triangle
is taken as base. Also weL(y,z) iff 4(x,y,2) =0 when y # 2.

It s = ([lall+Dli+el) then

Az, y,2) = Vs(s—llal]) (s—[BI) (s—Ilel)) = 3V s>~ {3 (s, )+ 3 (b, O)}2.

However 4(z,v,2) <A(z,y,2) with equality iff (a,bd) is real, W].Qich
always holds if H is real. If we were working in a metric space we might
have to use A to define the area of a triangle, but we will not do so here.

‘We finish this section by observing that if H is a complex Hilbert
space and H, the associated real Hilbert space then for all »,y,z2¢H

Az, y,2) = Ay, 9,7)
where 4, is 4 calculated in H,.
3. Properties of fixed points and lines. Let f be a self map of H. A point p
of H is a fiwed point of fif fp=1p. 0 < a<1 and
\fa—foll < allo—yl
for all #,y « H then f is contractive. This is what we meant in the intro-

duction when saying “distances go down”.

THEEOREM 1 (Contraction mapping principle). If f is contractive then f
has a unique fized point p and iteration from any point leads to p.

We will call a line or part of a line T a fiwed lineof f if fL C L. If f ha?s

a fixed point or a fixed line or both we say it has a fizture. We say thaﬂ.i f is
triangle expansion bounded, abbreviated to f is TEB, if there is a positive
constant ¢ such that for every three points @, y,z of H

either 4 (fxz, fy,fz) < ad(2,v, 2)

or  [lfo—fyll< allz—yl

and  [[fy—fell < afly—4|

and  |[fe—fal < alle— .

1)

If f is TEB with 0 < a << 1 we say that f is triangle contractive and write

is TO.

Finally f is triangle perimeter confractive, abbreviated to f is TPC,
if 0< a<<1 and for every three points %, ¥,z of H
(2) I fe—Fyll+lfy— foll + |l fo— fall < a{lo—yll+ly— 2|+ lle— =} .

Note that asking for f to be TC or TPC are independent requirements
and both are weaker than asking for f to be contractive.
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It is very eafy to prove that if f is a TPC self map (of even a complete
metric space) then f has a unique fixed point P, iteration from any point
leads to p, and a sequence of iterates is a Cauchy sequence. The difficulty
in dealing with TC maps lies in the fact that even under iteration we
can’t be sure that we won’t go from small triangles to big ones as shown

in diagram. We could even have made fz, %, fo», fiz collinear in the
diagram

°x

Our work really centres on the TC condition and we make the

CoNJECTURE. Every TC self map has a fixture. (When H is finite
dimensional.)

In table we give some examples of TC self maps T of the two di-
mensional real (u#,v) plane.

Table
flu,v) No. of fixed points No. of fixed lines
(—4v, 3u) 1 0
(u-+1, $v) 0 1
(—3u, 2v) 1 2
(—3u, —3v) 1 oo
(u, ) o oo

Clearly (1) is satisfied for three points @, y, 2 it fz, fy, fz are collineay.
Hence one can make trivial examples in H as follows. Choose any line ¥
and any set P of points on N. Next choose any family @ of lines such
that firstly, each line of  meets N at a point of P, and secondly, if two
distinct lines of @ intersect at a point p then p is in P. Then map the
whole of the space H onto the line ¥ in any way that keeps points of P
and lines of @ fixed. These examples show that the following theorem
which describes the arrangement of fixed points and fixed lines of a TC
map is the best possible.

13%
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TaroreM 2. Let f be TC.
(1) If two dq,fferent fimed lines of f meet at @ point p then p 8 & fwed

point.
(i) If f has no fized points then it has at'most one fzwed line and if it

does have one such line L then (f"w)—>L for every w eH.

(iii) If f has exactly one fiwed point.p. then its fiwed lines, if any, all
pass through P.

(iv) If F has two or more fimed points then they will all lie on a fized
line L. Moreover any other fzmed line M will intersect L and (f"w)—L for
every we H.

Part (i) of this theorem is trivial but before dealing with the other
parts we prove some lemmas. :

LuvwmA L. If f is TO and p, q, 7 are fizmed points then they are collinear.

Proof. Since [p— gl = |fp—fall > alp—g| if p # g we have by (1)

A(p, g,7)=4(fp,fq,fr) <ad(p, ¢,7)
giving 4 (p, g,r) =0 and hence that p,q,r are collinear.

An 1mmed1a,te consequence of f being TC is that if || fo— fyll > allz—yll

then A(z,y,#2)= 0 implies 4( fm fy,f2)=0 or in other words fL(z,¥)
C L{fx,fy). When L(z,y) = L(fz, fy). this means that L(z,y) is fixed
and gives us the first part of

Lsioea 2. If f is TC and Lis a line with ©, y < L such ﬂmt fa, fy eL
and ||fo—fy| = Bllz— vl >0 where f>a then L is a fimed Zme Further,
(ffw)—>L for every w e H.

Proof. We have just seen that L is fixed. Since (1) must hold, for
any w ¢ H.and any positive integer n we have

Hfo—-fyl I (™ 'w, L) = A(fz, fy, fi*'w) < ad (@, ¥, f*0)
T o = tallp—ylII(f"w, L) .
Hence by induetion II(f**'w, L) < (¢/f)"T(fw, L) and the right hand side
tends to 0 as n tends to infinity, giving that (f"w)—L..

Lemm» 2 has two obvious corollaries which we state as Lemmas 3
and 4.

LEMMA 3. If fis TCand p,q are distinct fwed points then L = L(p, Q)
is a fived line. Further (f*w)—>L for every we H.

LismuA 4. If the conditions of Lemma 2. hold for two distinct lines L, M
then f has one and only one fized point p and L and M both pass through p.
Further, (f"w)—>p for every weH.

Luvwma 5. If f is TO and L, M are distinct fiwed Lines of f then there
are fived points p, q on L, M respeotwely, possibly p = q.

Proof. Case (i |]fa;—fy|j < alw—y|| if =,y are either both on L or
both on M. Thus f restmcted to either L or M is a contractive self map
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of I or M and so by The01em 1 there exist fixed pomts P,qon L, M
respectively.

- Case (ii). The conditions of Lemma 2 are satisfied for either I or M.
Without loss of generality we assume they are satisfied for L. Thus
g frw)—>L for every w ¢ M. Since M isafixed line this means that I and M
intersect. Theorem 2(i) tells us that this point of intersection is a fixed
point.

.. Lewwma 6. If f is TC with a fized line L and a fized point p not on L
then f is coniractive on L (and so has a fized point on L).

Proof. If f is not contractive on I then the conditions of Lemma 2

are satisfied and we have the contradiction (f"p)—IL but f» =p ¢ L.

Lemwma 7. If f is TC then limits of convergent sequences of iterates are
eollinear when such sequences ewist.

. Proof. Suppose (f™ws)—v; in H for i = 1,2, 3. Put 4 = 4(v,, 9y, v3),
g=llty—v,)| and for n=1,2,3,.. let Ad,= A(f w, f w., f*w,) and
On = || f™w,— f™w,||. Then (4s)—4 and (ox)—o. Hence 4 = 0 for otherwise
4, 6> 0 and (since a < 1) for » sufficiently large 4,,,, > a4, and ¢,,,, > ac
contradicting (1). i

Levwma 8. If f-is TC and p, g are distinct points of H with fp = g and
fq=p then the line L(p, q) is fized.

. Proof. Suppose weL =L(p,q) but fw¢L. Then triangle p, g, w
violates (1) and so the lemma is proved.

.. Proof of Theorem 2. We have already said that (i) is trivial.
_ If f has two fixed lines then by Lemms 5 it has a fixed point. Now
if f has a fixed line I but no fixed point it ean’t be contractive on I and
80 by Lemma 2 we see that (ii) holds.

If f has a fixed line not passing through p then f has a second. fixed
point by Lemma 6. Thus (iii) is proved.

. By Lemma 1 all fixed points lie on a line I which by Lemma 3 is
fixed. If M is another fixed line then L and M intersect, since otherwise
Lemma 5 would give a contradiction. By Lemma 3 we see that (f™w)—>L
for every w ¢« H. Thus (iv) is proved.

TeEOREM 3. If f is TEB but not continuous then fH is part of a fiwed line.

Proof. Suppoese f is discontinuous at the point g. Then there is an
&> 0 and a sequence .(@n)—>g With ||fz,—fg| = ¢ for n =1, 2, ... For any
point y of H we have |jwn—q||-+0 50 Ay, 24, ¢)—0 and A(fy, foa, fg)—0.
If we take a, for y and let L = L(fx, fq) then

A(fwyy foon, fq) = 3fo— FQMI(fan, L) > }eII(fon, L
80 II(fxn; L})—0. Suppose now that for some y we have fy ¢ L, that is
1I(fy,L)>0. Then |fg—foull>e and II(fy, L(fg, fon))>L(fy, L) so

A(fy, fzu, fg) + 0. Since this is impossible, the theorem follows.
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We conclude this section by remarking that if p is a fixed point of f
and T is a fixed line of f and if f is non-expansive then the foot ¢ of the
perpendicular from p to L is also a fixed point of f. We recall that f is
non-expansive if ||fo—fyll < [lp—y| for all @,y < H.

4. Existence of fixtures. In this section we will give conditions which
ensure the existence of a fixture. Of course Lemmas 2 and 8 are results
of this nature.

TaeoreM 4. If f is TEB and has a convergent sequence of iterates then
it has a fioture.

In fact we prove slightly more than this below.

Leuma 9. Suppose f is TEB and p s a point such that every neigh?)our-
hood of p contains & point © and its image fx then either p is a fized point or
L(p, fp) is a fived line containing fH.

Proof. Suppose fp # p and let I = L(p,fp). Suppose further that
2 eL but fz ¢ L. Choose a sequence () of points such that (x4)—>p and
(fzn)—p. Thus

(A0n, 7, )+ A(p,pr2) = 0 bub  (A(fam, fp, 7))~ A(p, I, ) >0
and
loa >0 but [ fo—fpllp—fpl > 0.

Hence for n sufficiently large (1) is violated for the triangle &, p, 2 (md
g0 the lemma is proved.

LevmA 10, Let 0< a<1 and x,y,2 be three nonm-collinear poinis
of H such that if @, is the foot of the perpendicular from x to L=1L(y,?)
then max {|lz,— yl, [|#,— zu} < 2|ly—2||. Put b = |ly—=2|| and h = II(x, L) and
suppose that 0< &< 3(L—a)bh/(2b+h). Then A(z',y',?) >ad(z,y,?)
for any three points o', y'y 2 of H such that max{la—&'||, ly—v'll, le— 21} < e

Proof. First we note that b, h, b— 2¢, h—4¢ are positive. Then

A, o', #') = My’ — 2|2, Ly, 2) > 3(b—2e) (h— 4e)
> Yabh = ad (2,9, ?)
as required.

LemmA 11. Suppose f is TC and L is o line in H such that for each
positive integer n there is a Pair un, x, of points in L, H respectively with
tn— @al] < 1fn and [jun—foal| << Ljn. Then f has a fizture.

Proof. If (u,) is bounded then it has a point of accumulation p.
This point satisfies the conditions of Lemma 9 and so f has a fixture.

Thus we suppose that (u,) is unbounded. If L is not fixed then there
is a point w e« I with fw ¢ L. Now there exists a positive integer m such
that 1/m is very small and |jzm—w|| very large relative to both [w— fwl
and IT(fw, L). Further there exists a positive integer % such that 1/k is
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very small and |jgx— )] is very large relative to all these distances. We
consider w, Tm, ax. Now |fom—frg] > alitm— 2] and A{w, &m, zx) is
approximately }|lem— 2zl I {%m, L) < Im|en—ax| and 4 (fw, 2w, fre) is
approximately }wm— @l IZ(fw, L). Thus A(fw, fom, for) > ad(w, Zn, o).
This contradiets (1) and therefore we conclude that L is fixed.

THEOREM 5. If f i3 TC and there is a sequence (zr) of points in a finite
dimensional H with |[©n— fa]->0 then f has a fizture.

Proof. If (zx) has a cluster point, i.e. if there exists a point p such
that every neighbourhood of p contains infinitely many of the #,'s then
by Lemma 9 f has a fixture.

It (2n) has a cluster line, i.e. if there exists a line I such that every
neighbourhood of I contains infinitely many of the z,’s then by Lemma 11
f has a fixture.

Thus we assume that (2,) has no cluster point and no cluster line and
obtain a contradiction. If we project () onto the unit sphere centred
at the origin to get (2;), then (z}) has a cluster point. Let L be the line
through the origin and this point. Let ¢ be a cylinder with I as axis and
whose radius is very large relative to I7(z,, L) and |jn,— fz,|. Since (z,) has
no cluster point or line there exists a positive integer I such that z; ¢ ¢
and [lz;— faf] is very small but |lo;— z,)] is very large relative to the radius
of €. Now a very narrow cone centred at 0 with I as axis will contain
infinitely many of the points (2.). So we can lastly find a positive integer &
such that [lwg—faxll is very small and |lzgx— a4 and |l@x— x| are very
large, and ]Y(w;, L{zy, wk)) is at least of the same order as the radius of C.
By Lemma 10 A(fa,, for, for) > ad (@, @1, 2x) and ||for—fail] > alfer— i
50 (1) is violated and we have our contradiction.

There is no reason why the (z,) of Theorem 5 should not be a se-
quence of iterates of f and the next theorem discusses such a sequence,

TeroreM 6. If H is finite dimensional, f is TC and has o sequence of
terates which converges to a line then f has a fixture.

Proof. By hypothesis there is a line I and a point z in H such that
II(#n, L)—~0 where @, =f"r for n=1,2,.. We assume |jz,—fua]| # 0
for all # as otherwise &, is a fixed point of f. Also we assume b inf|ja,— fz,)]
# 0 for otherwise Theorem 5 applies to a subsequence of (2,). Then there
is a 1> 0 such that ||m,—fu,l > 2 for all n. Also |l@, 13— B4l > alit,— fall
infinitely often. We shall show that L is fixed by assuming there is a point:
w el with fw ¢ L and obtaining a contradiction. A

Case (i). (2z) bounded. Choose » >0 so that (z,) is contained in
the ball B centred on w with radius p. Then choose & >0 sufficiently
small that there is a § > 0 with the following property. If u, v are two
points of B with |u—o| =21 and II(u,L)<<e and IT(v,L)< & then
A(u, v, fw) = 6. It is easy to see that such a choice is always possible.
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Next we note that there is an integer k= %(s) such that II(@n,L)<e
for n>%k and hehce Ay = 4(fan; [Py, f0) = 6 for m>=k. However
A, = A(@,, Tpyq, w)—>0 and so there is an integer h such that A4, > a4,
foz n>h. Since as we have already stated ||fa,— fn14l _>aﬂﬂ?n“— eyl
infinitely offen we can obtain a contradiction of (1). Thus in this case L

ig fixed.
Case (ii). (#,) unbounded. Choose ¢ >0 but very small when com-

icm

pared with II(fw,L). Then there is an integer & such that II(xx, L)<e -

and II(fux, L) < e. Since () is unbounded there must be i.nfinitely many
integers # such that |lx— faal > loe— @,)|. Tn fact there will be a SﬁI:lGﬂy
increasing sequence (n(z‘)) of integers such that [lo,—@,ull >0 a8 i—>co
and ||, — Bl > 18— @ag)ll for every i. Hence ||fo,— fm,?(‘)ﬂ > allw,.,— Do)l
for all ¢ sufficiently large. Now for ¢ large A (%, Zneps w) is approximately

Hllaey— Tl L (55 L) < }log—@neslle
and A(f@s fonq , fw) is approximately ;

$\f—Fno | LT (f0, L) > ball— taeo || (fw, L) -

Therefore (1) is violated and the proof of the theorem is complete.

LEvvA 12. Suppose f is TEB, that (#,)—>p end |#n— faon]l—A > 0 then

(i) there are at most two accumulation poinis of (fa);

(ii) 4f (fan) has two accumulation points r,s then fH CL(r,s).

Proof. If g, ¢, g are distinet accumulation points of (frn) then
lp—gifj= A for i=1,2,3, and A(gsy Goy g5) > 0. Also there are integers
k,1, m with the triangle zx, @i, #m arbitrarily small but triangle fog, foi,
fom arbitrarily close to triangle gy, gz, gs- This contradicts (1)

When » # s are accumulation points, considering the images of
triangles &y, Tm, ¥ With fog, fom near r, s respectively reveals that r, s, fy
are collinear for all y. ’

Teava 13. Suppose f is TBB and (w.) is a sequence of points with
(m)—>p and |[wn—foo|->1>0 and A(Zn,fon, ff22)—>0 as n—»oo. Also
assume [fan—fnl = u > O for all n. Then f has a fized line L through p
and (fro)—=L and (f*wn)—~>L.

Proof. We know by the last lemma that (fz,) can’t have three
accumulation points. Suppose r,s are two accumulation points. Then
again by Lemma 12 we have foa,f%se¢fH CL(r,s). Also Decause
A(@ny fn, 200> A(D , fony fn) >0 and || faon— || > p wehave p e L(r, 8).
If (fz,) has only one limit point » then a,, faon, fPen—>L(p, r) and it is
easy to see that this line is fixed.

TarorEM 7. If H is finite dimensional, f is TC and (za) is a sequence
of iterates such that Hminf||m,— s, s finite and A(,, Bpyss Tnae)>0
then f has a fizture.
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Proof. If liminfilw,—a,, | = 0 then Theorem 5 applies. Therefore
we assume that liminfjm,—m,, || = 2 > 0. If there exists a line L such
that (2n)—L then I is fixed by Theorem 6. Thus we assame also that
for all lines I we have (#,)>L. If we project (@) onto the unit sphere
to get (@) then (2,) has a cluster point. Let I be the line through the
origin and this point. Liet m be a positive integer such that |jo,—,,,,] is
near 1. Then let U be a cylinder with L as axis and whose radius is very
large relative to II(wm, L) and A. A sphere centred on z, contains onIy
finitely many points of (z,). Also ¢ contains only finitely many of the
points. Henee there exists a positive integer I such that #;¢ C and |lz;— @,
is mear 2 and |lz;— 2,/ is very large relative to the radius of C. Lastly by
congidering a very narrow cone round I we can find a positive integer &
such that fivstly |lo,— 2, is near 1, secondly II(w:,L(wm, #x) is large
relative to A, and lastly {jzx— #if] and |jgx— ]| are large relative to {jo— 2.
By Lemma 10 we have A(yyq; B1yq, Tppy) > ad (@m, 21, 2¢) and since
|21 4:— @ pall > afl— #,,]l, condition (1) is violated and we have a contra-
diction. Thus we conclude that f has a fixture.

TeEOREM 8. If H is finite dimensional f has a bounded sequence of
iterates and A(fz, fy,fz) < ad(z,y,2) for all z,y,2<H where 0<<a<<1
then f has a fizture.

Proof. Clearly f is TC and there exists a sequence of iterates (z,)
such that liminf|w,— 2z, ., is finite and A(a,, 2, ., ,,,)—>0. The result
now follows from Theorem 7.

A mayp f which satisfies the condition of Theorem 8 has the property
that fz, fy, f¢ are collinear whenever z, ¥,z are collinear and in [1] the
problem is raised of characterising such self maps of the plane.
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