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According to 6.2 (b) there is an essential map f: X;— 8. However,
for every closed subset F' of X; distinct from X; we have f|F ~ 1. Indeed,
if fiF~1, then, by [4], p. 425, there is a continuum C CF such that
f|C~1. Since € is distinet from Xy, O is a snake-like continuum. It follows
that f|0 ~1, & contradiction. Thus f irr ~1. Therefore, by (1) and by [4],
p. 421, the contimmum X; is a simple closed curve. This completes the
proof of (b).

ProsLEM. Let X be a plane circle-like continuum and let x be
a Whitney map on C(X). Oan p~(f) be embedded in the plane for each
tel¥
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Measures on bundles and bundles of measures
by

W. D. Pepe (Lexington, Ky.)

Abstract. Various measures on bundles are characterised as a measure on the
base space and a measurable section of an associated bundle of measures. In addition,
machinery is developed to permit very general constructions of measures in this fashion.
Various applications are given, including a new characterization of a method of inte-
gration sections of vector bundles.

1. Introduction. Measures on fibre bundles and associated structures
have heen studied in a variety of settings. For example, Goetz [G] con-
structed a product measure on a bundle, given Baire measures on the
base and fibre with the measure on the fibre being translation invariant
under the group of the bundle. He showed that this product measure
deserved its name by proving a form of Fubini’s theorem. In a similar
fashion, Brothers [B; 3.3] makes a construction that lifts a current on
the base of a bundle with preseribed fibre and group and which satisfies
the conditions that on a product bundle the lifted current is the product
of the current and the fibre and that the construction be natural with
respect to bundle maps. It follows that such a lifting is unique. If one
asks for such a lifting of measures with respect to a preagsigned measure
on the fibre satisfying Brother’s eonditions then, provided the base space
of the bundle contains a measurable set with positive and finite measure,
a necessary and sufficient condition is group invariance of the measure.
To accomplish such construetions without group invariance of the measure
on the fibre is still possible provided there is some compatibility between
the group and measure. However, these liftings are not unique.

In another setting, Allard [A] studies the variational properties of
a varifold. A varifold, introduced by Almgren, is defined as a Radon
measure on a fibre bundle over a manifold with compact fibre. In See-
tion ITT, we will characterize Radon measures on bundles with compaet
fibre as & measure on tlie base and a measurably varying Radon measure
on each fibre. A form of this result for varifolds is in [A]. However, the
proof these utilizes the intrinsic geometry of the varifeld and various
differentiation techniques in [F].
11+
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Gelbaum has raised the following problem: given a measure, u, on
the base of a veetor bundle which satisfies; there exists a neighborhood
system for the topology of the base each of which has boundary of
p-measure zero; then, when can you “integrate” the continuous sections
with compact support to obtain, as a result of this integration, an element
of the fibre space. In [G1] and [G2], he constructs such an integration
process provided the group of the bundle acts as isometries on the fibre
with respect to some norm. Again in Section ITI, we will, in many cases,
be able to characterize such an integration process as Lebesgue integration
with respect to u of a section of & certain bundle evaluated on the given
section of the original bundle.

The organization and content of this paper is as follows. We will
restrict our attention to locally compact separable metric spaces for
simplicity. It is clear from Urysohn’s metrization theorem that this class
contains all 2nd countable, locally compact Hausdorff spaces. Further,
we will restrict attention to Borel regular measures. These measures need
not be o-finite. Recall, that in this setting, a Borel regnlar measure which
is finite on compact sets is a ¢-finite Radon measure. Further, we will
view fibre bundles as maximal coordinate bundles (e.f. [5]).

In Section IT, we introduce conditions which are weaker than group
invariance. These conditions require that the measure of translates of
Borel sets under the group action vary in a Borel or continuous fashion
on the group. This requirement implies that under the transition mappings
of the bundle, the measures vary in a Borel faghion. One of the require-
ments, called quasi-invariance, implies that the group actions carry Borel
sets of o-finite or zero measure to Borel sets of o-finite or zero measure.
I do not know what is required in addition to this condition to imply
quasi-invariance. Similar questions arise in the work of Reichelderfer
([RR], [R1], [R2]).

In Section ITI, we discuss two types of measures on bundles. The
first type (local product measures) behave locally like a product measure
and the second (almost product measures) are linear combinations of
product measures. If the measures on the fibre which give the local product
measure are sufficiently we behaved and the measure on the base is
locally finite then the loeal product measure is actually a product measure
in the sense of [G] with a suitable reduction of the group of the bundle.

In attempting to classifty Radon measures on bundles, we are
motivated by Federer [F; 2.5.20] where he classifies Radon measures on
the product cf compact spaces using his very general theorem [F; 2.5.12].
This theorem says: if .one is given a vector space, 2, of functions on B to
a separable normed linear space, H, so that Q satisfies some compatibility
conditions with a lattice of functions, T, on B then a linear function,
T, on @ which is, in a weak sense, both bounded and continuous, has

©
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an associated measure on B, g, and a p-measurable and u-unique
gection, %, of B with the weak topology so that

T(w)= [ <, kydu.

We obtain a form of this theorem for vector bundles in Section 3 which
allows us to characterize Radon measures on bundles as a measurable
section of a bundle of Radon measures on each fibre and to characterize
the integral described by Gelbaum in a similar fashion.

It follows that measures on bundles, can, in many cases, be described
ag integrating over the base a suitable section of a bundle of measures.
This can be viewed as a Fubini theorem. In Section IV, we discuss
a bundle of measures and conditions on sections of this bundle which
enable us to construct measures on the total space by a Fubini process.
In many cases, the almost product measures are representable as an
integral of a section of the bundle of measures. If one topologizes the
set of Borel regular measures, say with the weak topology, then only
the trivial group acts continuously on the space of Borel regular measures,
Thus we build an untopologized bundle of measures and place restrictions
on the sections in terms of families of Borel sets in the total space. Various
methods of finding acceptable sections are given. Finally, if the section
of measures is suitably restricted, an integral formula is given which
enables us to compute the measure locally in a produet neighborhood.

The conventions of Chapter 2 of Federer's Geometric Measure
Theory [F] are adopted and most references to measure theory are to
this source.

II. Groups and measures on a space. All topological spaces (except the
groups and normed linear spaces of Section 3) are assumed to be locally
compact separable metric spaces. We will adopt the following notation
for A C X, a topological space: ChA denotes the characteristic function
of A and,

(1) 24 is the set of subsets of 4;
) 1% is the set of Borel subsets of 4;
(8) ¢ is the set of closed subsets of A.

Clearly, 24D b2 D ¢ ,

We will also adopt the conventions of Federer [F; chapter 2] con-
cerning measure theory. Thus, @ measure on X is an extended real valued
function, ¢: 2% B, satisfying

(i) p(@) =0 and

0 o
(il) 0 < @(4) < Y ¢(Br), whenever 4C UBi.
: =1

=1
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We will denote by qozA, the p-measurable subsets of A. We will de-
note by A6(X), the set of Borel regular measures on X and by R( X,
the subset of Radon measures on X. We will call a function, f, countably
@-measurable (p-integrable) if f is ¢-measurable (p-integrable) and
{z| f(z) # 0} has o-finite p-measure. Such countably ¢-measurable
functions are p-almost equal to a Borel function ([F; 2.3.6]).

There are three natural operations on measures.

(1) Given AC X and ¢ a measure on X, the p restriction to 4, ¢I4,
is defined as ¢LA(C)= ¢(4A ~ C);

(2) given ¢, a measure on X, and g: XY, any function, then the
g-image of ¢, gu, is a measure on Y given by

g19(0) = 9(97(0));

(3) given g, a measure on X, and y & g-measurable non-negative real
valued function, the measure gLy given by

gLy(0) = int{ [ ydp| D e¢** and DD 0} .
D

Tt is easy to see that if p e M(X) and 4 ¢ b*° or 4 e ¢** ‘with o-finite
g-measure then gLA e A6(X). Further, if f: X— ¥ is continuous and
locally univalent then fu: J6(X)—>A6(Y) and if, in addition, f is proper
then fu: R(X)—=R(Y). Finally, if ¢ ¢ A6(X) then pLy e J6(X).

We will denote by K (X), the set of continuous real valned functions
" with compact support on X with the sup-norm topology. It follows from
standard techniques that K(X) is a separable normed linear space. We
will denote by D(X) the space of Daniell integrals on K(X) with the weak
topology. The subspace of D(X), D,(X), is the set of bounded linear
functionals on K(X) with norm less or equal to one. It i§ a standard
theorem ([F; 2.5.5]) that given L ¢ D(X) then there exists a unique pair
of Radon measures y* and v~ so that

@ L(f)= [fay*—[fdy~ for feE(X);
and
@) [fdy* =sup{L(k)| 0<k<f, ke E(X) for every
feE(X) with 0 < f(2)}.

DE]:?‘INITION IT1. Let g: XX be a homeomorphism and @ e Mo(X),
then g is called a @-absolutely continuous action (p-a.c.a.) on X if and
. X . .
only if for every B ¢ b*" with o-finite @-measure, there exists a ¢-integrable
function ¢’(z, B) so that 94(eLB)(C) = [ ¢'(w, B)dp for every Cetpzx-
15
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It is easy to see that g(¢2x) = g#tpzx whenever ¢ is a homeomorphism,
and, hence, fo g™ is gup-measurable and that

[fig=[fog gy
whenever f is @-integrable ([F; 2.4.18]).

Levma IT1. Let ¢ e Mo(X), g be a p-a.ca. on X, and {B;}, be
o sequence of Borel sets in X, each of o-finite p-measure, then:

(-]
(8) ¢'(x, \U Bi) =sup{g'(z, Bi)] 1 =1,2,..} for p-almost all z; and
i=1

(b) if the Bios are pairwise disjoint, ¢'(#, | JBi)= Y g'(z,Bi) for
i=1 i=1
@-almost all @.

Proof. Given ¢, ¢, and {B;} as above, then | J B;= B, has ¢-finite
i=1

@-measure. Observe that ¢'(w, Bi) = 0 p-almost everywhere in X~\g(Bj).
Further, i Ceb® and CC g(By) then Of (@, B)dp = [ g'(z, B)dep and
C

(2, By) = ¢'(#, Bi) p-almost everywhere in g(B:). Thus (a) and (b) follow.

The following Theorem characterizes g-absolutely continuous actions
on X. It was suggested by a particularly elegant but as yet unpublished’
result of Reichelderfer in transformation theory. Theorems much like
this appear in [RR], [R1], [R2], ete.

TamoreM IL1. Let g: XX be a homeomorphism and ¢ e Mo(X);
then, g is a g-a.ca. on X if and only if for every B € b with o-finite
p-measure: (i) g(B)= C v D where C and D are disjoint Borel sets with €
having o-finite @-measure and gup (D) = 0; and (i) if e 52 with o(F)= 0
then g#(qaLB)(F) = 0. L B

Proof. Assume g is a p-a.a. and Beb® with o-finite measure
then B = D B; with ¢(Bs) < oo. As ¢'(@, By) is countably @-measurable,

=1

by Lemma IL1 so in ¢'(z, B). Thus G = {z| ¢'(z, B) # 0} ~ g(B) has
o-finite p-measure. Let O ¢ b** with 0D G and ¢(0\G) = 0 and D
=g(B)X\C. As q)(g“l(l))): [ g'(w, Bydp=0, guo(D)=20. Finally, if
D

@(F) =0 then gu(eLB)(F) .-:Ff g'(z, B)dp = 0.

Assume for each B e bzx, (i) and (i) are fulfilled. Observe that with
g(B)= 0w D, gy(pLB) is absolutely continuous with respeet to @LC.
Hence the Radon-Nikodym gives the result.

The following transformation rules are extremely useful. Further,
in Theorerm ITT.3, a chain Tule is established.
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TaeOREM IL.2. If

(i) ¢ e Mo(z),

(i) g is @ p-a.c.a. on X,

(ifl) B ed®® has o-finite p-measure, and

(iv) f is & @-medsurable function, then:

(a) feog is @LB-measurable and
[fogdp= [fx)g (=, Bdp,
B

provided either integral ewists;
(®) fogY@)-g'(, B) is p-measurable and

[fdp= [ g a)g'(s, B)dp ,
B
provided either integral emists.

Proof. (a) As g7 carries p-measurable sets to ¢LB-meagurable
sets, fog is @LB-measurable. Using the remark after Definition 111,
f is then 949 LB-measurable and

[Te9dp= [ fag.oLB .
B

The result follows from the Radon-Nikodym Theorem.

(b) Observe that if A e b™ with p(4) = 0 then g(4) has @L(-measure
zero where ¢(B)= (v D. As ¢'(z, B) =0 g-almost everywhere off (,
it suffices to show that f o gt is L0 -measurable. However every § eq®
has ¢(8) @LC-measurable from the observation above and fog™ is
@LC -measurable. The integral formula follows from the Radon-Nikodym
theorem as [ fdp = [ fdpLB = [fog7"dgyupLB, from the remark after

B
Definition II.1.

THeOREM IL.3. If e M(X) and g and b are p-a.c.a.’s on X then

gsh is ¢ ¢-a.ca. on X and if Beb®™ with o-finite @-measure,
(g > b)'(@, B) = ¢'(=, 0)-W(g~Y(a), B)
for @-almost all x where B(B)=0uv D as in Theorem II.1.

Proof. Following Theorem IL1, goh(B)=g(C) u gD)=0uvDu
v ¢(D) where ¢ has o-finite @-measure.

it follows that %2, gHO)Y v
with @(F)= 0 then

(9 > MloLB)(F) = ¢(B ~ 17y m)))
=9(B A {[g(@) ~ ) o () D))
=¢(B ~ kg YF) A 0)+9(B ~ 1={g=4@) A D)).

As y7Y(0) has p-measure zero
D) has measure zero. Now if I e b2~

©
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Observe that @{g~(F) ~ €)= 0 and, hence, tp(B ARHHE) A 0)) —0.
Further, ¢(h™(D)) = 0 50 (g o h)y(¢LB)(F) = 0.

The integral formula follows from Theorem IT.2.

CorOLLARY ILL. If ¢ € £6(X) and g and g~* are both p-a.c.a’son X then:

(a) g(B) has ¢-finite p-measure whenever B e 1>~ has o-finite p-measure,

(b) g(0) has p-measure zero; and,

(e) ¢'lw, B) = 1/(g™) (g7 (=), 9(B)) for ¢-almost all e g(B).

Recall that a topology group, G, is said to act on X if and only if
there is a continuous map 7: @X XX so that-

(1) 7(e,a) =, for every weX;
and ’
(2) T(hy 7(95‘”)):7(77/'97‘77)'

We will write g(«) for ©(g, ). The group & is assumed to be a locally com-
pact separable metric space. Several of the following definitions are
extensions of definitions in [L.V.], and [L.V.W.].

DEFINITION II.2. Let G act on X. '

(2) It @ € Mo(X), @ is called invariant under G if and only if Iup = @,
for all g e @. ) ‘ .

(b) It ¢ e Ms(X), @ is called gquasi-invariant under G if and only if
for every ge @, ¢ is a p-a.c.a. on X and g'(z, B) is Borel measurable on

o X

Gx X, for every Beb¥ . ) o

(c’) If ¢ € J6(X), @ is called G-mobile if and only given 4 C X with 4
compact then .

(i) if p(A)<< oo then g(g(4)) is continuous in g;

(ii) if p(A4) = oo then @(g(4))= oo for every ge @ and,

G
(iii) given B eb*,{g] o(g(B))= co} ¢ b*°. . .
(A) It @ e M(X), @ is given G-quasi-mobile if and only if ¢(g(B)) is
5 X

a Borel meagurable function in g for every B s.b .

Clearly condition (iii) of Definition IT.2 (c) 1sjredundant whenever ¢
satisfies

@(B) = sup{p(4)] ACB and 4 iz compact}

for B ¢ b**. Some conditions on @ which imply this requirement are given in
[F; 2.10]. - . ‘
, LemyA I1.2. If g e Mo(X) and ¢ is G-mobile then @ is G-quasz-mobd.e.
Proof. Let Beb™ with p(B)< oo then p(B)=supip(4)] Jih is
compact and A CB}. Let C(B)={4] ACB with 4 compact} then
#(g(4)) is continuous. Further

- 4
v(g)= s {olg ()}
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is lower semi-continuous in g; and, hence, Borel measurable. As ¢(g(B))
>uy(g) and equal to it in case q:(g(B))< oo, the result follows from
Definition IL.2 (e) (iif).

TerorEM IL4. If @ € Jo(X) s a o-finite measure on X then ¢ is
@ - quasi-mobile.

Proof. Let H be a Haar measure on G then H X ¢ is a ¢-finite Borel
regular measure on Gx X and by [SA; ITL9.8] the result follows.

COROLLARY I1.2. If ¢ € A6(X) and if ¢ is G quasi-invariant then pLA,
is G-quasi-mobile for every A e v2* with o-finite @-measure.

It is interesting to note that if @ ¢ R(X) and ¢ is quasi-invariant
then ¢ is mobile [L.V.]. Further, if ¢ e R(X) then ¢ is mobile if and only
if there exists g € &(X) which is quasi invariant and so that ¢ is absolutely
continuous with respect to u [L.V.].

1. Almost product measures on bundles. Recall that a (locally trivial)
fibre bundle ([S]) is (X, =, B, F, @) where X, B, and I' are topological
spaces (called the total space, base space and fibre), 7: X — B is a continuous
onto map called the projection, and @ is a topological group acting effectively
on F. The fibre bundle is represented by a coordinate bundle (X, z, B,
F, G, V,, h,) where {V,},., is an open cover of B and %, Vo X F—-a"Ysm,)
are homeomorphisms satisfying h;* o hy(x, ) acts on F as some element
of G. Further the assignment gz: V,~Vp>G by ge,(a) = Iy o by, -)
is continuous. In fact, to construct a coordinate bundle all that is needed
is B, F, G, V,, and gz V,n V@ satistying:

(i) gp is continmous;

(i) g = €€ G

(i) for w e Vo nVy oV, 4p(2) Gpo() = 4,4().

DerFintrioN ITL1. Let (X, =, B, F, &, V,, h,) be a coordinate bundle,
@ € Jo(X), and u € M(B).

(2) The measure, @, is called a local u-product measure if and only
if there exists {V;}i2,, an open cover of B, {»,}3, with v ¢ JG(F) so that
L (Vi) = hy(pe X v3). .

(b) The measure, ¢, is called an almost u-product measure if and
only if there exists {V,}{~;, an open cover of B, {»,}3, with v, e AL(F"); and
{p:}i=1, non-negative u-measurable functions with ¢, = 0 on BV, so that

o
Q= 2 hagdpiXvi)  where = uLp;.
T

TeeoreM ITL1. Let (X,n,B,F, @,V h,) be a coordinate bundle.
If (i) B is connected, (i) ¢ and p are.given so that ¢ is a local u-product
measure, (i) the {(V;, h;,v)}2, are the associate structures in Defi-
nation I3 (a), (iv) for @ # j with Vi~V # 0 then Vi~ Vy has o-finite

icm°®
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B~ MEAsUTe and open subsets have positive measure, (v) with H = smallest
closed group generated by {giy(«)| @ € Vi ~ V), then each v, is H-mobile, then

(1) there exists v e Mo(F) and g e H so that »;— Guyv, ond

(2) with K = smallest closed group generated by {07795 9:42) g,) © and
yeVin Vi) then » is K invariant.

Proof. Let ¢ # j and Vi~ V; # O then
hoge(pras X v3) = Ryglposg X v5)  Where  py= uLV;~ V.

Thus gy X v = (7" o hy)ylpes X vs). Select Hec® with s(B)< oo and
A b7 with u(A)< oo, Hence py X v(dX B)< oo and

pag(A) il B) = (R7" o hy)y(pas X ») (A X B) ,

so the Borel set A7* o k(A X H) has finite uy X »; measure and Fubini’s
theorem gives
(A B) = [ vfgn(a) (B))dpo(a) -
A
A Vi~ V; has o-finite u-measure, it follows that v(B) = gis(w)yvy(H)
for p-almost all @ ¢ Vi~ V;. As »; is mobile and open sets have positive
4-Ineasure,

v(B) = gu(@)yy(B) for all zeVeinV;.

It follows .that »(S) = gu(@)ys(S) for all sets § of o-finite »; measure.
It § does not have o-finite »-meagure then 8 does not have o-finite
guy(®)4v; Measure for any @ ¢ Vi n V;. For if it did then gi()(8) = 8" has
o-finite »-measure and gs(@)yri(8") has o-finite »; measure; however
gs()gve(8) = »(8). Thus gs(@)yy = v for every zeVinV;.

Let » = ». As B is connected there is a simple chain from z; eV
50 @5 € Vi, Vigy ooy Viy, With 4, = 1 and in = j. Further as Vi Vi, # 0,
selecting a, € Vi, n Vy,,, Wwe see.that

g’kn’k(wila):ﬁ:”‘k = Vigia and vy = (o1, (B, ;) - Gigy(20)]ev -
0Oall this element of &, g;. To see the invariance of » under K, observe

that for # and y e Vin Vy,

Gus(Y)ap (@) gys = 94
or
Gur(W)ge 9 ®)ge Goge? = Ju? -

Hence, (97'9:4(Y)9;{2) )y = ¥ As this is true for the generators of
a dense subgroup of X, it follows for K from the mobility of ».


GUEST


174 W.D. Pepse

finite valued function. If
() Man(S):inf{Bf(pdm Beb* and BD 8), and

o s X
(ii) (ux »)Lo(T) = mefqz)d/,an] 4 eV AD T} then (ulg)x s

= (uX ) Lg.

P;o of. It is egsy to see that (uLg) X »(4d X B) = (u x »)Lp (A x B) for
Aeb?® and Beb® as g is u-integrable. Thus uLpx » = (4 X ») Ly from
the difu;wmn of g, X v. The result will follow if we can show that for

o XX .

Beb® Txth (X v)Lo(B) < oo equality holds. Consider § = {z] (@) # 0}
then § e ™. Define B= B ~ (§X ¥) then B has o-finite ux »-measure
As ¢ is p-almost everywhere finite valued it follows that B has‘

o-finite (uLp)X» measure. Thus Fubini’s theorem holds for both
measures and

[oduxr=[ [piuds= [ pLo(B))dv= (ule)x»(B) .
B Y By b

be JE(EXE«:)OR;E:;Z III.jL (g;‘qwzc (X,x,B,F, G, Ve, by), a coordinate bunde,
s He - If @ 4s @ local p-product measure 1, ’

almost p-product measure. wr e then ¢ i lo

Proof. I.Ae.t {(V4, hay w)}2, e the data from Definition IIT.1 (a)
Seleet a partition of unity subordinate to Ve, say {p)2,. Defim;
pi= ulyp:. It suffices to show that for Borel sets v

P(4) = D g X v) 4 ~ V.

k=1

Observing that ¢La~Y(V) = hyg(pe X vs) implies that

Lo (Vi) = hyy(p X v) Iy where gy = J pidep.

Lemma ITT1 gives that ¢ La~Y(Vy) = hu(
- 4 = hyy(ps X v;). Howe = ;

(V1) tus = BT ) 2 g 4) ver ;= 0 outside

i—Z: Ps = 2 Bog(uLap X vg) .

i=1

hod
However ) g;=p.

=1
. Let (V,%, B, B, &, V,, h,) be a coordinate : i
a linear space noi:n'led by » and B is a group ovfe%;)zgu?ullll(?rfezvxﬁgie]fyisz
inaps on B. If B* is the dual space of continuous linear maps witI})l the
opolglgy generated by »* then G acts effectively on B* by <o
=<{g72,a). If @ is a group of isometries on & and U* is t]slre sdbgs(;i

icm®
Lmnoia TTT1. Let pe Mo(X) and » e M(Y) where X and Y qre topo-
logical spaces. Let ¢ be a p-measurable non-negative u-almost everywhere
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of BF* with »"(e)<1 endowed with weak topology generated by
{a] 6 < <#, @y < b}, then G acts effectively on U* by <z, g(a)y = <g~(z), a;.
Tn either ease, we can construct (V*, =%, B, B, &, V,, 1Y) and (V, z*, B
U* G,V,, ;) so that there are continuons maps on V*@V and Vi («BT/i
into the reals induced by the natural map on Ix B*->R where V*@V
= {(a,v)] #*(a) = #(0)} CV* XV, the Whitney sum of the bundles [S].
The following theorem is a generalization of a major theorem of Federer
[F; 2.5.12]. Our proof will depend heavily on Federer’s techniques.

TeeorREM IIL.3. Let (V,n,B,E,G,V,, k) be a coordinale vecior
bundle with B a separable normed linear space with norm v and continu-
ously varying norm n: V->R. In case @ acls as o group of isomeiries as-
sume 1= v. Let w* be the dual norm on V* or V§ defined as above. Assume
further that Q is a vector space of comtinuous sections of V with compact
support so that:

(i) for fe K(B) and o €2 implies f-w e Q;

(ii) there exists a cover of B by local coordinates (Vy, ki) so that with

yeB and fe K(B) with sptf CV; then

f(@) Tz, v) Jor eV,

wi,u(m) = { 0 for w¢Vs

is in Q; and,
(iii) if f and g K(B) and weQ so that f<now < g then
f(=)

£(2) = [E@i
0 for  g(®)=0

w(z) for glw)y#0,

is in Q.
Finally assume T: Q=R is linear with:
@) A(f) = sup{T(w)| now <f, weQ}< o for feE(B)F;
and
(ii) if & ¢Q and n o &0 then T(&)-0.
Then
(1) A is @ monotone Dandell integral on K (B)* with associaled Radon
MEASUre @;
(2)  there ewists a p-unique section k of V* or V¥ so that for every w €2,
{w, &*Y is p-measurable, and T (w) = [ {ol®), k(z)d;
(8) if @ s an isometry group then k is p-measurable and »*(k)=1
@-almost everywhere; .
(4)  if B* is separable then b is p-measurable and, in any case, v
bounded above and away from zero or compact sels.

(k) is
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Proof. Ag in [F; 2.5.12], for fe K(B)*, A(f) is a mo i
integral on X (B)T with associated Radon 1,nez(L‘£1)1re @. Relflizcg Ii;?leD ziu o
{V 3}z, by a locally finite cover {U;} of open sets with compact clog res
eajch. contained in some V; and restrict ks to U;. Thus we have (Um;:}s
with hy: .ij EB—>z""(Uy). As O1U; is compact and hy is defined on Gjl’Uj)
there exist positive real numbers my and M, so that m(y) < u o b "
< Miv(y). Define L; as the seb of fe K(B) with sptf CV; a;d A2:9)

Q= {mg o hi(0)] w e and sptw CV;}

with zz: U; X E—-E, the projection onto H.

We will verify the hypothesis of [F; 2.5.12 i

.5.12] on ¢

the associated structures. . ‘ : {8 TR g s s s
- Obsgrve there are a countable collection of functions in L; so tha,lt
]30;;112 1 in U;. Further, if f:ELj and y € B, f-y € Q; from hypothesis (id).

vow and <w,a)el; if weQ; by continuity. If fe L¥ and weQ
50 that f< »ow then with we® corresponding to w yon ! '

1
f<—noo< Iysw
my msy
and by (iif),
msf (@)
P Dw—(m)w(m) for vow(x)#0,

0 for yow(z)=0

.. 74
isin Q is -

80 is . & Thus mg o h7Y(£) € 2; and satisfies the requirement of
[F; 2.5.12] that ‘

flz)w(2)
6,___{W or  ww(@) £ 0,
0 for v(w(w)) =0

be in Qj’.
Let Tyw)= T(

®) where
that for feLF @€ corresponds to w e Q; and observe

M) = sup {Ts(w)| »(w) <f, w e}
<sup{T'(w)| now < Mif, €0}
= MU;f) = MA(f) < oo.

In a similar fashion, we can show

miA(f) < M4{(f) whenever feLf.

Tinally, we need to know that if & € Q; with »(&) |0 then T(&)—~0. The
»(£&)10, bowever, does mot imply that = .o (h;'(=,&(s))]0. A carefnl
analysis of the proof of [F; 2.5.12] reveals that all that is needed is that
if &(w) and &(x) are linearly dependent for each z, ¢ and j then »(&;) 0
implies Tj(£&)—0. Such a condition insures that = o h;'x, &(@))10 and
Ty(&)~>0. Thus from [F; 2.5.12], each w € ; is ;- measurable, k;: i)'_.,—>E*
with &; @;-almost unique and g;-measurable with »*(%;) =1 @; almost
everywhere so that Tjw)= [<(w, kydp;. As ¢LU; and ¢; are mutually
absolutely continuous there exists an p; with m: < essinfp; < esssupp;
< M, so that ;= f psdp. Thus p;-k; satisfies the hypothesis with g5
replaced by ¢. Further in U;n Ui, psks= piki ¢-almost everywhere
from p-uniqueness. ‘Thus we may define k: B—V* or k: B—7V;,
a @-measurable section. The measurability questions are clear, as in the
case of V¥, B* has a countable bage. To verify the integral equality, select

a partition of unity {r;}5, subordinate to U; and observe that for w e,

n
w= ) m» as the sptw is compact. Thus
j=1

T(w)= Y Tinw)= Y [ o, bydp=[{ 3 no, ko= [ <o, ke .
j=1

j=1 f=1

Tn cage the section is of V* then n*% is essentially bounded above
and away from zero on compact sets. In case the section is of V5, then
@ almost everywhere, n*k = 1. In case B* is not separable, the section &
still exists but is not necessarily - measurable. This fact in some measure
justifies the constructions in the next section where topological conside-
rations are ignored.

As an application of the preceeding theorem we will characterize all
Radon measures on fibre bundles satisfying & minimal boundedness
condition with both fibre and base locally compact metric spaces. This
is much like [F; 2.5.20]. In fact, if the fibre is compact the boundedness
condition is always satisfied. Let (X, =, B,F,G,V,, k) bea coordinate
bundle. Observing that K(F) is a separable normed linear space with
the sup norm topology, v, it follows that @ acts effectively on K (F) by
g(f)=fog™™ and each g is an isometry. Constructing the associated
bundle (K, «* B, K(F), &,V,, k), observe that there is a continuous
real map on K@X given locally by <f,y>=h(y') with fOyeERX
where K*Y(f) = (#*(f), h) and A7(y)= (w(y),y). This is easily seen to
be coordinate invariant. As K has a continuously varying norm 7 induced
by », let 2 be the vector space of continmous sections of K with compact
support, and satisfy the further requirement that {y| yeX so that
(w(a(y)),y> # 0} has compach closwe. If @ is normed by
N{w)=supn o w then 6: Q->E(X) by O(w)y)= <w(7ﬂ(?/)): yy i3 an
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isometrie isomorphism using the sup norm on K(X). We will denote the
section @7 f)(») by fa.

TrEoreM IIL4. Let (X,n,B,F,@,V,, ) be a fibre bundle and
(KY, a*, B, E{(F), G, V., ;) be the bundle of Radon measures on F with
total variation less or equal to 1 with the weak topology. If T: K(X)—R is
linear and

(i) sup{T(g)] 0 <g<f}<< oo for fe K(X)*; and,

(i) sup{T(g)| 0 <mog<f}< oo for feK(B)*;
then there ewists a Daniell integral on B, 1, with associated Radon méasure ¢
and a g-unique p-measurable section of Ej with n*(k)=1 ¢-almost
everywhere so that

T(f) = [ <fs, bl@)>dp(a)

for every fe K(X). Further if v and v, are the Radon measures associated
with T and k(z) and A CX is p measurable and ChA is y-summable

p(A) = [ ra(4a)dp Ao =4 na7X(z).

Proof. Tt follows from Riesz’s representation theorem [I'; 2.5.13]
that T is a Daniell integral and, hence, by Lebesgue’s dominated con-
vergence theorem if & e K (X) with v(£;) | 0 that T(f;) 0. Define S= T o 6.
It is elementary to verify the hypothesis of Theorem ITI.3 for 2 and §.
Thus the first part follows.

To verify the final conclusion, see Corollary IV.1 of Section IV.

In [G1] and [G2], Gelbaum describes a method of integrating continu-
ous seetions of a vector bundle with isometric group actions and a tame
measure on the base. The values of the integral are in some fixed copy
of the fibre. As another application of Theorem III.3, we will relate this
integral to a section of a certain bundle and usual Lebesgue integration.

In particular, let (B, ») and (¥, o) be normed linear spaces. The dual
spaces are (E*, »*) and (F¥ ¢*). With L(F* E*) denoting the linear
maps from F* to B, then L(F*, B is naturally isomorphic to L(H, F**).
Further & acts on L(E,F*) by ¢(T)= Tog™' If L(B,T*) denotes
the bounded linear function then G acts effectively on L,(H, ™) endowed
with the sup norm or weak topology. Construct the bundles with fibre
L(BE,F*) (untopologized) and fibre L,(F,F**) (topologized) with the
data given by (V,«,B,H,d,V,,I,), a coordinate vector bundle and
call them (Z,«’, B,L(H,F"™),q,V,, k) and (L,, ', B, L(B,F*), &,
V. k). Observe that there is a map [,]: V@L—F* given by [, T
= T(v) in each coordinate system.

TueeoreM IIL5. Let (V,x,B,E,&,V,,h) be a coordinate wector
bundle (B,v) a separable normed linear space and continuously varying

where

icm
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norm, n, on V. Let u be a Radon measure on B and let Q be the vector space of
continuous sections of V with compact support. If (F, o) is another normed
linear space and T: QT is a linear map satisfying o{T(0)) < [nowds
then there exisis a section of L so that for a e F¥,

(T(), ay = [<a, o), k@)]>de

with {a,[w(®), k(x)]> p-measurable and p-unique for fized a. If, in ad-
dition, F* is separable then & is a p-unique section of L. If in addition
G acts as a group of isometries on B or B* is separable then [w(z), k(z)] is
pu-measurable for every w e Q.

Proof. Select a ¢ F* and define T, by T.(w)= (T (w), a> then
ITo(@)] < o[T()]v*(a) < *(a) [ 2 o wdp.

So A(f) < v*a)A(f) and if o w;]0 then T (ws)~0 by Lebesgue’s domi-
nated convergence theorem. Thus by Theorem ITI.3 there exists a 23 Qs
and k, so that

(T(@), ay= [<w, kdp,

with k,g,-unique and x*(%,) is essentially bounded on compaet sets.
However ¢, is absolutely continunous with respect to & 80 there exists
a p, p-measurable and essentially bounded by 1 so that

(T (w); @y = [ <o, hydu

where %, = palﬁa, b, is p-unique, and n*(h,) is essentially bounded on
compact sets. To construct k: B—I, select a Hamel basis for F* and for
each a select ak,. Extending k: BXF*—7V by linearity and using the
duality there is a unique k: B—L so that

(T(w), @y = [<a, [k(), o@)]>du

with {a, [k(z), w(z)]) is u-measurable and px-unique. In case F* is sepa~
rable, then defining %, for a countable dense vector space over the rationals,
for almost all z, , is linear and bounded and this has a g-unique extension
Jo: BXF*>V. It & acts as a group of isometries or E* is separable then
k: BxF*->T} or V* and it follows that [k(z), w(2)] is w-measurable
with respect to the weak topology or sup norm topology respectively.

IV. A bundle of measures and Fubini’s Theorem. In light of Theo-
rem ITT.4, it is every natural to assign a measure on ¥ that varies from
point to point in a measurable faghion. In this section, the appropriate
machinery will he developed to accomplish such constructions.

DrrFivrrioN IV.1. Let (X, =, B, F, G, V,, h,) be a coordinate bundle,
@ e Mo(B), and (F) the set of Borel measures on F.

12 — Fundamenta Mathematicae, T. LXXXIII


GUEST


180 . W.D. Pepe

(a) Construct the bundle (46,7, B, A(F), &7, ) b)) from  JG(F)
with @ acting on AG(F) by v(gup) = gyp and gﬂa(a:) = gﬁ,, This bundle
(without a topology) is called the bundle of measures on F over B.

(b) Any section o: B— JG is called a Borel (p-measurable) section
with respect to #4 where # is a collection of Borel sets so that every open
set is a countable union of elements of 4 (and @ < J46(B)) if and only
if o(w)(4d ~a'(@)) is Borel (¢) measurable for every A e .

{Z [ o(@){ds ~ 27 (m)) dopl UAiD ¢
and A; e A} is called the o X p-d measme

The following theorem is a version of Fubini’s theorem.

THEOREM IV.1. Let ¢ € M:(B), ¢ be a @-measurable section with respect
to &, and A& sa,tzsf y:

(i) SNT = U U; when 8,T,U;es and the
i=1

(¢) The meagure ¢X@(C)=

Ujs are pairwise
disjoint; and

(i) 8 T e & whenever 8 and T e o; then,

(a) 6X ¢ is a Borel regular measure;

b) if A ey oXp(4)= [ o(a)(x () ~ 4)dp;

(c) if 8is countably o X p-measurable then o(x)(S ~ n~*(w)) is p-measur-
able and o X o(8) = [ o(@)(8 N 7 (»))dp; and :

() if f is countably o X p-integrable then

[fioxg= [ [ f(@,y)do@)y)dp(a).

()

Proof. Given 4 e+ then o X p(4) <
Aj et with | 4:;D A then

[ o(@) (4 ~ a7 (a))dp. However,

(0) (4~ 27a) < o) e a@) < Y o(a){As na~l(o)
= . i=1

and (b) follows.
Following [F; 2.6.2], let F = {8] o(2)(n (%) n 8) is ¢-measurable}

and define

e(8) = [ o(@)(x (@) ~ Sdy .
is closed nnder eountmble disjoint unions, and if
Sgsl?’ 8:D8;4; and o(S;) < oo then ﬂ 8;= 0. Define #,= {UA¢[
=1
A e.ﬁ} then following [¥; 2.6.2], #, CF flom (i). Further defining s,
= {U By Bie#,} then [F; 2.6.2] shows ‘oham C e &, is the decreasing

11]1111; of elements of #, from (i) 'md ().

Clearly #CUF, T,

icm
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Notice that if € e 4, then € can be written as the disjoint union of
elements of &, hence g(C‘) o X (0). Thus, o X ¢(8) =inf{p(C)] €D 8, C
e ). Further, there exists an element D of £, containing § with ¢ X ¢(8)
= o X (D)= p(D) (in case o X ¢(8)< oo this is easy, otherwise use the
union of the countable cover in ).

To see that A e & is o X p-measurable, select T € 2% with o X ¢ (T) < o0
and select U e &, with TC U. As U ~ A and U~A are disjoint numbers of £,,

oX (T A)+oxg(T\4) < o(TUn A)+p(UN4) = o(U) .

Thus o X (T N A)+ox¢(TN4) < o X p(T) and A is oX@-measurable.

Further, every member of 4, is oX¢g-measurable, the open sets
ave o X gp-measurable and every set is contained in a Borel set of equal
o X p-measure. Thus o X ¢ is a Borel regular measure. !

Now given W with o g-measure zero, then there exists a C e,
g0 that WC (¢ and with o(C)=0 thus o(W)=0. So given any
o X p-measurable set 8, with ox@(8)< oo, there exist D e, with
DD and o(D)= oxp(S). Hence oxX@(D\8)=0 and there exists
a Ces, with 0D DS and ¢(0)=0. Now oxX@{D~C)= o(D)—o(C)
and DC ¢F thus so is S. Hence (c) and (d) follow.

Associated with a cover of B by (Vi, %) is a natural famﬂv
A= {(AXC) 4 57" and Ceb®™). It is not surprising that if o is
a p-measurable section with respect to 4, oX ¢ satisfies the conclusions
of Theorem TV.1. Thus the following Corollary.

COROLLARY IV.1. Let @ € J6(B), {(Vi, he)}3, @ cover of B by coordinate
systems, as above, and o & ¢-medsurable section with respect to & then the
conclusions of Theorem IV.1 hold.

Proof. Lebt us = LV X ¢LV; be the measure generated with respect
to ;= {h(d X C)] 4 ¢ 5" and O € 1¥'}. Then yu; satisfies the conclusions
of Theorem IV.1. Clearly, for §C = (V) oX ¢(8) < (S) and for any
TCX,

‘Oil Tl

i=1

inf M (€] CiCVy, Cieb®™ and
i=1

Thus ¢ X ¢ is a regular Borel measure, for given T'C X with o X @(T) < o0
and A eb*® then there exists for every £ >0 a countable disjoint cover

of T by Borel sets C; so that’ Z 44(C1) < o X ¢(T)+¢, thus

oxg(T)=

“18

oxp(InA)+oxp(Tnd)< N u(Cod)+ S'm Cin A)
i=1 —1
E wi(Ch) < o Xp(I)+¢

!

Fe=1
12%
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To verify the integral representation, let § be a Borel set with finite

o X p-measure. Select a cover of § by {C,;}7L;, pairwise disjoint Borel

subsets of Vi with ui(Cs) << oo, then Oy~ § has finite u;-measure and
o(2){(8 ~ C; ~ 27 (@)) is @-measurable so ‘

Ds

o(@) (8 ~a7Na)) = D, o(@)(8 ~ O~ a7H(w)

i
b

i

is @-measurable. As

[o@)8n a7 @)dp < oxp(8) < 3 ulS ~ ¢

= 2’[ o(z) (S A Cpn 75—1(93)) ’

the result follows from Lebesgue’s monotone convergence theorem.

The results follow for & X ¢-measurable set and ¢ countably integrable
function as in Theorem IV.1.

The natural question at this point is, what measures on X arise in
this fashion? .

THEOREM IV.2. Let ¢ € Mo(X) and p e M(B) be given so that ¢ is an
almost product measure with respect to p with {(Vi, he, vi, wi)}52, the as-
sociated data. If v; and u are all o-finite then there ewists a u-measurable

section, o, with respect to b= so that
p=0Xp.
Proof. Denoting by hi(w)y: J6(F)->z*(z), define
(@) = D i) hi(@)gelrs)
i=1

with the convention that pe(@) = 0 and hy(z)y is undefined gives the zero
meagure in 7~ (@). It follows from Fubini’s theorem that in = ~1(V;), with
oi(@) = yi(@) hi( @)y 71,
Rl X ve) = o X o
0
As YoyXp=0Xp, ¢=0X4u.
i=1

COROLLARY IV.2. If ¢e M(X) and pe M(B) then there exisls
a p-measurable section, o, with respect to b2* so that ox u= @ provided
@ 8 a o-finite local product measure.

Proof. This follows immediately from Theorem ITL.2 and Theo-
rem IV.2 a8 ¢ being o-finite implies 4 and »; are ¢-finite in Vs or v = 0.

icm
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Without the o-finiteness assumption the preceding theorems and
corollary are false, even under the assumption that the #’s are G-quasi-
invariant.

In concluding this paper, several methods of constructing u-measur-
ahle sections are given and a local representation theorem is given when
each o(z) is G-quasi-invariant and relatively well behaved in z.

THEOREM IV.3. Let ¢ € Ms(B) and {(V;, h;)}io, be a localy finite cover
of B by coordinate systems. If {v;}3>, are given so that

(i) » € Mo(F) for all i; and,

(ii) each v; is quasi-mobile; then,

z)= ) hi(@)yn

T

with  $(x) = {i] £V}

is a @-measurable section with respect to
A= {h(Ax )] A e and Ceb%}.

Proof. If
hi(z)ywe  for
0 for

.reﬂ,

a4
0‘5(-”)——1 cdT

is a g-measurable section with respect to £ then so is ,V o = o. To see

that o; is p-measurable, observe that oyx){hi{4 % -)) 011_4( ) -vi(A) 1s
@-measurable. If A CV;n T then oyfa) (b4 x C)) = Ch (&) -gsla)ars(C).
However, g v () is Borel measnrable and gj: Vi~ Vy— @ is continuous
50 g;;(m)#w(‘c’) is p-measurable. The result follows.

COROLLARY IV.3. If e M(B), {(V;, hy)}, is a localy finite cover
of B by coordinate systems, v; € M(F) are quasi-mobile measures, and {p 12,

are p-measurable functions with spty; CV; then o(x) = )“qui(m)h;( @)gve 08
i=1

a @-measurable section with respect fo -t

Proof. This follows as in Theorem IV.3.

Recall that G acts on @ by left multiplication so there exists an as-
sociated bundle with fibre G called the principle bundle, (P, =, B, &,
G, V,, ).

THEOREM IV.4. Let s be a Borel measurable section of the principle bundle
and » ¢ Ao(G) be a quasi-mobile measure. Then with sz Vi=»ViX @ a co-
ordinate map, o(x)= 715( ) )y 8 0 @- measurable section with respect
to &= {h,(4 x C)] 4 ev™* and G’eb“}for any @ < So(B).

Proof. Observe that s;(&) = gsi(z)-s:i(x) whenever zeV;~T; thus

(Tster) sy(a))agr = (Ts() gsul) su(@))y = (Ru() sal2) v
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and ¢ is well defined. To see that ¢ is Borel measurable on 71,u(AxB),
- observe that .
o(he(A % B) n a7 () = ??a(m)#sﬂ(m)#v(h;(fl X BY n 7))
= 8,(#)y7(B) ChA(z) .
As s,(z) is Borel measurable and v is quasi-mobile, s,(w)y.»(B) is Borel
measurable as is Ch4(z) and the result follows.

The following theorem gives a method of computing ¢ X p in a co-
ordinate system -provided ¢ has a fairly reasenable local repre-
sentation.

TeEOREM IV.5. Given (X, m, B, F,G,V,, k), pe M(B). If » ¢ Jo(F)
is @Q-quasi-invariant and o is section over V so that o(z)=h, (.L)#( (z) %
Xy (2)yvLA) where:

(i) ¥ s « non-negative Borel measurable function on V,;
(i) ¥ s @ Borel measurable map from V, to G
and .
(ili) A eb*" has a-finite v-measure; then:
(8) ois a Borel measurable section over 'V, with respect to
A= {h{OXD)| Aet®" and D eb™);
and
(b). given any set SCV,xF with o-finite ux v LA-measure,

o X ph fw @)y (@)(y, A)dux v
= [ [ Ob8e(y)y' (@) (v, A)p(@)dvd .
Vo F

Proof. Observe that as y: V,~ @ is Borel y'(2)(y, A) is Borel measur-
able in ¥, <P and, hence, so is p(2)y'(z)(y, 4). Now, it ¢ eb?* and

D eb then o (@) (h{0X D) ~ 5 Ha %)) = p(a 7)3y LA (D) p(2)-Ohy(s) which
is Borel measurable as » LA i3 quasi-mobile and y and yp are Borel meagur-
able. Thug

o X p(ho(C x D)) fy 4l ZAD)p(@)du = [ [ y'(@)(y, 4)p(2)dvdp
cr

from the Borel measurability of /() (y, 4) ‘¢ (2). Following the proof of
Fubini’s theorem gives

o X plhl8) = [ 9@y @)y, A)aux» = [ [ Chgly)p(a)y'(@)(y, 4)drdn
s VoF

whenever § has o-finite u X » LA-measure. The result follows.
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