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which are not homotopic but which satisfy ¢, f = v,f; hence F[y,] = F[y,].
Now if there were a naturil transformation @: nx— 7, satisfying GF = 13,
then F would map [Z, 8°] injectively to [X, S°]. Hence the shape of Z ig
not dominated by the shape of X.
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J. Krasinkiewicz (Warszawa)

Abstract. J. Segal has proved a theorem which says that the hyperspace of a snake-
like continuum has the fixed poini property. In this paper we give a shorter proof of
this theorem and we prove also that the hyperspace of a circle-like continuum has this
Regu par la Rédaction le 18. 10. 1972 . propert_:y. The Eimctu;r.e of these hypfeljspases is studied and it is shown that the Whitney
maps induce interesting decompositions of these hyperspaces.

0. Introduction. By a map we mean a continuous function. The
term continuum means a compact connected metric space. If X i3 a con-
tinuum, then C(X) denotes the hyperspace of subcontinua of X with
the Hausdorff metric: dist(d,B)=inf{e>0: BCK(4,s) and 4
C K(B, &)}, with K (4, &) denoting the open ¢-neighbourhood of 4 in X.
A map f: X~ 7 into a continnum Y generates a map f: C(X)-> C(Y),
vsually called the map induced by f, given by the formula f(4)= f(4).
‘We introduce a terminology connected with a given hyperspace C(X).
The continuum X is, in a sense, a4 maximal point of ¢(X) and is called
the vertex of C(X). By X we denote the subspace of C(X) consisting of
all singletons. It is called the base of C(X). The base of ((X) is isometric
to X. For every two continua A, B ¢ O{X) such that 4 C B there exists
a maximal monotone collection of continua between 4 and B, which
forms an are in C(X) provided 4 # B. This collection is denoted by 4B
and is called a segment from A to B. In the case where 4 is a continuum
consisting of a single point and B= X the segment AB is said to be
mazimal. In [10] Whitney described a map g, from O(X) (where X is
nondegenerate) onto the unit interval I, having the following properties:

@) p(X)=1,
(ii) if 4CB and 4 # B then u(4) < u(B),
(iil) p({x}) =0, for z e X.

In the sequel every map with these properties will be called a Whilney
map. If X is nondegenerate, then any Whitney map restricted to a maxi-
mal segment of ¢(X) is a homeomorphism onto I.
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Tn what follows the letter D denotes the unit closed eircular dise,
D=1{zeF% 2| <1} and S denotes the unit circle, 8= {ze¢ F* |2| = 1}.
Thus & is the boundary of D.

1. e-maps and the fixed point property. Given metric spaces X,Y
and a number & >0, we say that a map fi XX is an e-map provided
diam fYy) < & for ye ¥. The map is called inessential, f~1, provided
it is homotopic to a constant map. Otherwise f is essential, f+1. If Y is
2 closed n-dimensional ball @, then f is essential in the sense of Alexandroff-
Hopff, shortly: AH-essential, if fIF74Q): F74@)~Q cannot be extended
onto X, where () denotes the boundary of Q. If every map f: X8 is
inessential, then X is said to be contractible relative to 8, erS. In [5] Loku-
ciewski proved the following

TemomEM. If X is a compact space and for every mumber & >0 there
eaists an AH-essential s-map of X into a closed n-dimensional ball, then X
has the fized point property.

As an easy consequence of this theorem we obtain the following
proposition :

1.1. If a continium X is cr 8 and for every e > 0 there ewists an &-map
f: XD and a closed subset A C FY8) such that f|A: A8 is essential,
then X has the fized point property.

19. If A,BCX and f(B)Cf(4) for an e-map i XY, then
BCEK(4,e¢).

In fact let b eB. Then there exists a point aed such that f(a)
= f(b). Hence a,bef(f(b)) and diam f~H{f(b)) < &. Thus be K(4,¢),
which completes the proof.

1.3. ([41, § 56, VI). Let A, B be two continua and K, L two arcs such
that A ~ B= {a, b} and K n L= {p, g}, where p and ¢ are the end-points
of both K and L. If f: Aw B~E v L is such- that

(1) fA)CK, FB)CL
and
@) flay=p and fO)=4,

then f is essential.

2. Properties of the hyperspace of a continuum.

2.1. O(X) is crd (see [7] and also [3]). In particular, C(X) is uni-
coherent.

2.9. A Whitney map w: C(X)->I is monotone and open (cOmP. 2n.

In fact, the sets p~X[0,%)) and p~%[t,1]) are continua and )
= w0, £)) A 7, 1]). Since O(X) = p~X(I) = p7H[0, 1) © ([, 1))
then by, 2.1 we infer that uY2) is a continuum. Thus x is monotone. To
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prove that x is open let M be an open subset of C(X) and let ¢ e u(M).
Hence, for some 4 ¢ M we have u{4)=1. Let L be a maximal segment
containing A. Then L ~ M is an open subset of L containing 4; therefore
p(L~M)C (M) is an open subset of I containing f. This completes
the proof.

2.3. Let u: C(X)—>1I be a Whitney map and let t e I. Then for every
number ¢ > 0 there exists a number >0 such that, for every pair 4, B
ep'(d), f BCE(4,n), then dist(4,B)<e.

Proof. Suppose, on the contrary, that for each natural number n
there exist continua Aa,Byep '(f) such that B,C K(4a,1/n) and
dist(4y, Bs) =& We may assume that A,’s and B,’s converge to 4
and B respectively. Then A and B are continua and, by the continuity
of u, we have A, Beu1). By the continuity of the Hausdorff metrie
we also have dist(4, B) = ¢ and BC A. Then B is a proper subcontinuum
of A and, by (ii), we obtain ¢ = u(B) < u(4)=1, a contradietion which
completes the proof.

9.4, Let X and Y be continua and let Z be a closed subset of C(X) which
does not coniain the vertex of C(X). Then there exists a number 1 >0 such
that for every n-map f: X— ¥ the set F(Z) does not contain the vertex of C(¥),
ie flA) # Y for AeZ.

Proof. Suppose that for each natural number n there exist an
i/n-map fp: XY and a point A, eZ such that fu(ds)= Y. We may
assume that 4,’s converge to a continunm 4. Then A ¢Z and therefore
A # X; hence there is a point b ¢ X\A. It follows that ¢ = min{e(d, 2):
z ¢ A} is a positive real number. Let n be so0 large an integer that
1) dist(4, 4,)<e2 and fy is an g/2-map.

Since fu(b) is a point of ¥ = fu(A), there is a ¢e.dn such that fa(c)
= fa(b). By (1) we infer that o(b,¢)<<¢/2 and there exists an acA
such that p{a, ¢) < 2. Finally we obtain

e=min{o(b, z): e A} < (b, a) < a(b,c)+ele,;a) <&,

a contradiction which finishes the proof.

2.5. If f: XY is an c-map, then the induced map f: C(X)~C(Y)
is also an g-map.

Proof. Let A, B eJ Y(E), where E ¢ C(X). By the compactness of 4
and B and by symmetry it suffices to show that for a given point beB
there exists. a point a e A such that o(a,b)<< e But f(4)=f(B), and
hence there exists a point a « 4 such that f(a) = f(b). Thus a, b eff )
and diamf"‘(f(b))< e, which completes the proof.
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3. Properties of snake-like and circle-like continma. A continuum X ig
snake-like provided that for every & >0 there exists an e-map of X onto
the unit interval I. Likewise, X is circle-like if for every s >0 there exigts
an e-map of X onto 8. A circle-like continuum which is not snake-like
is called proper circle-like.

3.1. If X is a circle-like continuum and for every number & >0 there
emisis an e-map of X into 8 which is inessential, then X is snake-like.

Proof. For a given & >0 we shall find an e-map of X onto I
‘Without loss of generality we may assume that & is so small that for
every c-map f of X into § the set f(X) is nondegenerate. Let f: X— 8 be
an inessential ¢-map. By a well-known theorem of Rilenberg (see [4],
p. 426) there is a real-valued map g of X such that

flo)=e"@ for xeX.

It follows that g(X) is a closed interval, and it is'easy to see that g: X —g(X)
is an s-map. If % is & homeomorphism of g(X) onto I, then h o g is the
desired e-map of X onto I. This proves the theorem.

Theorem 3.1 implies the following one.

3.2. If X is proper circle-like, then there ewists a number & >0 such
that every s-map of X into S is essential.

Easy examples show that there are continua which are simultane-
ously snake-like and circle-like. However, the class of such continua is
limited by the following result.

3.3. If X is simultaneously snake-like and circle-like, then X is either
indecomposable or the union of two indecomposable continua.

Since a snake-like continumm contains no triod, it is irreducible
(see [6], p. 180). Hence 3.3 is contained in the following theorem, which
results from [4], p. 422, but for which we shall give an independent proof.

3.4. An irreducible circle-like continuum X is either indecomposable
or the union of two indecomposable continua.

Proof. Let X be irreducible between o and b. Suppose X is decom-

posable, i.e. there are continua A and B such that
X=AuB, A#£#X#B, acd

and beB.

Moreover, we may assume that each of the two continua 4 and B is the
closure of the complement of the other, i.e.
1) A=XB and B=X~A.

Indeed, otherwise the continua X\B and X\X\B constitute a decompo-
sition of X with the above property (see [4], § 48).
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By symmetry we need only to show that A is indecomposable.
Suppose, on the contrary, that there are continua ¢ and E such that

(2) A=CuE, C#Az#E and acC.
Then
(3) Bn(C=0,

for otherwise, by the irreducibility of X, we have X = B u (. This, by (1),
implies that A C O, which contradicts (2).
Since a € ¢ and b ¢ B, we have

(4) F=X(Bu()

see [4], § 48, II, Th. 4). By the assumption on X and by (3), there exist
an e-map f of X onto § and two nonvoid disjoint and open sets U, VC 8
such that

FCFYD)uf V) and FofXU) £0 #Fnf V),
which contradicts (4). This completes the proof.

is connected

4. The fixed point property for the hyperspaces of snake-like and
circle-like continna. In [9] Segal proved that the hyperspace of a snake-
like continuum has the fixed point property. However, his argument was’
long and complicated. In this seetion we shall give a shorter proof of
this theorem. We shall also prove that the hyperspaces of circle-like
continua possess this property. These results were independently obtained
by J. T. Rogers [8].

4.1. (Segal). The hyperspace O(X) of a snake-like continuum X has
the fized point property.

Proof. Let ¢ > 0 be a given real number. To prove the theorem we
need only, by 1.1, to find an e-map g of C(X) into D and a closed sub-
set A C g~1(S) such that g|4 maps essentially A onto 8. Let f be an e-map
of X onto I and let aefY0) and b ef*(1). Then, by 2.5, the induced
map f: C(X)—>C(I) is an e-map. Let M= {a}X v {b} X, where {a}X
and {b} X are two maximal segments in ¢(X), and let N={FcCI): 0P
or1eE}. It is easy to see that /N is an arc and Nv I is the boundary
of ((I), where I is the base of C(I). Lebt us set

g=hef and A=XuM,

where h is a homeomorphism of the pair (C(I), Nv i) onto (D, 8),
and X is the base of ((X). Hence g is an s-map. Since X n M = {{a}, {3},

NAT= {0}, {13}, f({ah={0}, F({o})={1}, f(X)=1 and F(M)=N,
then, using 1.3, we infer that f|A is essential. It follows that g|4 is an
essential map, which completes the proof.
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4.9. If X is a circle-like continuum, then C(X) has the fiwed point
property.

Proof. By 4.1 we may assume that X is proper circle-like. For
a given number & > 0 there exists, by 3.2, an essential ¢-map f of X onto S,
Tt follows from 2.5 that the induced map f: O(X)-C(8) is an &-map.
Moreover, the map f| X: X8 is essential. There exists a homeomorphism %
of the pair (C(8), §) onto (D, §). Let us set g= h o f and 4 = X. Then g is
an e-map of C(X) into D and its restriction to A is an essential map
of A onto 8. Hence our theorem follows from 1.1.

5. A separation theorem. In this section we shall prove the following
result.

5.1. If X is a proper circle-like continuum and A is a closed subset
of C(X) which separates O(X) and is such that A ~ X is connected, then
there ewisis an essential map of A onto 8.

Proof. Let C(X)\d = Mu N, where M and N are nonvoid and

separated. Since X is proper circle-like, then the set X~A is connected,
Henee we may assume that ;

1)

Since Mu A is a proper closed subset of ¢(X), then, by 3.2 and 2.5,
there exists an essential map f of X onto § such that f(M u 4) is a proper
subsetof 0(8). Let h be 2 homeomorphism of the pair (C(8), S$) onto (D, 8)
and let F = h o f(Mw A). Then F is a proper subset of D and therefore
there is a point p of D in the complement of v § and a retraction

r: D\{p}—=8.
We agsert that the map g: 48 defined by the formula
g=rohofl4

maps essentially 4 onto S. Suppose, on the contrary, that g~ 1. Using
the Borsnuk homotopy extension theorem (see [4], p. 365), we extend g to
¢: No A->8. Then g, and 7o h o f | M v 4 form together a map % of C(X)
into 8. By 2.1 we have k~1, and therefore, by (1), we obtain f|X
= k| X~ 1. It follows that f ~ 1, a contradiction. This completes the proof.

XCMud.

6. Decompositions of hyperspaces by means of a Whitney map. Let X be
& nondegenerate continuim and let x be a Whitney map on C(X). For

each fe I let X; denote the set x~'(t). Using 2.2, we obtain the following
theorem.

6.1‘. ‘The collection &= {X: t eI} is a monotone and continuous de-
composition of C(X) with the quotient space 1, being an arc which has as its
end-points X, (the veﬁfw of C(X)) and X, (the base of O(X)). In particular,
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cach element of & distinet from X, and X, separates C(X) between the vertex
and the base of O(X).

Moreover, it turns out that the following theorem holds.

6.2. (2) If X is a snakelike continuum and 0<i<1, then X, is
a snake-like contimuum.

(b) If X is a proper circle-like continuum and 0 <t<<1, then X, is
a proper circle-like continuum.

Proof. The proof will be given in the case (b) only, because in the
case (a) the proof is similar.

Tet &= 2¢' be a given positive real number. We shall construct an
essential e-map ¢ of X; onto 8. Let 5, be a real satisfying 2.4, where we
substitute X, for Z. According to 2.3 there exists a positive number 5 < 7o
such that, for each A, BeX,,

@)

By 3.2 there is an essential -map f: X 8. By the definition of N We
infer that f(4) # § for every 4 e X;; hence f(4) is an are (or a single
point) and therefore the centre of f(4) is well defined. The map g: X,->8
is defined as follows: g{4) = the centre of f(4). By the geometry of 8, g1is
continuous. We shall show that g is an ¢-map.

Tet s e 8. Let H = F(g~%s)), where f is the map induced by f. Then
H is a closed subset of C(8) and each element of H is a point or an arc
with the centre s. Therefore we have

BC E(A, )= dist(4,B) < &'

(2) ¢, FeH=>CCF or FCC.

Let x' be a Whitney map on 0(8). Since u'(H) is closed, there is a maximal
number in u'(H), say r. Let A’ e H be such that p'(4")=r. By (2) we
obtain

(3)

“Mhere is an A € g~(s) such that f(4) = A’. Let B¢ g~ %s). Then f(B)e H
and by (3) we obtain f(B) C 4’ = f(4). Since f is an #-map, by 1.2 we
have BC K(A4, 7). It follows from (1) that dist(4, B)< &. Thus we
have shown that g~(s) C K(4, ¢"), where K(A, &) denotes an open ball
in €(X) with centre at 4. Therefore diamg(s) < 2&" = &, which shows
that ¢ is an e-map. .

Suppose that g is an inessential map. Using the Borsuk homotopy
extension theorem, [4], p. 365, we may extend g to a map

g g[8, 1) >8 .

FeH=>FCA'.
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On the other hand, f may be regarded as a map of X (the base of ¢(X)),
and it follows from the definition of g that it can be extended to a map

g p ([0, 1])>8
such that R
Bl X=1.

The maps g, and g, form together a map  of €(X) into 8. But by 2.1 we
obtain b ~1, and therefore f = h| X ~ 1, contrary to the choice of f. Hence
¢ is essential, which completes the proof.

If X is a hereditarily indecomposable continuum, then for each ¢teI
there exists a monotone map of X onto X; [2]. It follows that, in this
case, X; is a hereditarily indecomposable continuum. Bing [1] proved
that a hereditarily indecomposable snake-like continuum is a pseudoarc.
Thus the above results imply the following corollary.

6.3. If X is a pseudoarc, then 8 = {X;: t € I} is a monotone and continy-
ous decomposition of C(X) such that each element X, for t < 1 is a pseudoarc
which separates C(X) between the vertex and the base of C(X) provided t >0
(comp. [2]). )

Remark. In [8] J. T. Rogers showed that if X is a circle-like
(snake-like) continuum and U is an open subset of C(X) which containg
the vertex of C(X), then there exists a circle-like (snake-like) continunm
in U which separates ((X) between the vertex and the base of O(X).
Hence, except the case where X is simultaneously snake-like and circle-
like, this theorem is a corollary of 6.1 and 6.2.

Using 6.2 we shall show that in the case where X is a circle or an
arc the above decomposition has further interesting properties. Namely
we have the following result. '

6.4. (a) If X ds the unit interval I and 0 <7 <1, then X, is an arc.

(b) If X ds the umit circle 8 and 0 <t << 1, then X; is a simple closed
curve.

Proof. Case (a). By 6.2 the continuum X; is snake-like. Since every
snake-like continuum is irreducible (see § 3), we need only to prove
that X; is locally connected. We identify X with X. Let us assign to
@ proper closed interval [wy, %], #; << u,, of X a point 7({uy, u,]) given
by the formula:

Uy
7 ([tyy Up]) = ——r .
(T, ) = s
Then

r: C(AIN{X}>X
is a continuous retraction such that 7(4)e¢A. An easy computation
shows that for every uweX the set L,=r"(u)v {X} is a maximal
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segment in C(X). This can easily be deduced from the following obser-
vation:

rHu) = {[u(l—s), s+u(l—s)]e C(X): 0<s<1}.

Agsuming that X; is not locally connected, we infer that there exist a non-
degenerate continuum D and a sequence of continwa Dy, D, ... (in X;)
converging to D each of which is disjoint with D. For every u ¢ X the
set L, n X; consists of a single point, and hence D intersects two distinet
segments L, and L, with «; < u,. Let u, < u< u,. Since t<<1, the
segment L, separates €(X) between two distinet point of D, and there-
fore D intersects L,. On the other hand, since Iiﬂm D, = D, there exists

a positive integer » such that L, separates C{X) between two points of Dy.
In particular, D, intersects L,. Since D and D, are disjoint subsets of X;,
it follows that L, has at least two distinet points in common with X;,
a contradiction which completes the proof.

Case (b). Again we identify X with X. For every 4 e CIN{X}
let r(4) be the centre of A (if A is a point then r(4) = 4). Then

r: O(N{X}—+X

is a continuous retraction. For each ze X let Ly = r"'(a) v {X}. It is
easy to see that each L. is a maximal segment. Now we shall prove that

1)

Suppose that this is not true. Then there exist in X; a nondegenerate
continuum D and a sequence of continua D, D, ... with the same pro-
perties as in the proof above. For every x ¢ X the set Ly ~ X: consists
of a single point; hence there exist two distinet points «, and #, in X and
two continua 4 and B such that DLy = {4} and D ~L; = {B}.
Let y, and v, be two points of X which separate X between z; and .
Then L= Ly, v Ly, separates O(X) between 4 and B, le. there are in
C(X) two disjoint open sets U and FV such that

@)

Since 4, Be D, D= limD, and D n D, = 0, there exist three pairwise
n
disjoint continua D, , D,,, D,, such that

X; is locally connected .

CXNL=UvV, AcU and BeV.

Dn,nU#G %Dy nV

for i=1,2,3. It follows from (2) that D, intersects L for 1=1,2,3.
Hence either Ly, or Ly, intersects two continua Dy, . But D,% is a subset
of X;, and hence one of the L,’s has at least two distinet pointsin common
with X;, a contradiction which proves (1).

11 — Fundamenta Mathematicae, T. LXXXIII
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According to 6.2 (b) there is an essential map f: X;— 8. However,
for every closed subset F' of X; distinct from X; we have f|F ~ 1. Indeed,
if fiF~1, then, by [4], p. 425, there is a continuum C CF such that
f|C~1. Since € is distinet from Xy, O is a snake-like continuum. It follows
that f|0 ~1, & contradiction. Thus f irr ~1. Therefore, by (1) and by [4],
p. 421, the contimmum X; is a simple closed curve. This completes the
proof of (b).

ProsLEM. Let X be a plane circle-like continuum and let x be
a Whitney map on C(X). Oan p~(f) be embedded in the plane for each
tel¥
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Measures on bundles and bundles of measures
by

W. D. Pepe (Lexington, Ky.)

Abstract. Various measures on bundles are characterised as a measure on the
base space and a measurable section of an associated bundle of measures. In addition,
machinery is developed to permit very general constructions of measures in this fashion.
Various applications are given, including a new characterization of a method of inte-
gration sections of vector bundles.

1. Introduction. Measures on fibre bundles and associated structures
have heen studied in a variety of settings. For example, Goetz [G] con-
structed a product measure on a bundle, given Baire measures on the
base and fibre with the measure on the fibre being translation invariant
under the group of the bundle. He showed that this product measure
deserved its name by proving a form of Fubini’s theorem. In a similar
fashion, Brothers [B; 3.3] makes a construction that lifts a current on
the base of a bundle with preseribed fibre and group and which satisfies
the conditions that on a product bundle the lifted current is the product
of the current and the fibre and that the construction be natural with
respect to bundle maps. It follows that such a lifting is unique. If one
asks for such a lifting of measures with respect to a preagsigned measure
on the fibre satisfying Brother’s eonditions then, provided the base space
of the bundle contains a measurable set with positive and finite measure,
a necessary and sufficient condition is group invariance of the measure.
To accomplish such construetions without group invariance of the measure
on the fibre is still possible provided there is some compatibility between
the group and measure. However, these liftings are not unique.

In another setting, Allard [A] studies the variational properties of
a varifold. A varifold, introduced by Almgren, is defined as a Radon
measure on a fibre bundle over a manifold with compact fibre. In See-
tion ITT, we will characterize Radon measures on bundles with compaet
fibre as & measure on tlie base and a measurably varying Radon measure
on each fibre. A form of this result for varifolds is in [A]. However, the
proof these utilizes the intrinsic geometry of the varifeld and various
differentiation techniques in [F].
11+
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