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The G,-topology on compact spaces
by
Scott Williams and William Fleischman (Amherst, N. Y.)

Abstract. Is every Gy - covering of a compact topological space reducible to a 2Ro-gub-
covering? This guestion is answered in the affirmative for linearly ordered topological
space. In fact, the authors’ major result is that each Gj-covering of a finite product
of compact linearly ordered topological spaces has a 2Re-star-finite refinement con-
sisting of Gy sets.

1. Introduction. Nearly forty years ago Alexandrov and Urysohn [1]
conjectured that a compact first countable Hausdorff space could contain
no more than 2% points. Arhangel’skil [2] proved that conjecture true
several years ago, and thereby re-opened some related questions, one
of which was related to W. Fleischman by Professor I. Juhasz. In the
present paper we offer more than a solution to this guestion:

Bach covering by G4-sets of a compact linearly ordered topological
space is reducible to a subcovering of cardinality not exceeding 2o,

2. Compact linearly ordered topological spaces. We will call compact
linearly ordered spaces CLOTS.

Let (X, 7) be a topological space. The collection of 7-G,-sets can
form a base for a finer topology 8 on X, called the @,-topology on X in-
duced by 7, or simply the G;-topology when no confusion results.

If for each Z-open covering of the space (X, X) there exists a sub-
covering of cardinal not exceeding m, we say (X, X) is m-lindelsf. With
this definition in mind, we observe that our problem may be formulated
as follows:

If (X,7) is a OLOTS, then (X, 6) is 2%-lindelsf.

Of course if (X, 7) is first countable, (X, §) is discrete, and therefore,
(X, 8)is | X|-lindelsf. Hence, the unit interval with the Euclidean topology
exemplifies a CLOTS whose @,-topology is not m-lindeldf for any m < 2.
Qur first proposition seems to follow from [3, p. 27]; nevertheless,
we shall offer an alternative proof igniting the techniques used in this work.
PROPOSITION A. If the linear ordering of the CLOTS (X, t) is a well-
ordering, then (X, 8) is lindelof (s,-lindeldf).
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Proof. Certainly if X is an ordinal not exceeding w,+1, the theorem
is true; hence, we use induction and suppose the theorem true for each
ordinal -1 satisfying f+1 < X, where X > w,--1. Let B be a 8-open
cover of X with no countable subcover and let L denote the union of all
intervals [a¢, X—1] covered by some countable subcollection of R.

L # {X—1}, for otherwise X—1 is the supremum of a countable
increasing sequence of ordinals {zs: % € wo}. By induction we will allow
for each 2, R, to be a countable subcollection of R covering [0, #,]. One
can now see that 0 ¢ L which is a contradiction. Therefore, inf L << X1,
So (infL)+1 L and subsequently infL L. Inductively, [0, infZ] and
[infZ, X—1] are covered by countable subcollections of E.

‘We might point out that the aforementioned result from [3] actually
illustrates the conclusion of Proposition A frue for any compact Haus-
dorff dispersed space, where a dispersed space is one for which each sub-
space contains an igolated point.

Paracompactness may appear a bit out of phase here; however, we
will see that its “strongest” form is most fundamental to our major resuls.
Recall that a strongly paracompact space is one in which each open cover
has an open refinement each of whose members intersect at most a finite
number of the other members. The condition on the refinement is known
ag star-finite but may be weakened to sbar-countable in T,-spaces.

Leymwa B. Let (X, ) be o OLOTS. Then (X, 8) is strongly paracompact,

Proof. Let R be a §-open cover of X by intervals of X. Fix ¢ X
and let I be the collection and | J I, the union of all intervals [a, b]C X
such that @ efa,b] and a countable subcollection may be extracted
from R to cover [a, b]. Denote sup | I, by b, and inf | J I, by ay. If
{y e X: y = bs} is 0-open, then b, is the supremum of a countable non-
decreasing sequence of values less than b, and therefore, as in Propo-
sition A, by e |J Iz, If {y ¢ X: 4 = b,} is not 8-open, each member of B
meeting. b, has non-empty intersection with | JI,; hence bye (JIs.
Similarly, ay el I,.

Unfix 2 I @,ye¢X either (JIn= Iy or UIpn | UI,=0.
Observe also that each | JI, is the union of a countable subcollection
of B which we call R,. Certainly

8= J{Rs: weX}

is a star-countable refinement of R. Tt is well-known [see 4, p. 173] that
an open star-countable covering of a T,-space has an open star-finite
refinement.

At this point we request the reader to keep in mind the collection I

:_md ii?s construction, for it is most fundamental to each of theorems given
in this paper.
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Levuma C. If (X, 1) 4s a CLOTS, then (X, 8) is 2%-lindelof.

Proof. Let R be a d-open cover of X by intervals of X. The sets (I
in the above Lemma B partition X and since they are closed subsets
of (X, ), they generate a quotient space which inherits a linear ordering
from the ordering of X in a most natural way. That is, let I = {I,: w e X}
and define

In=1, if I,~nI;#0,
I<I, iff InIy=0andoz<y.

Some very elementary calenlations illustrate that the order topology X
on I induced by < is the very same as the quotient topology obtained
from (X, 7) by collapsing the intervals {J I to single points.

We now show that [I] << 2™, Given z¢X, one sees that | I is
a 6-clopen subset of X, hence b= supl Iz (az = inf| J I) is either an
end-point of a separation of (X, 7) or the limit of a countable decreasing
(increasing) sequence in X or an end-point of X. Therefore, I is either
a right (left)-end-point of a separation of I or it is the limit of a countable
decreasing (increasing) sequence in I or it is an end-point of I. In any
case (I, ) is a first countable CLOTS. By Arhangel'skil’s result mentioned
above, I consists of at most 2%-elements. Therefore, S, as constructed
in Lemma B, consists of at most 2%-elements.

Our major result is a proof by induction and using Lemmas B and C
we have shown the first step.

THEOREM. Let (Y, 1) be a finite product of compact linearly ordered
spaces. Then each covering of ¥ by (,-sets has a star-countable G,-refinement
consisting of at most 2% elements.

Proof. We will suppose that

¥Y=XxX;X .. XX, nx1,

and moreover, that the conclusion is true for X, X ... X Xy; ie., each
covering of X; X ... X Xp by G,-sets has a star-countable @,-refinement
consisting of at most 2%-elements. Ordinarily when we speak of a refine-
ment of a covering we mean for the refinement to also be a covering;
however, throughout this proof we will have need to speak of refinements
which cover various subsets of the set originally covered; hence, we use
the notation “T is pro-Z by R” to mean

(i) B is a given §-open covering of ¥,

(ii) Z is a given subspace of ¥, and

(iii) T is a star-countable G,-refinement of R covering Z and con-
sisting of at most 2¥s-elements.

Let R be a G;-covering of ¥ and without loss of generality we shall
urther require each element of R to have an interval as its projection
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in each coordinate. Fix z ¢ X and Iy to be the collection and U{x t0 be
the union of all intervals [@, b,]C X such that (i) # €[a, b] and (ii) there
exists 7 such that T is :
pro-[a, b]x X; X .. X X, by RB.

Denote supl J I, by bz and infl j I by as. .

We now show that as, by € | I. Suppose {y ¢ X: y > b“f} is a Gy-set
in X, then b is the supremum of a countable non-decreasing sequence
{bi: i e N} C |J I such that & <b;. For each ¢ XN, let R; be

pro-[z, bl X X3 X ... X X, by R;
also, let R, be
pro-{bs} X X; X ... XX, by B.
Then
U{Bi: 1=0,1,2,..} is pro-[z, by ] X X1 X ... X Xs by RB.
Hence, by e | JI;. Suppose {y ¢ X: y > by} is not a G4-set in X and let
R, be pro-{bs}x X; X ... x X, by B

further, let zy= inf{IIx(U)} for U ¢ R.

We show that sup{ey: UeR;}<<b;. Suppose the contrary, then
sup{ep: UeRg} = b;. For each UeR,, choose one kye Y such that
(a) < ITi(kp) < di
whenever there exists 2 non-degenerate interval Jei, dif C X, satisfying

1% (e, a) ~ Iz (25) C U5
otherwise
(b)  II(ky) may be any element; of II{U~ ~ II5}(zy)) -

Let k& e IT5'(b,) be a cluster point of {ku: U e« RB;}. There is a Uy ¢ R, such
that k ¢ Uy; however, k¥ may not be an interior point of any U e R, for
this would contradict the star-countability of R,. Thus, % is on the
boundary of Ug. Since {y « X: y > b} js not a G4-set in X, since R, is
star-countable, and since Uy~ ({bz} X X; X ... X X,}) is a @,-subset of
{ba} X Xy X ... X Xy, we may find a transfinite sequence s = {22 a<< w,}
such that

(e) s is increasing and cofinal with bz,
(d)  w, >y,

(0 sC{a: UeRy},

()  #,= 2y implies kye Uj .
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Statements (a) through (f), together, imply that & e U for each 2y e s
which contradicts the star-countability of R,. Therefore, sup{zu: U e Ry}
< bz.

We now have

infl, < sup{zo: UeRp} < by= suplx .

It follows that |JI,~ |JI, # @. Hence, b,e Ul and ze{JI,,.
A similar argument shows ay ¢ JIz and e U,

To show that a, has cofinality <&, and b, has coinitiality <Cs,,
suppose, in the first case, that {y ¢ X: y > a,} is not a Gs-set in X, then
by applying the arguments lustrating by € | I to as from the preceeding
two paragraphs, we find

inf{JI, < inflJ I,

& contradiction since | jI, = (JI,. Therefore, a, has cofinality < s,.
In a similar fashion it is possible to show that b; has coinitiality < x,.

Construet the linearly ordered space I “in the sense of Lemms (04
and we see that

{UIs: 2e X} < 2%,

Moreover, since a, has cofinality < s, and b, has coinitiality < %, there
exists for each distinet | J I, a collection 8z such that

8z 18 pro-[az, bl X X; X ... Xx X, by B
and such that

U {v: VeBu} = [0z, 051X Xy X oo. XX, .

Let 8= {J{8z: ¢ X}, where S,= 8, if UIy= (JI,. Then § is
pro-Y by R.

3. Other spaces and remarks. The original problem may be answered
in the affirmative for many non-compact linearly ordered topological
spaces by our techniques with a few adaptations; nevertheless, the theo-
rem is not extendable to the totality of linearly ordered topological spaces.
The entire question seems to revolve around the type and the plurality
of the gaps of the space. For a lengthy discussion of gaps we refer the
reader to [5]; we give a short discussion here.

Let X be a linearly ordered topological space, 4 and B be intervals
of X (either A or B may be empty) such that

(i) AvB=2X,

(i) AnB=0,

(ili) ¢ A and b ¢ B imply a< b,

(iv) sup4, infB ¢ X.

10 — Fundamenta Mathematicae, T. LXXXIIT
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Then the pair (4, B) is said to be a gap of X. The Dedekind comple-
tiom X+ of X is the union of X together with its gaps suitably linearly
ordered such that X retains its original order and topology as a sub-
space of X*. It is to be noted that

(i) X* is always compact,

(i) X is compact if and only if it has no gaps,

(i) if X is lindelof, each element of Xt— X has a countable local
bage in XT.

ProposrTION D. Let (X, 7) be a lindelsf linearly ordered topological
space. Then (X, 8) is 2Mo-lindelof.

Teasting off the comstructions of Lemmas B and C and using (iii)
from above, the proof of Proposition D becomes immediate, and via
a mimicry of our theorem the following corollary is easily seem.

CoROLLARY E. Let (¥, 7) be a finite product of lindelof linearly ordered
topological spaces. Then each covering of Y by G,-sets has a star-couniable
G,-refinement consisting of at most 2% elements. :

To find & linearly ordered topological space not satisfying the con-
clusion of Proposition D, we need only a space X whose gaps have no P
local base in X+; in fact, a space of all ordinals less than some suitably
large limit ordinal should do.

To find a compact Hausdorff space not satisfying the conclusion of
Proposition D appears a bit more difficult; however, J. Isbell and S, Mréwka
have informed the authors of the following example:

Consider D, where D is a discrete space of non-measurable cardinal
greater than 2%, Since fD— D is a @-space, it may be covered by G sub-
sets of itself. Take such a covering together with singleton points of D
and one obtains the desired covering.

“The algebra of Baire functions on the compact space (X, 7) is defined
as the smallest class of bounded functions containing the subalgebra of
all 7-continuous real-valued functions and closed under the operation
of taking pointwise limits of sequences. The weak topology on X generated
by the Baire functions is ealled the ¢-topology and has a basis the zero-sets
of the 7-confinuous real-valued function on X”.

The :-topology lies between v and & and is equal to 6 for mormal

spaces. This topology has been an object of study in both [3] and [6];
it therefore seems necessary to compile a list of spaces for which we know
the @;-topology to be 2%-lindelst.

(1) Finite products of lindelgf linearly ordered topological spaces,

(2) Hausdorff compact dispersed (scattered) spaces [3],

(3) one-point compactifications of topological spaces,

(4) RR where R is the real line and hence S,
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(3) 1st countable compact Hausdorff spaces [2].

Professor Juhasz in [7] has obtained a closely related result, namely,
let (X,7) be a compact Hausdorff space, then every §-covering is
reducible to a subfamily of cardinal 2% whose union is §-dense in (X, 8)
whenever (X, 7) satisfies the Suslin condition. ’
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