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Some properties of the remainder
of Stone-Cech compactifications

by
Takesi Isiwata (Tokyo)

Abstract. It is the purpose of this note to investigate some properties of X —X.
In § 1, we give some relationships between xX and vX, for example, uX # »X implies
that »X is not a k-space and hence the local compactness of »X implies uX = »X
(Theorem 1.3). In §§ 3-4, introducing the notion of being “almost loeally compact”,
we improve the results obtained by Fine and Gillmann [3], [4] and Robinson [14] (Theo-
rems 3.3-3.6) and moreover generalize the results obtained by Rudin [15] and Plank [13]
(Theorems 4.4-4.7).

Introduction. Fine and Gillman [3], [4] obtained several interesting
properties for X* = X — X under suitable conditions and Robinson [14]
improved these results in the following forms replacing “realcompactness”
by “topological completeness”.

(FGR,) If X is locally compact and admit a complete uniform structure,
then each Z e Z(X™) is the closure of ils interior.

(FGR,) Let X admit a complete uniform structure and H CXx* If
X u H is pseudocompact, then H is dense in X*. Conversely, if H is dense
in X* and X is locally compact as well as complete, then X v H is pseudo-
compact.

From these theorems Robinson proved further the following.

(Ry) If X admits a complete wniform structure, vX —X has a woid
interior in X*.

(R,) If X is locally compact and complete, then vX—X is nowhere
dense in X*.

(Rs) [CH] If X is locally compact and complete, then X* contains
a dense set of P-points. (This is a generalization of Rudin’s theorem [15]).

(B,) Every locally compact metric space X without isolated points
contains a set of remorie points which is dense in X*. (This is a generaliz-
ation of Plank’s theorem 5.5 [13].

In this paper, introducing the notion of being “almost locally corm-
pact” and using the notion of relatively pseudocompactness, we shall
make in § 3 Theorems (FGR,), (FGR,) and (R,) in good order (in the sense
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of Theorems 3.3-3.6 below) and in § 4 generalize moreover Theorems
(Ry), (Ry) and Plank’s theorems 3.3 and 3.4 [13] (see Theorems 4.4-‘4.7
below). Before proving these main theorems? in §§ 1-2 we sha]il consndir
local compactness of »X and pX and investigate some properties of X .
In § 5 we give some relationship between round sgbse’us and P-'pomts
in »X. In general, there are delicate questions concern{ng the opemtlon_“.v”
taking realcompactification of a given space X which dependr% heavily
on either measurability or nonmeasurability of the cardinality of X.
But it seems to me that there are no such questions when we congsider
a topological completion of & given space. Thus it is more convenient
for a treating topological completion than realcompactification. From
this point of view we will consider topological complete spaces as
much as possible.

Throughout this paper by a space we shall mean a completely regular
T,-space and all functions are assumed to be continuous and use the
terminology and conventions of [5]. For ffe 0(BX), we denote by f the
function f/|X and by Z(f) the zero set Z(f*|X). Conversely, for ge C*(X)
we denote by g# the Stone-extension of g over fX. It is well known that i)
for geC*X), g=¢/|X and i) for each f’e 0(8X), f*= (ff|X)’. For
a point p in a given space ¥, its neighborhood (= nbd) U in ¥ will be
denoted by Ux(p). Similarly we denote by cly 4 (or inty4) the closure
(or interior) of 4 as a subset of ¥. For simplicity, in case ¥ = pX or x*
we use especially “g” and “*” instead of fX and X* For instance, cl,4
= clyz A, int*A = intx. 4, U%p)= Uxp) and Uylp) = Upx(p).

A space will be called topologically complete provided that it is com-
plete with respect to its finest uniformity. We denote by uX the com-
pletion of a space X with respect to its finest uniformity. Thus X is
topologically complete if and only if uX = X. Let us put X, = {2; » has
a compact nbd} and R(X)= X— X, according to [6]. X is said to be
almost locally compact if intxR(X) = @. In [6], it is proved that if both X
and X* are o-compact, then X is almost locally compact. A subset B
of X is a relatively pseudocompact (= rpe) subset (in X) if f|B is bounded
for every fe C(X). Let 2 be the first uncountable ordinal and N the
set of natural numbers or its copy. |4| denotes the cardinality of a set 4
and c¢= |E| where B denote the set of real numbers. [CH] indicates the
continuum hypothesis is being assumed.

§ 1. Relatively pseudocompact subsets and local compactness of »X and uX.
For future use the following is stated as a lemma.

Lemwa 1.1. i) For each pe fX—X, there is 1 =0 with p < Z(WF)
CpX—yX [5].

i) Z(g#) CvX implies Z(g) # @ for each ¢f ¢ C(BX) [5].

iti) X C puX C»X C X [5], [11].
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iv) For each p evX—X, fA(p)=0 implics Z(f) # @ [5].

v) A relatively pseudocompact closed subset of a topologically complete
space is compact [2].

From the preceding lemma we summarize matters which are useful
throughout this paper as the following theorem.

f[.‘H.‘EOREM 1.2. i) Por ACX, A is relatively pseudocompact if and
only if ¢y A CuX if and only if e, A CvX,

i) Z(f") C»X implies Z(f*) = e, Z(f).

iif) Z(g) # @ (g« C*(X)) implies cl;Z(g) ~ X = Z(g") ~»X.

iY) Let Z_(f) # 0. Then Z(f*) C pX if and only if Z(f) C»X if and
only if Z(f) is relatively pseudocompact and L, Z(f) = Z(ff).

v) For each p e X—pX, peZ(hF) implies Z(hF) A (BX—»X) = @.

Proof. i) Suppose that A4 is rpe. For each g€ C(uX), we have
91X € O(X) and g|4 is bounded, and henece glel,x A is bounded which
Eshows»that cl,xA is rpe. By (v) of Lemma 1.1, cl,x A must be compact,
e, dd=cl,xd=cl,z 4 CuX.

By (iii) of Lemma 1.1, clz A C uX implies clp A CvX.

.Suppose that A is not rpe. Then there exists fe C(X) such that
fl4 is unbounded. The extension of f over »X is unbounded on c,z4
which is impossible because cl x4 C el 4 CoX.

T') Being cl;Z(f) C Z(f?), suppose that there is a point € Z(f%)—
— el Z(f) CvX. Since cl,Z(f) is compact, there exists 45> 0 such that
B(p)=0 and A*=1 on cly,Z(f) which shows that gf=|fIf+1f>0
on X and p € Z(gf). This contradicts (iv) of Lemma 1.1.

Similarly we obtain (iii).

iv) If Z(f’)C»X, then by (ii) e, Z(f) = Z(f*) and the relative
pseudocompactness of Z(f) follows directly from (i). Other implications
follow immediately from (i) and (ii). ’

v) If Z(#%) C »X, then by (iv) we have Z(#) C uX which contradicts
the assumption p ¢ uX, i.e., Z(#¥) ~ (BX—»X) % O.

‘We notice that the above theorem does not assert that the compact-
ness of BC+X implies BC uX.

Local eorgpactness or k-ness of any subspace ¥, containing X properly,
of »X was discussed in [8], [9], bub several theorems in [9] follow im-
mediately from the following theorem.

THEOREM 1.3. Let Y be any subspace, containing X, of vX.

i) If X s a space having the property that every relatively pseudo-
compact closed subset of X is compact (for example, in case X is topologically
complete), then ¥ is nmot a k-space.

9 — Fundamenta Math ticae, T. LXXXIII



GUEST


139 T. Isiwata

il) If uX #+X, then vX is not @ L-space (and hence mnot locally
compact).

iii) The local compaciness of »X implies vX = uX.

Proof. i) Let ¥ be a k-space, K a compact subset of ¥ and
F=XA K. If Fis not rpc, then by (i) of Theorem 1.2 we have
l,F ~ (pX—»X) # @ which is impossible because cl,F C K C ?X. Thus F
must be a rpe closed subset of X. From the agsumption, I is compact.
Since ¥ is & k-space, we conclude to be X closed in ¥ which contradicts
the denseness of X in Y. ii) and iii) follow from i).

Comfort [1] established the following theorem concerning local
compactness of »X: In order that »X be locally compact it is necessary
and sufficient that for each p «»X there exist pseudocompact (= pc)
subsets A and B of X for which peclyA and there exists fe 04 (X)
such that f=0 on A and f=1 on X—B. In [7] we stated that this
theorem remains true for uX in case X is an M’-space. But we have
further the following

TrEOREM 1.4. For a given X, pX is locally compact if and only if for
each p € uX, there emist relatively pseudocompact subsets A and B of X
and f e C(X) such that peclxA, f=0 on A and f=1 on X—B.

Proof. Using (i) of Theorem 1.2, necessity follows from local com-
pactness and complete regularity of uX. Conversely, ¢l xB is a compact
subset contained in uX by (i) of Theorem 1.2. It is easy to see that
p eint,gel,xB from (iii) of Theorem 1.2 which leads local compactness
of pX.

‘uIt seems to me that the above Comfort’s theorem is dissatisfied
with the formulation used points of »X—X. Hence we shall improve
for form’s sake using only X and C(X), but its proof is essentially the
game as one given by Comfort.

It is known that there is one to one correspondence between the
seb of points of wX and the set of real z-ultrafilters [5]. A z-filter § on X

will be called round if for each Z ¢, there are W ¢¥ and a cozero set S,

in X with W C §C Z. For any z-filter § on X, we denote by §° the family
of all zero sets Z in X such that there are a member W of § and a cozero
set § with WC §C Z. Then §° is a round filter [10].

THEOREM 1.5. For a given space X, vX is locally compact if and only
if for amy real z-ultrafilier §, T° contains at least one member which is
relatively pseudocompact in X. ’

Proof. We notice that § is the set of zero sets Z of X such that
P ecl,Z for some fixed point p € »X. Since necessity is obvious, we shall
prove sufficiency. Let §={Z; pecl,Z, Z e Z(X)} for a fixed point
p «3X and let Z «§° be rpo. By (i) of Theorem 1.2, cl;Z is compact in uX.
From the assumption, there are a zero set W = Z(f) and a cozero set S
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= X—Z(h) with WCSCZ. Since Z(f) ~Z(h) =0, we have cLZ(f) n
A c%ﬁZ(h) =0. Thus peel,Z(f)CpX—ecl,Z(h) C cl,8 C c;Z, that is,
P €intgel;Z C uX which shows local compactness of uX.

§ 2. Properties of X*. In this section we shall investigate some
elementary properties of subsets in X*. Firstly we shall prove the following
key lemma in the sequel.

Lpamea 2.1. Let {Ua} be o locally finite disjoint family of open sub-
sets of X. Then we have

i) There exists f e C*(X) such that 0 <f<1, f=0 on X— | U, and
fl@n) =1 for each n and some point z 5 in U,.

i) If clx Uy is compact and there are a sequence {ex}} 0 and 1f ¢ O(BX)
with Un C {2; h(®) < e}, then there exists g° such that 0 < ¢ < 1, P(g)C Xy,
P(F)nX* 2@ and P(¢) ~ X*Cely(\J {Ta}) A clyX; ~ (BX—»X) A Z (1)
where P(¢°) = BX—Z(4°).

Proof. i) is obtained form the usual method, that is, let f» be a funec-
tion such that 0 < fr <1, f=0 on X— U, and Jalen) = 1 for some point
@n € Up. Then f= Xf, is a desired funetion.

ii) Let us put g = f* where f is a function in (i). Obviously 0 < ¢* < 1.
Let zeP(g)= P(¢°) nX. By the method of construction of ¢, there
is Un with # € U, and hence compactness of cly Uy implies @ € X;.

Next letp e X* and ¢°(p) > 0. Any Us(p) intersects infinitely many
Un. The assumption Uy C {&; h(z) < ea} implies #%(p)= 0 which shows that

p e Z(WF). Let Vyp) be a compact nbd of p with V(p) C Uy(p) and
.U,, Delx(Un ~nVs(p)) = Wn. Then W, is compact and P ecly( | Un)
implies p e cly({_j Wa) which leads the fact that 2 ecly({ Un) n dp X,
Next we shall show that p e fX—»X. Since W, is compact and {Un} is
locally finite, there is & € 0%(X) with k= 1/n on W, for each n and k=1
on X—{JUx and k>0 on X. Obviously %¥(p) = 0. This means pérX
by (iv) of Lemma 1.1.

THEOREM 2.2. Let p € BX—puX. Then p e el, X, if and only if for any

P € Z(f°), there ewists ¢° >0 such that P(g)C X, and O # P(¢/) ~ X*
CZ(f) ~ (BX—9X) n eI, X,. :

Proof. Necessity. Since p  ¢l,X,— uX, we have Z(f%) (/S’iX——vX)
# @ by (v) of Theorem 1.2. Using (i) of Lemma 1.1, we may select some
hy =0 with Z(#")C Z(f%) ~ (X—»X) and Z(h*y # @. For a suitable
sequence {en}}0, Vi = B (65,1, ) ~ X is not empty and {V,} is locally

finite family of open sets of X. For each # there exists an open set Uy,
such that elxUy n R(X) =@, elxU, C V,, and clx U, is compact. Thus ¢
in (ii) of Lemma 2.1 is a desired funection.

Suffieiency. For any Uy(p), there is ff = 0 with p € Z(f/)C Uy(p).
Let g° be a funection in the assumption for this f?. 8ince P(g) C Xy, Uylp) ~

9%


GUEST


134 T. Isiwata

~ P(g%) # @. On the other hand P(g°) C c?,,P(g) and hence P(g%) C cl,X,.
This shows that Ugp) » el Xy # @, that is, p ¢ clpX;.
2.3. Let B be a subset of X*.
i) Int*B ~ (v X—pX) # 9D implies int*B ~ (BX—vX) # a.

ii) Int*B ~ (BX—pX) # @ if and only if int*B n (BX—vX) # .

i) Int*(pX— X) = int”* (pX—X). Int* (»X— pX) = @.

iv) pX—vX is dense in pX—uX.

v) Int*B ~ (#X—X) # @ implies either int*B N (0 X—pX)=0@ or
int*B ~ (BX—2X) # @ whenever nt*B ~ (v X—pX) # O.

Proot. i) For p e int*B ~ (»X—uX) there exists an open nbd T*(p)
of p such that Vp) ~X*= U*)C B and clUy(p) CVﬁ(p)pfor some
V,(p) and Uy(p). Let us select a zero set Z(fP) with e Z(f?) C Uglp).
By (v) of Theorem 1.2, Z(ff) ~ (X —vX) # O, Ehat is, U (].9) A (BX—9X)
4@, Since U*(p) CB and U*(p) is open in X7, we have int B~ (fX—
—1X) £ . .

ii) Int*B ~ (fX —»X) =@ implies int*B~ (pX—pX)=0 by 1?.
Since nt*B ~ (X — pX) = (int*B ~ (BX —X)) v (int*B (»X —uX)), it
is easily seen that ii) is valid.

iii), iv) and v) follow directly from (1).

Remark 1. (iii) gives another proof of (i) and non-local compactness
of »X in Theorem 1.3 respectively.

Remark 2. (iii) gives a generalization of Theorem R, at thebegitnnin%:,
that is, if X = uX, then »X—pX = »X—X has 2 void interior in X'.

9.4. We shall list up properties concerning R(X) and X, which are
summarized in the implication diagram as follows.

. int* (B (X)~B (@) 00X - X) = B

Int*{c B () ~B(X) = 0 <
(e 0 —E () int*(c B(X)~R (D) A (BX—»X) = 0

f@ w

(R —B(X)) A (BX-pX) = § = pT—vX G ely Xy X* <> pT—pX C g Xy 0 X*

X 48 almost locally compact <>

0 (s}
ﬁX = clﬁX1©X* = c],;Xln X*.

Proof. 1) p enX—X—cl,X, implies p e int*(X* ~ cl; B(X)) because
dsR(X) v clpX; = pX. This contradicts our assumption (see Example 2.5).

9) Let B= cl,R(X)—R(X) in (i) of 2.3.

3) If p e pX—9»X—cl,X,, then p is an inner point (in X*) of el B(X)—
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— R(X) which contradicts the fact that int*(elpR(_X)——R(X))n(ﬁX—
—X) = @.

Conversely, suppose that there exists a point p eint*{clBy(X)—
—R(X)) n(pX—»X). Then p¢+X and there is Uyp) satisfying U*(p)
= Uy(p) n X*C cl, B(X)—R(X). Supposing that SX—»X CeclX;, we
will lead the confradiction. Using Theorem 2.2 and p e ¢l X,—»X, there
exists Z(f*) such that Z(f%) C Uyp) and X* ~ Z(f*) C UXp) ~ (BX—»X).
Moreover there is ¢° > 0 with P(g)C X, and P(¢°) n X*C Z(ff) n X*
by Theorem 2.2. Let us put Upyxy = Us(p) n B(X). If Ugyx,= 9, then
p ¢ c; B(X) =@, and hence we have Ugy, # @. Since R(X) is dense in
e, R(X) and U*p) C c, R{X)— B(X), U*(p) is contained in cl,R(X) n X"
On the other hand, since P{g’) n X*C U*(p) and P{g)C X, and P(g%)
C cly(P(g") ~ X}, U*(p) contains a point g with gig) =%k >0. P(g)C X,
implies g=0 on R(X) and T*(p)C cl,R(X) implies g’(g)= 0. This is
impossible.

4) Let fX—»X Ccl, X, nX " and p e pX—pX—c,X,. I perX,
then perX—puX and there exists Z(h’) such that peZ(#)~X*
C int*(»X — X). On the other hand we have Z(#f) n (8X—»X) # @ by (V)
of Theorem 1.2 which is a contradiction.

5) Let p e X*—cl, X,. There is a nbd Uy(p) with Uy(p) n e, X, = @.
This implies int,R(X) # @. Now suppose that # eintzcl;R(X). There
exists a nhd Up)CeclR(X). Then Uyp)n X = Ux(p) is disjoint
from X, so p¢cl,X; and hence X # ¢l X;.

2.5. Exawpre. The reverse implication in (1) of 2.4 does not hold
in general. Let ¥ = [0, 21X [0, 1]—{(R, a); aisirrational} and X = YU R
(top. sum). Then it is easy to see that X; = [0,2) x [0, 1] v R (top. sum)
and »X =[0,0]x[0,1]wv R (top. sum) and R(X)= {(2,a); a is ir-
rational} and c¢l,X; = fX. On the other hand the set cLE(X)—E(X)
= {(2, »); v is rational} is open and closed in X* which coincides with
yX—X.

2.6. i) Int¥cl, X; n e, R(X) n X¥ ~ (BX—»X)
= int¥el, Xy N R(X) n X A (X —pX) = @.
ii) Int*(el, X, ~ e, R(X) n X*)C uX—X.

Proof. i) Since the first equality is obtained from ii) of 2.3 by setting
B = c; X; n e R(X) ~ X%, we shall show that these subsets are empty.
Now suppose that p eint™B ~ (3X—2X). Then there is U*(p) contained
in B. On the other hand, since p ¢ cl; B(X)—vX, using Theorem 2.2 there
is a cozero set P(g?) such that P(g) CX, and P(¢f) » X*C U*(p) n
A (BX—»X). This implies that there is a point ¢ in TU¥p) with ¢*(q)
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— k> 0. But U¥p)Cc,B(X) and g= 0 on R(X) which shows g%(g) = 0.
This is a contradiction.

2.7. Let X, # @. Then the following are equivalent:

i) X, is relatively pseudocompact.

ii) Int* (el Xy— Xy) N (BX—pX) = 0.

i) Int*(elyXy—Xy) ~ (X —2X) = O.

iv) (el X;—Xy) N (BX—vX)=0.

v) (el Xy—X;) o (X —puX) = .

Proof. v) < i) (Theorem 1.2). v)-»iv)>iii) (Obvious). ii) <> iii) (Pub
B = c,X,— X, in (il) of 2.3). Suppose that X, is not rpe. ’There is a point
p e X,—puX by (i) of Theorem 1.2. CLX;—X, contains at 1e:ast one
inner point (in X*) which belongs to fX— »X by Theorem 2.2. This shows
ii)—>1).

The followings are obvious.

2.8. pX— X (»nX— X, resp.) is dense in X * if and only if Xy is velatively
pseudocompact and E(X)C cl(uX—X) (Cel(pX—X), resp.).

§ 3. Main theorems. In this section we ghall consider improvements
and generalizations Theorems, except with (Ry), listed up at the beginning

in this paper. Summarizing Theorems 2.2 and 2.4, werestate as the following

theorem.

TrgorEM 3.1. If X is mot pseudocompact, then the following are
equivalent:

i) Int*(cL,B(X)—R(X)) ~ (X~ pX) = @.

i) pX—pX Cel X;.

iii) For any p e pX—uX and any zero set Z(W°), p <« Z(W), =0,
there exists §° = 0 suchthat P(g) C X, and P(gf) n X* C Z(1) ~ (BX—2X)
~ ¢l X,. (In these statements, we can replace X by »X as shown in 2.4,
2.6 and (v) of Theorem 1.2).

TasorEM 3.2. If R(X) is tfopologically complete (especially, X is
topologically complete), then X is almost locally compact if and only if
int*(cl, B(X)— B(X)) ~ (BX—vX) = @. :

Proof. Necessity follows from 2.4. Conversely suppose that intx B(X)
% @. I clxintxR(X) is rpe, then clrintzR(X) must be compact by (v)
of Lemma 1.1. This contradicts the definition of R(X) and hence it is
not rpe. There is a point p and a nbd Ux(p) C R(X). Without loss of
generality, we can assume that Upyp) = el,Ux(p)C intzcl, R(X). On the
other hand, int*(cl,R(X)— R(X)) ~ (X —+X) =0 implies Up)
A (fX—vX) = @. Then Ux(p) is rpe by (i) of Theorem 1.2. Since puX is
topologically complete, clxUx(p) must be compact which contradicts the
definition of R(X).
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The following two theorems are improvements of Theorems FGR;
and FGR..

TuEoREM 3.3. X is not pseudocompact, Then int*(cl,B(X)— R(X)) ~
A (BX—1X)=0 if and only if for any Z(#)C pX—+»X, cl*int*Z(hf)
= Z (1.

Proof. Necessity. For p ¢ Z(F) and for any nbd U¥(p), there is
=0 with Z(h5) C U'(p) ~ Z(F) by (i) of Lemma 1.1. Using the as-
sumption (take #°= hf in (i) of the preceding theorem), we have an
open set P(¢°) nX* of X* which is contained in Z(hf) and hence
int*Z(nf) # @. Since U*(p) is an arbitrary nbd of p, p ecl®int*Z(1?),
that is, cI*int*Z (W) = Z (k).

Sufficiency. We shall show that p eint*(cl, R(X)— R(X)) ~ (X —vX)
leads the contradiction. From (i) of Lemma 1.1, there is #* > 0 such
that Z(#) C (el ,R(X)—R(X)) n (X —»X). Let G" = int*Z(1’). There
exists an open set G, of X with @*= G; ~ X*. For G*, there is ¢’ >0
with P(¢°) C G, and P(g°) n X*C 6". Let g(x) = a >0 for some z < P(g).
E={y; ¢'(y) > af3, y.c X} is open in AX. Since E—X*=HE—Z(}) is
locally compact and open in X, B ~ X is a locally compact open subset
of X, ie, FE~AXCX, and P(g)CX;. Thus we have P(¢’) nX*
Cint* (e, B(X) ~ ey X; » X'} ~ (BX—»X) which contradicts 2.6.

From the preceding two theorems we have

TreeorEM 3.4. If X is not a pseudocompact space such that K(X) is
topologically complete (especially, X is topologically complete), then X is
almost locally compact if and only if for any Z (W) C pX—»X, cI*int* Z (A
= Z(hF). .

Theorem R, is generalized in Remark 2 of 2.3. For Theorem R,
we have.

TaEoREM 3.5. Let X be topologically complete and not pseudo-compact.
If X is almost locally compact, then vX—X is nowhere dense in X*.

Proof. Let uws put G = J{nt"Z(#); Z(H*)CLX—»X}. From
Theorem 3.4, J{Z(#); Z(R)CAX —»X}Cecl*G@ and hence by (i)
of Lemma 1.1 we have SX—»X C cI*@. Since X is topologically complete,
pX—»X i3 dense in fX—puX =fX— X = X* by (iv) of 2.3. Thus
cl*@ = X* On the other hand, G is open in X* and G (pX—X)=0
implies @ m cl*(»X —X) = @. Hence int*cl*(»X—X)=@ follows from
directly the fact that @ ~cl*(»X—X) = @ and cl*@ = X™.

The following theorem is an improvement of Theorem FGR, as
shown in 3.7.

THEOREM 3.6. If X s not pseudocompact and H C fX—vX, then
i) The pseudocompaciness of X w H implies the denseness (in fX—
—vX) of H. .
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ii) The comverse of i) is walid whenever R(X) ds relatively pseudo-
compact.

Proof. i) Let p e BX—»X—cl*H. Since p ¢ cl,H, there is f* = 0 such
that ff(p) = 0 and f =1 on cl,H by (i) of Lemma 1.1 and >0 on X.
But this contradicts the psendocompactness of X v H  because
1/(ff|(X v H)) is an unbounded member of C(X v H).

ii) Suppose that X u H is not pe. Then there exists g° 29 with
Z(F) CpX—(X w H). I peZ() ~ (X—puX), then Z(¢) contains an
open set (in X*) contained in pX—»X (notice that cl;B(X)C uX). Bub
this contradict the denseness (in fX—+»X) of H. Thus Z(¢%) ~ (BX— uX)
=@ ie., Z{g’)C pX— X which is impossible by (i) of Lemma 1.1.

3.7, We shall show that Theorem FGR, is obtained as a corollary
of Theorem 38.6. To do this, it is sufficient to prove the following i) and ii)
(notice that uX = X and fX—»X is dense in X* by 2.3).

i) If HCX* and X v H s pseudocompact, then so s K= Xu
U (H A (BX—vX)).

Proof. If K is not pe, then there exists ¢ > 0 ‘such that ¢ >0 on ¥
and Z(g?)CBX— K. Since XU H is pe, Hn(»X—X) ~nZ(¢%) +# O and
hence X nZ(gf) #0 Dby (i) of Lemma 1.1 which contradicts Z(g?) n
nX=0.

i) If H (CX*) is dense in X%, then Hy= H n (BX—1X) is dense
in pX—vX. ,

Proof. Without loss of generality we can assume that H; # @ and
let (BX—9X)—cl"H, # @. X*—cl*H, is open in X* and int*cl* (»X — X)
=@ by Theorem 3.5. Thus c*(H; v (pX—X)) = cl*H, © cl* (X — X)
# pX—»X. On the other hand H C H, v (»X—X) and o* A = X*, and
we have cl*(H,v (»X—X))= X* which is a contradiction.

§ 4. Generalizations of Rudin’s and Plank’s theorems. In this section we
generalize firstly Theorems Ry and R, whose proofs are modifications of
ones used in [13] and [14]. :

A point p of T is called a P-point of ¥ if any G, subset of ¥ con-
taining p is a nbd of p. Y is said to have the @,-property if every non-
void @&, subsets of ¥ has a nonvoid interior.

Lmyva 41 For any point p e BX—(LR(X) v pX), any neighbor-
hood U*(p) of p contains a copy of pN—N.

Proof. By Theorem 2.2 there are 7% = 0 and ¢° > 0 such that Z(#°)
C U*(p) ~ (BX—+X), P(g) C X, and P(g%) ~ X* C Z(#). From the method
of construction of g, there is a subset N C P(gf) n X which is C-em-

bedded in X (cf. Theorem 2.2). Thus BN—XNC (BX —»X) ~ P(§)
C T*(p).

e © o
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LeMmaA 4.2, Let N* = gN—N be the set in 4.1. If R(X) is relatively
pseudocompact, then every P-point of N* is a P-point of X*.

Proof. Let p be a P-point of ¥* and f*« C*(X%), 0 <f*< 1 and
f*(®) = 0. To prove lemma it is sufficient to show that p eint*Z(f*).
‘Without loss of generality, f*=1 on e, R(X) n X* because N ~ e, B(X)
=@. Pub i*="—1 ¢ CHX*). k*(p)= —1 and ¥*= 0 on X*n~ e, R(X).
There is #* with 0 <# <1, #¥=1 on BN and k*= 0 on some nbd of
¢, B(X). Then %*-(h¥]X*) e C*(X*) and we may extend this function to
a member of CYX*v R(X)) by setting its value 0 on R(X). Since
X*U R(X) is compact, this extended function has a continuous ex-
tension ff over BX. Put ¢f = ff--1. Obviously gf(p) =0, ¢ = 1 on c R(X)
and Z(gf) » X*C Z(f*). Since p e N* pepX—»X and as in the proof
of Lemma 2.1, there is ¢° > 0 such that P(gf) ~ X*C Z(gf) ~ X*C Z(f*)
and p e P(gf). Thus p < int*Z(f*).

Lizywa 4.3. Every point p in fX—pX (and hence in X*—(cl,R(X)
 uX)) is not isolated in X*.

Proof. Let p e vX— pX. Since fX—»X is dense in fX— X by 2.3,
P is not isolated in X*. For p e pX—+X, there is Z(f%) with p e Z(f7)
CBX—»X. If p is isolated, then we may select f* with Z(f%) = {p} which
contradiet 9.6 in [5] (every point p of X* is not G, in gX).

Remark. A point in uX— X may be isolated in X*. For example,
let X=([0,0]x[0,2]—(2,Q)w R (top. sum). Then »¥— pX and
pX—X contains the point (2, 2) which is an isolated point of X*.

From above lemmas we have a generalization of Theorem R;.

TEROREM 4.4 [CH]. If R(X) is relatively pseudocompact, then fX— uX
has @ subset of P-points of X* which is dense in fX— uX.

Proof. Let p be an arbitrary point in X— uX. Since R(X) is rpe,
we have cl,B(X)CuX by (i) of Theorem 1.2 which assures pépX—
— (e, R(X) v pX) and p is mot isolated in X* by Lemmsa 4.3. By
Lemma 4.1 any nbd U*p) contains a copy of N*. Thus Lemma 4.2 and
Rudin’s result [15], it follows that U*(p) contains a P-point of X* which
concludes the proof.

TeEOREM 4.5 [CH]. Let X be an almost locally compact meiric space
without isolated points. Then X* contains a set of, at least, 2° remote points
which is dense in X*—(c R(X) v »X). :

Proof. Let p be an arbitrary point in X*—(c;R(X) v +X). p is
not isolated in X* by Lemma 4.3. Since pecl,X,, any nbd U,(p) contains
a eozero set P(gf) such that ¢ = 0, P(¢f) ~ L R(X)=0 and Plg) # @
by Theorem 2.2. Then P(g) contains a locally finite disjoint family {U,}
of open sets of X such that clxU, is compact and § = U{elxU,} is
C-embedded and cl,8 C P(gP). Let us put W== | JUy,. Then S = clzW
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= | J{elxUy} is o-compact. By Plank’s theorem 5.5 [CH] [13], S has
2 collection of 2° remote points of 88 which forms & dense subset of fS—8.
On the other hand, by Lemma (in § 3 of [14]) every remote point of B4 is
a remote point of AX. Thus U*(p) = Uﬂ(p)nX* containg 2° remote
points which completes the proof.

Next we generalized Plank’s theorem 3.3 and 3.4 whose proof are
the same as in [13] except using Theorems 3.2, 3.3 and above lemmas,

TesorEM 4.6 [OH]. Let X be an almost locally compact space which
is not pseudocompact. If A is a f§-subalgebra of 0(X) with |A| = c, then X*
contains. a subset of 2° A-points which is denmse in SX —(uX v e, B(X)).

Proof. Let p e X*—(uX v d R(X)). Similary to the proof of Theo-
rem 4.5, there exists ¢? > 0 with clﬂP(gﬁ) A cyR(X) = @ by Theorem 2.2.
Thus we can consider that P(g°) » X* is locally compact. On the other
hand, by Theorems 3.2 and 3.3, it is easy to see that P(g%) ~ X* has the
property G,. From the same method of proofs of Theorems 3.2 and 3.3
in [13] we conclude the proof of our theorem.

A modification of the proof of above theorem gives the following
generalization of Theorem 3.4 in [13].

THEOREM 4.7 [OH]. Let X be an almost locally compact space which
is mot pseudocompact. If {A,; a <A} is a family of B-subalgebras of O(X)
with |4, = ¢ for each ae A and {A]=c. Then X* contains a subset of 2°
points which are simultaneously A-points for all « A and dense in fX—
— (‘ux v} OIFR(X)).

§ 5. Round subsets and P-points. A subset 4 of X is said to be round
if el Z(f) is & ubd of A whenever 4 C clzZ( f) [10], and Mandelker proved
the following interesting theorems: fX— X is a round subset of X if
and only if the intersection of all free maximal ideals in C(X) is precisely
the family Cx(X) of all functions with compact support. Moreover the
following results was obtained by him: i} For any space X, fX—»X is
a round subset of fX. i) X is a P-space if and only if every subset of fX
is round.

TEEOREM 5.1. For any space X, pX—uX is a round subset of pX.

Proof. Let fX—uX CeclyZ(f) and f= 0. If P(f) i3 not rpe, then
P(f) contains a C-embedded subset ¥ and elyN— N C fX—»X. On the
other hand, Z(f) n N = @ and by 1.20 of [5], Z(f) and N are completely
separated. This shows el ¥ ~ el Z(f) =@, which contradicts the faet
that fX— uX CclzZ(f). Thus P(f) must be rpe. Since by Theorem 1.2,
Ay P(f)CpuX and clyP(f) v el Z(f) = pX, we bave X —pXC X~
—cl, P(f) Cel,Z(f) which leads fX— uX Cintgel; Z(f).

THEEOREM 5.2. Let A be a compact round subset of BX contained in
XX, ‘

icm°
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i) Every nonvoid G, subset of X* containing A has a nonvoid interior

containing A. :

ii) For any subset B C X, |B| = 8y, 4 ~ B =@, we have ekBnAd=0.
i*ii) A point p of »X—X is a round subset of fX, then p is a P-point
of X°.

Proof. i) Suppose that there are open sets W, in BX (neN) such
t?mt ElﬂWﬂ CWys; Un=X"~ W, is a nbd of 4 and () U, is not a nbd
(in X7) of A. For each #, let f be a function such that 0 < f8< 1, ff=1
on fX—W, and fi=0 on 4. Obviously ff= 3' (1/2%)-f% < C(5X) and
ff=10 on A. Since 4C»X—X and AC Z(f%), we have Z(f) # O and
A CvX A Z(f?) = vX ~ e Z(f) by (iii) of Theorem 1.2, ie., ACeclZ(f).
But from the method of construction of f%, 4 ¢ int;el, Z (f) which shows
that A is not a round subset of 3X.

ii) and iii) follow from i).

5.3. Exawrre. i) In Theorem 5.2, we can not drop the condition
perX—X. Let X=UN, pX—»X = X" Since X is a P-gpace, every
subset of fX is a round subset of fX, but there is a point in X* which
is not a P-point.

i} There is a space that every point of »X— X is a round subset
of X and hence a P-point of X, Such a space is given in [5], i.e., there
is a P-space which is not realcompact.

iii) The converse of iii) in Theorem 5.2 is not valid. Let X be a space
given in Negrepontis [12]. If we put X = N u E, then X is locally com-
pact and »X = X v {p} where p is a P-point of X*. Obviously p e cL, N
and {p} is not a round subset of X by Theorem 5.2.
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The G,-topology on compact spaces
by
Scott Williams and William Fleischman (Amherst, N. Y.)

Abstract. Is every Gy - covering of a compact topological space reducible to a 2Ro-gub-
covering? This guestion is answered in the affirmative for linearly ordered topological
space. In fact, the authors’ major result is that each Gj-covering of a finite product
of compact linearly ordered topological spaces has a 2Re-star-finite refinement con-
sisting of Gy sets.

1. Introduction. Nearly forty years ago Alexandrov and Urysohn [1]
conjectured that a compact first countable Hausdorff space could contain
no more than 2% points. Arhangel’skil [2] proved that conjecture true
several years ago, and thereby re-opened some related questions, one
of which was related to W. Fleischman by Professor I. Juhasz. In the
present paper we offer more than a solution to this guestion:

Bach covering by G4-sets of a compact linearly ordered topological
space is reducible to a subcovering of cardinality not exceeding 2o,

2. Compact linearly ordered topological spaces. We will call compact
linearly ordered spaces CLOTS.

Let (X, 7) be a topological space. The collection of 7-G,-sets can
form a base for a finer topology 8 on X, called the @,-topology on X in-
duced by 7, or simply the G;-topology when no confusion results.

If for each Z-open covering of the space (X, X) there exists a sub-
covering of cardinal not exceeding m, we say (X, X) is m-lindelsf. With
this definition in mind, we observe that our problem may be formulated
as follows:

If (X,7) is a OLOTS, then (X, 6) is 2%-lindelsf.

Of course if (X, 7) is first countable, (X, §) is discrete, and therefore,
(X, 8)is | X|-lindelsf. Hence, the unit interval with the Euclidean topology
exemplifies a CLOTS whose @,-topology is not m-lindeldf for any m < 2.
Qur first proposition seems to follow from [3, p. 27]; nevertheless,
we shall offer an alternative proof igniting the techniques used in this work.
PROPOSITION A. If the linear ordering of the CLOTS (X, t) is a well-
ordering, then (X, 8) is lindelof (s,-lindeldf).
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