icm

Representation of involuted semigroups
by binary relations
by
B. M. Schein (Saratov)

Abstract. We give necessary and sufficient conditions for a‘.nW(ordered) involuted
semigroup to be isomorphic with an (ordered) involuted semigroup of binary relations
in which the invelution is the conversion of relations (and the order is the set-theoretical
inelusion). The same problem is solved for representations of (ordered) semigrouds (or
semiheaps) by binary relations. The conditions of representability are universal Horn
formulas.

An involuted semigroup is an algebra 4 = (4;-,”') with a binary
multiplication - and unary involution ~* subject to the following three
identities:

(1)  (ay)e= o(ye),
@) (=2,
@ (wy)™ =gyl

A subalgebra of an involuted semigroup A is called an involuted sub-
semagroup of A. '

Historically, the first example of involuted semigroups was that
of groups. Bvery group is isomorphic to an involuted semigroup of permu-
tations of a set (the Cayley theorem). Here a permutation of a set X is
a bijective self-mapping of X, i.e. a one-to-one and full binary relation
on X. The multiplication and involution of permutations have their
usual meaning of composition and conversion.

Tf in the definition of permutations we.do not demand that they
should be full, i.e. everywhere defined, we obtain involuted semigroups
of partial one-to-one transformations of a set. Such involuted semigroups
are inverse semigroups and every inverse semigroup is isomorphic to
an involuted semigroup of one-to-one partial transformations of a set
(the Vagner-Preston theorem).

If in the definition of permutations we do not demand that they
should be one-to-one, we obtain full multi-valued transformations, i.e. full
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binary relations of a set (in effect, since involuted semigroups are closed
under involution, an involuted semigroup of binary relations containg
converses of all the relations belonging to it; if at least one of the re-
lations is not one-to-one, the involuted semigroup containg a multi-valued
transformation). Those involuted semigroups which are isomorphie to
involuted semigroups of full binary relations form an extensive class of
algebras containing, in particular, all groups and all inverse semigroups.
An axiomatization of this class was found in [12]. In particular, an in-
voluted semigroup is an inverse semigroup if and only if it is isomorphie
to an involuted semigroup of full binary relations and satisfies the identity
[12] and [13]

(4) : = x.

Now, if in the definition of permutations we do not demand either one-
to-oneness or fullness, we obtain arbitrary binary relations. An involuted
semigroup of binary relations is an involuted semigroup of the form
(F; o, ') where F' is a nonempty set of binary relations on a set, o is the
relative multiplication and ~' is the usual conversion of binary relations.

Thus involuted semigroups of binary relations are, in a sense, an
ultimate generalization of permutation groups. The main problem solved
in this paper is an explicit abstract characterization of involuted semi-
groups of binary relations. In other words, we give a system of axioms
necessary and sufficient in order for an abstract involuted semigroup
to be isomorphic to an involuted semigroup of binary relations. This
problem is similar to the problem. of characterizing relation algebras in
the sense of A. Tarski [17] or relation algebras in the sense of B. Jons-
son [7]. An involuted semigroup isomorphic to an involuted semigroup
of binary relations is called representable. It is known that the class of
representable involuted semigroups forms a quasivariety (i.e. it can be
characterized by a system of elementary axioms each of which is & con-
ditional identity) and not every involuted semigroup is representable [14].
It is shown in the present paper that the class of all representable in-
voluted semigroups does not form a variety of algebras, i.e. cannot be
characterized by a set of identities. :

As a first step we solve the problem of abstract characterization of
representable ordered involuted semigroups. An ordered involuted semi-
group is an algebraic system of the form (4; -, =%, <) where (4; -,™)
is an involuted semigroup and (4; <) is a (partially) ordered set, where
the order relation < is stable under both operations of the involuted
semigroup, i.e. satisfies the axioms:

(5) @ <@ &y < Yoo B Y1 < Dol

(6) r<y> gt <y,
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Sinece every set of binary relations is ordered by the set-theoretical in-
clusion of relations, we may consider ordered involuted semigroups of
binary relations (F; 0,1, O); clearly, they satisfy conditions (B) and (6).
An ordered involuted semigroup is called represeniable if it is isomorphic
to an ordered involuted semigroup of binary relations.

The method used to solve the problem of characterization of re-
presentable involuted semigroups permits us to solve a similar problem
of characterizing representable semigrouds. This problem is considered
by many authors as the central problem of the theory of semigrouds.

A semigroud (in ofher terminology, a semiheap) is an algebra (4; [ J)
with a ternary operation (ay, d,as)l~ [a,a,a,] satisfying the following
identities of skew associativity

(M |[”f'1 W3] %4 ”5] = [%[% 3 s] Ws] = [991 AN ”5]] .

Semigrouds are closely connected with involuted semigroups. In fact,
it (4; -,7") is an involuted semigroup and [a;a,a;]= a,a7%a,, then
(4;[ 1) is & semigroud and every semigroud can be isomorphically em-
bedded into a semigroud associated with an involuted semigroup [2].
An ordered semigroud is an algebraic system of the form (4; [ ], <)
where (4; [ ]) is a semigroud, (4; <) is a (partially) ordered set and the
order relgtion =< is stable under the ternary multiplication [ ]:

(8) < B&Y <Y &u <= [09,2] <[5y .

Let g, 0,7 CX X Y be binary relations between the elements of two

“sets X and Y. Define [go7] = o070 o (the factors in the product of

binary relations are written from right to leff). Then [go7]C X X ¥ and
the set of all binary relations between the elements of X and Y is a semi-
groud under the ternary multiplication [ ]. Subsemigrouds of such semi-
grouds (for arbitrary X and Y) are called semigrouds of binary relations.
If (F; [ ]) is a semigroud of binary relations, then (F; [ ], C).is an ordered
semigroud of binary relations (here C is the sef-theoretical inclusion re-
lation. on I"). An (ordered) semigroud is called representable if it is iso-
morphic to an (ordered) semigroud of binary relations. It is known [14]
that the clags of all representable semigrouds forms a quasivariety and
not every semigroud is representable. The problems of characterizing
representable involuted semigroups and semigrouds are long-standing ones
(see [2], where the concept of a semigroud was introduced for the first
time, and Problem T21 in [19]). :

The problems of abstract characterizations of representable (ordered)
involuted ' semigroups and semigrouds are typical problems on relation
algebras in the sense of [10] and [11]. Representations of semigrouds by
binary relations have been considered in [4], where a system of axioms
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for representable semigrouds has been found. However, these axioms
are sentences in the third order predicate caleulus. By the fundamental
theorem on relation algebras, [10] and [11], the class of representable
semigrouds is elementarily axiomatizable. We find a system of elementary
axioms for this class.

A gystem of elementary axioms for representable involuted semi-
groups has been found by R. McKenzie [8] (never published). However,
these axjoms have a'very complicated form and are not conditional
identities. Our axioms have a much simpler form. Elementary axioms
for representable ordered involuted semigroups have been found by
D. A. Bredihin [1]. These axioms are similar to ours; however, our axioms
are visualized much more easily. :

" Abstract characterizations for (ordered) involuted semigroups of
special binary relations have been found in [5], {12], [13] and [16].

Abstract characterizations of (ordered) involuted semigroups of all
binary relations on a set and of semigrouds of all binary relations between
the elements of two sets have heen found in [3], [6], [9] and [14] (in the
case of semigroups) and in [14] (in the case of semigrouds). A related
problem has been solved in [15]. , '

The following coneépt of net is of central importance in this paper.
A net of order n is a finite oriented graph M, having n--1 vertices (which
we identify with the natural numbers {0,1, ..., n}), having no loops,
having an arrow (0,1) (here (i, j) denotes an arrow, i.e. an oriented edge,
leadirg from ¢ to §) but not an arrow (1, 0), and such that for every vertex
1>1 there exists a uniquely detexmined arrow (p¢,1) leading from
{0,1,...,i—1} to ¢ ard a uniquely determined arrow (¢; @) leading from ¢
to {0,1, ...,49—1} (thus, p:< i and g, < 9).

Since nets are extensively used in what follows, we will congider
this concept in more detail.

First of all, it is clear that if M, is a net and 0< F < 7, then the
set {0, 1, ..., k} of vertices and the set of all arrows of M, betwoeen these
vertices form a net My of order k. A net I is called a subnet of 2 net My
if M= My for some k, 0<k<n. Thus M, has precisely n subnets,
namely, M, M,, ..., M,.

Any net M, of order » has exactly 2n—1 arrows. In effect, the subnet
M, of M, has one arrow, by definition, Suppose the subnet M, , has
2i— 3 arrows. The subnet M is formed from I i~y by adding a new vertex ¢
and two new arrows (pq, i) and (i, g;). Thus M; contains 20— 342 = 241
arrows. By induction, M, contains 2n—1 arrows.

We shall number consecutively the arrows of any net of order m.
The arrow (0; 1) has number 0. The arrows (21, 4) and (4, ¢;) have numbers
2i—3 and 2i— 2 respectively. Thus every arrow is numbered by a single
number from 0 to 2r—2. We identify the arrows with their numbers;
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to distinguish them from vertices, arrows are written as bold face numbers.
B.g. (pi,%)=2i—3.

All nets can be constructed by a very simple procedure. The only
existing net M, of order 1 is just two vertices 0 and 1 and an arrow
0= (0,1). Any net of order » is obtained from a net M, _, of order n—1
by adding a new vertex n and two new arrows 2a—3='(p,,n) and
2n—2 = (n, g») where p, and ¢, are some (possibly coinciding) fixed
vertices of M,_,. This may be visualized in Fig. 1.

.
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Fig. 1

Thus, 2 net of order # can be constructed from a net M,_, of order
n—1 in n® different ways. It follows that there exist 1-2%-"... :n? = (n!)?
different nets of order x. .

If (i,§) is an arrow, then (¢,j)"* is called the reversed arrow. The
reversed net Mt is obtained from MM, if all the arrows of M, are reversed.
(4,5)7" leads from j to 4. L

An edge of M, is either an arrow of M, or an arrow of Mn (i.e. an
‘edge is either an arrow or @ reversed arrow of M,). A chain in Mn.ls
a nonempty finite sequence of edges such that the end of each edge coin-
cides with the beginning of the next edge.

Let A= (4; -,”%, <) be an ordered involuted semigroup an'd let M,
be a net of order n. A metric on M, (more precisely, an A-meiric on M)
is any mapping d: {0, 1, ..., 2n—2}—>A of the set of arrows of M, into A.

Define d(i~*) = d(i)~* for every arrow i of My. If p= (e, €2, ..., €m)
is a chain in M, consisting of edges e;, write d(u) = d(e)d(es) - d(em),
where the right-hand side product is taken inside 4. Then d(u) is called
the length of u.

An A-metric on M, is called proper if for any &, 0< k<_ n, there:
exists a chain uy in My leading from py, to g4, Whose length is shorter
than that of the chain (2k—1,2k), le. d{ur) < d(2k.—1)d(_2k). _

Proper metrics on M, can be constructed ihnductwely in a simple
way. We can definoe ¢ consecutively on subnets .Z.lll, M,, ey Mn A proEﬁ
metric on M, is merely a mapping of {0} into 4, i.e. to define it we should
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pick out an element a, ¢ 4 and suppose d(0) = a,. Suppose d is defineq
on My. Choose a chain uy in My leading from p,., to ¢,,, and pick out
two elements @, ;, 4y, € 4 such that d(us) <ty dy,. Then define
a(2k—1) = @y, A(2k) = a,y,. The resulting d is a proper metric on M,,,.
Thus we can construet a proper metric on M, and every proper metric
on. M, may be constructed in this fashion. We have supposed that for
every a < A there exist b, c ¢ 4 such that o < be. However, as we shall
see later, this is always the case in thoge ordered involuted semigroups
in which we are interested.

A proper 4-metric ¢ on M, is called regular if for every chain win I,
leading from 0 to 1 d(0) < d(u).

TBEOREM 1. An ordered imvoluted semigroup A is representable if and
only if every proper A-metric on every net is regular.

Proof. Necessity., Suppose d is a proper F-metric on a nef M,
of order » for an ordered involuted semigroup F of binary relations on
o 8ot X. Lebt (2, ) € d(0) for #,, 4, ¢ X. .

We are going to define a sequence a, %y, ..., @n 0f elements of X
such that if (i,j) is an arvow of M,, then (w;, @) e (4, 4)).

The first two terms of such a sequence have already been given,
Suppose z, ..., 2; have already been defined (0< k< n). By supposition,
there exists a chain u; leading from Prr1 0 @pyy and such that d(u)
Cd(2k—1)d(2k). By the supposition of induetion, (@, @) € d((i, j)} for
0<1,j < k. Therefore, (z;, %) e d((4, ) = d((3, ™). By the definitions
of a chain and the relative multiplication, («:, ;) ¢ d(v), where » is any
chain in My leading from ¢ to j. In particular, (@,,,., %) € d(u)
Ca(2k—1)d(2k). (Notice that here we do not use o to denote relative
multiplication and the factors in the relative product of two binary re-
lations are written from left to right and not from right to left as we
do when. o is used). It follows thatb By Try1) € 4(2k—1) and (P41 Bgpn)
€ d(2k) for some z;,, € X. Choose such a,,,. Clearly, now (@5, @) € d[i, )
for 0<4,j<%-+1. By induction, the whole sequence Dyy .eey Xy CAD bB
constructed.

Now suppose y is a chain in M, leading from 0 to 1. As we have
just seen, this implies (a,, z,) €d(u). Thus (w,, @) e d(0) ivaplies (wy, 2,)
€ d(u) for all @, @, ¢ X, i.e..d (0)C @(u). Therefore, the metric d is regular.

Now if 4 is a representable ordered involuted semigroup, then every
proper A -metric is regular since this is true for all proper metrics with
values in the ordered involuted semigroup of binary relations which is
an. isomorphic image of 4.

. Sufficiel}cy. Let 3 denote the clags of all representable ordered
involuted semigroups. Suppose A4 is an ordered involuted semigroup and
every proper A-metric on every mnet is regular. Then this is true for all
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proper B-metrics where B is any ordered involuted subsemigroup of 4
(since B-metrics can be considered merely as a particular cage of
A-metries with values in B), Suppose our theorem is true for denumer-
able ordered involuted semigroups. Then every finitely genefated ordered
involuted subsemigroup B of A satisfies the conditions of the theorem
ie. Bedb. It is known [10], [11] and [14] that the class X is u.niversali
Therefore [18], 3§ has the local property: if every finitely generated sub-

" system of a system belongs to X, the System itself belongs to X. So 4 « %.

It follows that we need to prove the theorem for the denumerable cage
only. Therefore, we suppose that A4 is a denumerable qrdered involuted
semigroup satisfying the condition of our theorem.

We are going to construct sequences M, << M,<< ... of nets and
4, Cd,C ... of proper A-metrics (here d; is a metric on M, M, , < M,
means that M, ; is a subnet of M, i~1 C ; means d,

i —1 18 a restriction '
of d;) satisfying the following condition (P):

(P) for every chain uy in M, leading from ¢ to % and for every

ayy @y € A such that dm(um) < a,0, there exist an # and a vertex j in M,
such that m < n and du((i, j)) < a, da(f, b)) < a.

Let N be the set of all natural numbers, and let (N x N)* denote
the set of all finite sequences of pairs of natural numbers. Theh the set
(NXN¥*xAxA ig infinitely denumerable, o let a be a fixed bijection
of this set onto N.

We define M, d, inductively. Choose an element g ¢ A and define
a(0) = a. Then d, is a proper 4-metric on M.

Suppose that we have defined the Sequences M, < ..< M, , of
nets and d, C ... Cd,_, of metrics. Let B,_, = {a(p, @y, a): u e a chain
in M, , leading, say, from ¢ to k; O, oy € A5 4, (u) < aya,; there exists
no vertex j in M, , such that d, ,((s,)) < a and dua((§, B) < a5}
Notice that any chain in M,_, iy a sequence of edges which are ordered
pairs of natural numbers (vertices), and so every chain is an element
of (N X N)* and.the definition, of R,_, makes sense.

Two cases are possible.

Case 1. B, _, is empty. This means that the sequences M, < ..
e < M,y and dy C ... C d,_, satisty condition (P) and we need nob prolong
the sequences.

Cago 2. R, _, is not empty. In this cake define Bp_y=mink, _,.
Then f, ;== a(uk, ay, ay), where ug is a chain in M, _, leading from 4

b0 ky @, _s(px) < ayay and. there is no vertex j in M,_, such that d, ()

<o andd, ((j, k)) = ay. Define M, and d,, as follows: add a new vertex n
and two new axrows (4, n), (n, k) to M,_, and extend &, to d, supposing

(3, m)) = a, du((n, k) = ay. Clearly, d, is a proper metric on M,.
3 — Fundamenta Mathematicae, T. LXXXII |
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Proceeding as ‘above, we either obtain finite sequences satistying -

g ind that the sequences M; < ... and d1C.f o are infinite.
%rgfvzjg-,(g ;);efla,tter (infinite) case property () isf, sauitlgfl.e(l. In e(ﬁ:feot,
it follows from the definition of M, that‘ Br1 < Bus -thel.efoxe, rn._l < .
Suppose‘ dn(pix) < aga, for a chain pgp in My leaJdu_q,gil &or?) % Jﬁ) 3 g.mg
for a;,a, € A. Lot a(uir, o1, az)‘zp apd n=p+2. T en,. Ly he imm«.
mality of B, and the evident mequaht}f Pn >p, there exists a vertex j
in M, such that da((t,) < a, and da((j, ) < aa.

Let X, be the set of all vertices of thq netsy M@ frm?a ‘t]lle sequence
constructed above (so, if the sequence is finite, X is an }n1.t:1a1 sequence
of ¥, otherwise, X, coincides with I). For every bed (lc.a.juflr?e 2 blnfﬂ'y
relation P.(b) on X, as follows: (4, ]) ¢ Pu(b) if: and .only if H}e@ gxm’ﬁs
a net M, in our sequence and a chain pgy in My leading from. 4 to j such

) <b. :
thajt’.[‘%éﬁﬁllowing chain of equivalences shows that Pa(b™") = Pu(b)™":

(3,5) € Palb™) & dulpiig) < 07" da(p) ™ < D> dn(piiy!) < b= (4, 9) € Pa(d) .

Here we have used successively the definition of Pa(b”l_), ) .(6), the d«.afi-
" nition of the length of a chain and the fact that uz;" is a chain in M, leading
from j to 4. ,

Njow suppose (i,7) € Palay) and (j, k) € Pu(a,). Then dp(uy) < a; and
d,(psx) < a for chains gy in Mp and ggp in JVI,!. Let n = max{p, q}. Then
nlpaig) < 0y and do(pe) < ay. Using (5), we obtain: da(p psr) == dulpsy) dnlpsr)
< a, 4, and, sinee ug;sx is & chain in M, leading from i to %, (¢, k) € Pa(aya,).

Conversely, suppose (i, k) € Pa(a, a,). Then dm(uix) < a;a, for some m
and. a chain uy in My leading from ¢ to k. By property (P), t.hex_'e exist
an n and a vertex j in M, such that du((4,7)) < e, and d,,,‘(( 3, ) < a.
Binee (7, j) and (j, k) are chains in My, (i, ) € Pa(a,) and (4, k) € Pu(ay).
Therefore, Pa(aya,) = Pa(a,) o Pa(ay). :

If oy < a4y and (7, §) € Pa(ay), then dn(usy) < a; for some n and wiy.
It follows that dn(uiy) < @, and (i, §) € Py(as). Thus a, < a, implies Pa(a,)
C Py(ay). : _ .

Now let X be the sum of the family (X,),., of sets. Without loss of
generality we may suppose that the sets X, arve disjoint (e.g. we may
zeplace X by XaX {a}). Define P(b) = Z(Pu(b)),., where X denotes the
disjoint union of Pu(b) (if the sets X, are disjoint, X' is the ordinavy set-
theoretical union). Clearly,

9) PO = P(b),
(10) P(aya;) = P(ay) > Play)

for all b, a,, a, « 4, since the same properties hold for P,. In the same.

Way, 4y < @5 = P(ay) C P(a,). Now suppose P(a,) C P(a,) for some a,, a, € A.

- 8y < ay; hence @, = a, and P is one-to-one,
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Then Pu(ay) C Pa(a,) for all g e A. In Dbarticular, P,(a,)C P, (as). Since
dl((O, 1)} = a4y, We conclude that (0,1)e P, (a;); hence o, 11) p P, (ay).
Therefore, there exist an » and a chain H 0. M, leading from 0 to 11 and
such that du(um) < a. By the condition of gy theorem, the metric d, iy
regular. Therefore, a; = d,(0) < Gu(y) < a5, Thus

(11) . a4y < @y Pla,) C Play) .o

Formulag (9)-(11) show that P ig an igo
ordered involuted semigroup of binary relat
= P(ay), then P(a;)C P(a,) and P(a,) C P(a,

morphism of 4 onto an
ions. In effect, if P(a,)
). By (11), o, < a, and
The form of (10) is due to the
fact that we write factors in produects from left to right in abstract semi-

groups (as in 4) and from right to left in semigroups of binary relations.

Thus the ordered involuted semigroup is representable, which ends
the proof of Theorem 1. '

Remark 1. Suppose that 4 = (4; 7<) is a quasiordered in-
voluted semigroup, i.e. that < is a quasiorder (that is, reflexive and transi-
tive) binary relation on an involuted semigroup (4; -, ) and properties
(5) and (6) are satisfied. 4 is called representable in a wider sense if there
exists a mapping P of 4 onto an ordered involuted semigroup of binary
relations satisfying (9)-(11). This being the case,

Plag) = Play)< (0 < & a < ay),

ie. P is an isomorphism if and only if < is an order relation. The same
proof as that of Theorem 1 shows that g quasiordered involuted semigroup
is representable in a wider sense if and only if it satisfies the condition
of Theorem 1 (i.e. every proper metric on every net is regular). An obvious

readjustment of the definition of proper metrics in the case of quasiorders
is needed.

. Remark 2. Let (4; -, ") be an involuted semigroup and let p be
& binary relation om 4. Define proper A-metrics for 4 = (4; -, L, o)
precisely as for ordered involuted semigroups, using ¢-instead of <. Define
0 <, g for @y, ay e A if and only if there exist & net My .and a proper
A-metric d on M, such that @(0) = a, and d(u)= a, for some chain b
in M, leading from 0 to 1. Then %, I8 the smallest element in the set of:
all quasiorder relations = on A for which oCm (ie. a 0 ay= & 7 a, for
all ay,a,¢ A) and (4; ©y 7h'm) i8 a quasiordered involuted semigroup
tepresentable in a wider sense. The proof of this fact is quite analogous
to the proofs of Theorems 1 and 2.

Now we are going to characterize representable involuted semi-
groups. The sense of our necessary and sufficient condition of re-

Presentability (Theorem 2) is quite simple: on an involuted semigroup A
3
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we construch a quasiorder relation <_ (cf. Remark 2) which is the smallest
quasiorder relation turning 4 into a quasiorclered‘involuted sgmigmup
representable in a wider sense; A is reprgsen‘mble if and only if <. is
antisymmetrie (i.e. <. is an order. relation). In other words, 4 is re-
presentable if and only if for every two nets J!Im and Jl.[n. z.md every two
proper A -metrics dy on My and dy, on. M, (here in the definition of a proper
metric the equality relation = is used instead of <), every two chains y
in M, and » in M,, leading from 0 to 1, the equalities du(u) = d4(0) and
dn(v) = dw(0) Tmply dn(0) = dx(0). IIowever,l it turns o.ut that we may
assume My, = M, in the above condition. Moreover, if every element
of A is decomposable into a product of two elements, the metrics dy
and dy, in the above condition may be chosen alike (in the sense that the
chains figuring in the definition of dn are the same ag the chains for d).
To make all elements of 4 decomposable we add a new element to A.

Let A= (A; -,~%) be an involuted semigroup. If the semigroup

(A; -) containg an identity 1, then 17'=1. In effect, 1™'=1-1"1
= (@1t = @7y =1, If (4; ) does not contain an identity, adjoin
anew element 1 t0 4 and define1-w=o-1=sgforallwe 4 v {1},17' = 1.
As 2 result ‘we obtain a new involuted semigroup with identity; this in-
voluted semigroup will be denoted by A4'. If A contains an identity,
suppose A = A.

Suppose that 4 is an involuted semigroup, and M, is a net. An
A -metric on M, is any mapping d of the set {0, 1, ..., 2n— 2} of all arrows
of M, into A. Lengths of chains in any 4-metric d on M, are defined
precisely as in the case of ordered involuted semigroups. An A-metric 4
on M, is called proper if for any k, 0 < k< n, there exists a chain
in My leading from p,,, to g, whose length equals that of the chain
(2k—1, 2k), i.e. d(u) = d(2k—1)d(2k). Two proper A-metries d and d'
on M, are called similar if for any k, 0 << k<< #, there exists a chain ug
in My leading from Py, 10 g;., and such that d(ux)= d(2k—1)d(2k),

@(uz) = '(2k—1)d’(2k). In other words, two proper A-metrics are, :

similar if the same chains can be used in ascertaining the properness of
both metries.

If d is a metric on 4, then d(0) is called the major value of d. Two
metries d and @' on M, are called chained if there exists a chain w in M
leading from 0 to 1 and such that d(u) = 4'(0), d'(u)= d(0).

THEOREM 2. An involuted semigroup A is representable if and only if
every two chained similar proper A'-metrics on every net have the same
magjor values.

Proof. Necessity. As in the proof of Theorem 1, it suffices fo
prove the condition of our theorem for an involuted semigroup F of binary
relations. We shall prove a stronger condition: for every two nets Mu
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and M, and chaing u in My, v in M,, both leading from 0 to 1, and for
every two proper’ F'-metrics, dn on M, and d, on My, the équa,litieé
dn() = @a(0) and du(v) = dn(0) imply dn(0) = d,(0).

Suppose that My, Mn, 4, v, du and d, are as above and the above
two equalities hold. Since F* is an involuted semigroup of binary re-
lations (*), it is ordered by the inclusion order relation C; let F© denote
the corresponding ordered involuted semigroup. Now dy and d, may
be considered as FC-metrics; obviously, both d, and d, are proper FC-
metrics. By Theorem 1, du(0) C dn(u) and dn(0) C du(»); hence dm(0)
C dn(p) = du(0) and analogously dn(0) C du(0). It follows that dm(0) = da(0).

Sufficiency. One possible approach is to define a binary relation <
on the set 4 of elements of an involuted semigroup A: a, < 4, if and only
if there exist a net My, a proper A% metric d on M, and a chain pin M,
leading from 0 to 1 and such that a; = d(0), a, = d(u). Then we could
prove that (4; -,™, <) was an ordered involuted semigroup satisfying
the condition of Theorem 1. Thus (4; -, % <) would be representable;
hence. 4 would be representable as well. However, such an approach
leads to an entirely new proof as compared with that of Theorem 1. To
save room we give another proof, using that of Theorem 1.

As in Theorem 1, we see that without loss of generality 4 may be
supposed to be:a finite or countably infinite involuted semigroup satis-
tying the condition. of Theorem 2. Now copy the whole proof of Theorem 1
up to the formulas (9) and (10) with the following alterations: consider 4* -
instead of 4 and = ingtead of <. The proof is transferred to this case
without alterations. Then P is a homomorphism of 4' onto an involuted
semigroup of binary relations. It remains to prove that P is an iso-
morphism, i.e. that P is one-to-one.

‘Suppose P(ay) = P(a,) for a,,a,e A. Then Py(a,) = Pa(a,) for all
aed. Tn particular, P, (@)= P, (a,). As in the proof of sufficiency of
Theorem 1, we obtain (0, 1) ¢ P, (), i.e. there exist an # and a chain p
in M, leading from 0 to 1 such that d,(0) = a, and dn(u) = a, for a proper
A*-metric dy on M,. Analogously, there exist an m, a chain v in M}, and
a proper A-metric d,, on M,, such that d,,(0) = a, and d,,(») = a,. Here
condition (P) is satistied for M,, d, and for M,,, d,,.

We are going to construct a new net M of order m-+n “glueing to-
gether” M, ahd M, as in Fig. 2, where the arrows displayed in M, and M,,
are the 0th arrows and a new arrow is added. The problem is to renumber
the vertices and arrows of M.

The vertices of M are {0, 1, ..., m-+n}, the arrows are {0, 1, ..., 2m+
+2n—2}. Define injections f and g of the sets of vertices of M, and M,
into the set of vertices of M as follows: f(0) = 0, f(k) = k+1for1 <k < #;

(*) We suppose F*== F U {4} where 4 is the identily relation in the case of F* # F.
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9(0) =2, g(1) = 1, g(k) = k+n for 2 f\<,k < m. If (z:,j) i;% an arrow -in My,
then (f(d), f(j)) is an arrow in M, if (3, j) is an arrow in M, then (9(3), 90)
is an arrow in M. In other words, f and ¢ are isomorphic embeddings
of M, and M,, into M. If (i,j) is an arrow in M,, then we will write
£((3, §)) instead. of (F@), F(3); g((.i,j)) ‘half an &Ifa;logous. meaning. f((@',j))—l
= (£, FG)5 (6, )7 = {g (), g(3)) 7 I @ is & chain in My (in I,
then, f(x) (g(n)) denotes the corresponding chain in M.

N
S/ \\ 2N
/! X N b

® \\/ new arrow\x// .

Fig. 2

Define A*-metrics d and d’ on M as follows: d(0) = a,, cl(f(i)) = du(i)
for every arrow i of My, d(g(i))= 1 for every arvow i of M5 4'(0) = a,
@'(f(i)) =1 for every arrow i of M, d'(g(i))= dp(i) for every arrow i
of M,,. To check the fact that both & and 4’ are proper we need only
mention that d(1)d(2) = a,-1 = a, = d(0), d'(1)d"(2) = 1-a, = a, = d'(0).
- Clearly, d and 4’ are similar, since all the chains we used to show that du
and d., are proper are isomorphically mapped (by means of f or g) into M.
Since d(f(u), g = Af(W)dlg()) = tp'1= ap= d'(0) and &{(f(x),g0)
= d&'(f(p))@1g(»)) = 1-a, = @, = d(0), the metrics d and &' are chained. Here
(f(@), g(»)) denotes the juxtaposing of the chains f(u) and g(») in 1. Clearly,
it is a chain in M leading from 0 to 1. :

By the condition of our theorem, a, = d(0) = d'(0) = a,, i.e. P8
one-to-one. P induces an isomorphism of 4 onto an involuted semigroup
of binary relations, i.e. 4 is representable, which completes the proof
of Theorem 2.

Suppose that & is a set, gl ¢* is a bijection of G onto a set G¢*, & and
G* are disjoint, and H = @ u @*. The set FI(G) of all nonempty words
over the alphabet H is an involuted semigroup under the juxtaposition
of words and the following involution: (hihy ... hs)™ == A7V ... by *hy* for
all hy, hyy ooy by e H. Here g=* = ¢g* and (g*)™ = ¢ for all g e @.

FI(@) is a free involuted semigroup, and & is a set of free generators
of FI(&). We identity the identity of FI(G)* with the empty word 1.

PROPOSITION 3. Free involuted semigroups are representable.

Proof. Suppose that FI(G) is a free involuted sémigroup, and |of de-
notes the length of the word o e FI(G); in particular, {1]| = 0.
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Let My be a net, and let d and ¢ be chained similar proper FI(G)-
metrics on My, d(u) = d'(0), d'() = d(0) for a chain x in I, leading
from 0 to 1. )

We shall prove that |d(0)] < |@(v)| for every chain » leading from 0
to 1, and |d(0)| = |d(v)| implies d(0) = d(»). Let m be the minimal number
such that » is a chain in M, . Then m < n. We give a proof by induction.
If m =1, then » is of the form (0,070, ..., 07, 0) and our statement
is obviously true. Suppose it is true for all m < k. Let » be a chain in 3, .,
but not in M. Then at least one of the edges 2k— 1, 2k—1) 2k, 2k)
belongs to ». Suppose that u is a chain in My leading from DPryr 10 Gruy
and such that d(uzr) = d(2k—1)-d(2k). Such a chain does exist since d is
proper. Replace every subchain (2k— 1, 2k) occurring in » by wx and every
subchain ((2k)7, (2k—1)7") = (2k—1, 2k)™* by ¢%'. We obtain a chain »
leading from 0 to 1. Clearly, d(») = d(»). Omit all the oceurrences of
subchains (2k—1, (2k—1)7Y), ((2k)7, 2k) from ». We obtain a chain »
leading from 0 to 1 and such that |d(»)| < |d()]. Clearly, |d(3)] = |d(3)|
it and only if » does not contain the above subchains, ie. » = ». Now,
v i§ a chain in My and, by the supposition of induction, |d(0)] < |d(3)].
Therefore, |d(0)] = [d(»)|. If |@(0)| = |d(»)|, then |d(0)] = |d(»)], » = » and,
by the supposition of induction, d(0) = d(») = d(») = d(»).

Thus |d(0)| < [d(w)| = |@(0)] < |@'(u)] = |a(0)]; hence, |d(0)] = |d(x)]
and, by the above statement, d(0)= d(u)= d'(0). Therefore, the con-
dition of Theorem 2 iy fulfilled. It follows that Fi(G) is Tepresentable.

CoROLLARY 4. The class of all representable involuted semigroups does
not form a variety of algebras, since it is not closed under homomorphisms.

Proof. Tvery involuted semigroup is a homomorphic image of a free
one; there exist involuted semigroups which are not representable [14];
free involuted semigroups are representable by Proposition 3.

Remark 3. It was proved in [14] and in [10] and [11] that the class
of all representable involuted semigroups forms a quasivariety of algebras
(ie. a clags characterized by a system of quasiidentities, a gquasiidentity
being a universal formula of the ‘form 4, & 4, & ... & 4,=4, where
Ayy Agy oy Ay, A are equations and no quantifiers occur). It follows
from Corollary 4 that the class of all representable involuted semigroups
cannot be characterized by a system of identities. Moreover, it follows
from Proposition 8 that any identity that holds for all representable
involuted semigroups holds for all involuted semigroups as well. '

The conditions of representability given in Theorems 1 and 2 do
not have the form of conditional identities. However, they can easily
be transformed into conditional identities (i.e. quasiidentities), which we
do in what follows.

Let M, be a net. Consider the first order predicate calculus fit for
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(ordered) involuted semigroups. The alphabet of the calculus compriseg
a countably infinite list of individual variables w,, &, .., two symbolg
for the operations of involuted semigroups (and a symbol for the orgep
relation), logical symbols (propositional connectives, quantifiers), equality,
technical ‘symbols (brackets). With every arrow i of M, associate the
individual variable x,. With every chain u= (e, e, ..., en) in M, ag-
sociate the term (polynomial) [u] as follows: [i]= @i, [i™']= #7 [u]
= [es][es] ... [en]. For example, [(0,47,67%, 6,37, 1)] = momflwf;—l%%_lml.

A chain system in M, is a sequence (fiy, gy w.y fy-g, #) Where e is
a chain in My leading from p,., to ¢, ., s is a chain in I, leading
from 0 to 1.

With every chain system § in M, associate the following formula ¢§):
i 8= (u1, piay vovy iy, ), then (8 is

(] < @ & [pn] < 0520 & oo & [pd] < gy g 005 & .

coe & [ty ] < By g g = Wy <[]

TemoREM 5. An. ordered involuted semigroup is represemiable if and
only if it satisfies conditions (S for every chain system 8 in every net M,.

Proof. Suppose that S is a chain system in a net M,. Substitute
an element d(i) of an ordered involuted semigroup A4 for each occurrence
~of @ in §. Then d.can be considered as a metric on M,. If the antecedent
of the implication (8} is valid, thiy means that d is a proper A-metric
(for the ehains i, ..., u,_, occurring in §). The regularity of d means
that d(0) < d(u) for every chain u in M, leading from 0 to 1. In.other
words, @, < [u] for our agsignment of values in 4 for individual variables 2.
Thus 4 satisties the condition of Theorem 5 if and only if every proper
A-metric on every net M, is regular. Now Theorem 5 follows from Theo-
rem 1, which completes the proof.

Theorem 5 characterizes the clags of all representable ordered in-
voluted semigroups in terms of elementary axioms. Clearly, the system
of axioms given in Theorem 5 is infinite. Moreover, for every net M, we
can construct an infinite system of .axioms, since there exists an infinite
set of chain systems in M,. The axioms obtained in this way are not
independent. Roughly speaking, shorter axiomg follow from longer ones.
I.utwha,t follows we reduce the number of axioms corresponding to o given
ne .Mn.

A chain » in M, is called straightened it it does not contain subchains
of the form (2i—1, 2i) or (2i— 1, 2i)-*.

REsTRIOTION 1. In conditiong {8> associated with chain gystems
We may - consider straightened chaing only,

Mqtivation._Suppose #x 18 a chain in a chain system § and B
contains a subchain (2i—1, 2i). Clearly, i< k. The chain ut leads from
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Pip 10 Gy4y 88 Well a5 the chain (Zf!— 1, 2i). Replace (2i— 1, 2i) by pein pp.
We obtain a new chain pic- Now if the antecedent of ¢8> holds for some
wie A, then [u] < @y, and [wm] < Togo—1 Tog, By (8), [l < @y, ¥y,
since [pz] < [px]. Thus up may be replaced by u in the antecedent of (.
Let ¢ be the smallest number such that the chain ki is not straightened.
Clearly, 4 is always straightened, and so 2 <4. As we have just seen,
we may replace u; (by replacing all occurrences of subchains of the form
(2j—1, 2j) and (2j—1, 2j)™ by py and urt) by another chain y; which is
straightened. We obtain & new chain system § and condition ¢8>
implies (8). It is now easily seen that we can replace all non-straightened
chaing in the antecedent of (S} by straightened ones, and the resulting
condition implies <S8

It remains to consider the final chain p-of 8. If x contains a sub-
chain (2i—1, 2i) and we replace it by u;, we obtain a new chain u. If
@, < (], then [u] < [u] and @, < [u]. Therefore, if u is replaced by “
in ¢8>, we obtain a stronger condition. It follows that we may consider
the chain systems with straightened chains only.

Consider the net M. Every chain in M, is of the form (0,07, 0, ...
.y 071, 0) and every chain system in M, is of the form (M).1 Theref(zre,
we obtain the following axioms corresponding to My: o, < @y %, ... L5 T,.
In particular, ‘

o< or '

(12) . . s
(here =z, is replaced by « for convenience). Clearly, (12) implies every
other axiom corresponding to 3{;. By Theorem 5, every representable
ordered involuted semigroup satisfies (12).

Let » be a chain in M,. Then (»,»™ %, ») is a chain which is ealle.d
a #igeag. If a chain u does not contain subchains which are zigzags, w is
called a chain without zigrzags.

RestricTioN 2. In the case of ordered involuted semigroups satis-
fying condition (12) we may consider axioms ¢S} for those chain systems §
only which consist of chaing without zigzags.

Motivation. Suppose a chain & containy a zigzag (v, vl"l, 7). Re-
placing the zigzag by » and doing the same v_vith all qther zigzags, we
obtain & chain 7 without zigzags. Clearly, [#] < [=] is tr'ue in every
ordered involuted semigroup satistying (12). It follows that if we replace
all chaing = by 7 in &, we obtain a new chain system § such that <8y
implies <8). o

! It c<zmn> be proved that for every net M, thelfe gxists only a finite
number of different chain systems satisfying restrictions 1 and 2. Thlis
every net produces & finite number of axioms for the class of represent-
able ordered involuted semigroups. ’
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It can also be proved that the only new axiom corresponding to
M, is 7o < @@= 0y < Ba7 @, (all the other axioms follow from this
one and from (8), (6) and (12)). The only new axiom which we obfain
considering various nets M, is 2y < 2% & oyt << Walty = Wy < 0y 7 1,
The other axioms follow from (12) and the ones just mentioned.

Now we will give a system of quasiidentities for the class of represent-
able involuted semigroups. To this end we suppose that the language of

the lower predicate calculus which we use contains the individual variables

Ty, @1y o 8DA Yo, Vi, o3 if u I8 a chain in My, then [u], denotes the
polynomial constructed above, while [u], denotes the polynomial con-
structed in the above fashion where all variables @; are replaced by y;.
It 8 = (pyy -y g1, #) is & chain gystem in a net My, then (8) is the
following quasiidentity:

[le = @2 & oo & [ty 1]y = Bop_sWpns & [p]o = Yo &
& [ly = ¥1%: & .. & {1, = Yon—sYon—s & [uly = @y= 2 =y, .

As in the proof of Theorem 5, we can show' that conditions (8) for
all chain systems S in all nets are equivalent to the conditions of
Theorem' 2; hence, the following result holds:

TEEOREM 6. An involuted semigroup A is representable if and only
if A satisfies the quasiidentities (Sg’ Sfor every chain system S in every
net My. =

As in the case of ordered involuted semigroups, we may consider
quasiidentities corresponding to straightened chain systems only.

We have characterized the classes of representable ordered and
unordered involuted semigroups by infinite systems of elementary axioms.
We conjecture that the classes are not finitely axiomatizable. It would
be interesting to find the axioms for our classes of algebraic systems in
the form of explicit axiom schemata without any use of “graph-theoretic
scaffolding” consisting of nets. :

The characterization of representable (ordered) semigrouds which
we give below is quite similar to that of (ordered) involuted semigroups;
therefore we will restrict ourselves to outlines of the proofs.

Firgt of all we should modify appropriately the coneept of net.
A net of order m (0 <) is & graph B, with the vertices {0, 1, ..., 2n+1}
and arrows {0, 1, ..., 3n}; each arrow leads from”an even vertex to an
odd one; (0, 1) is an arrow; for every i, 1< 4 < n, there exist uniquely
defined vertices pi, ¢i ¢ {0, 1, ..., 2i—1} such that (ps, 26--1), (24, 2i--1),
(24, ¢;) are arrows, It follows that p; is even and ¢; is odd. The vertices
0,1,..} 2041} and the arrows {0, 1, ..., 3i} form a subgraph which is
& net. It is called a subnet (of order i). We denote this fact as follows:
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Bi< Bn. Thus there exists a chain of subnets By< B, < ... < By. Clearly,
2 net is a bipartite graph. .

Thus B, is constructed from B, , by adding two new vertices and -
three new arrows, as is shown in Fig. 3

. 2

Fig. 3

In B, we will consider only those chains which lead from an even vertex
to an odd one. It is easily seen that every such chain consists of an odd
number of edges. ] i

If A= (4; [ 1, <) is an ordered semigroud, an 4-meiric on a neb
B, is any mapping d: {0,1, ..., 3n}—A. An A-metric d is called proper
it for every i, 1 < i < m, there exists a chain yx; in B, , leading from p;
to g and such that d(w)<[d(3i—2)d((3i—1)7")d(3i)]. Here 3i—2
= (pi, 2i--1), 3i—1= (24, 2i-+1), 3i= (24, q:) and d(p) is defined in
the obvious fashion: if wi= (&1, €y ..y €ap_) then d(us) = [d(e)d(e5)...
o degt ) d(eyy—1)]. Here the edges with odd indices are arrows and
edges with even indices are reversed arrows, the product of 2k—1 factors
is defiried inductively: if % > 1, then [a, ... Gy_;]= [[a; - Gop—s]Gop s Go—1]-

A proper A-metric d on By is called regular it d(0) < d(p) for every
chain p in B, leading from 0 to 1. Here 0 = (0, 1).

THEEoREM 7. An ordered semigrowd A is representable if and only if
every proper A-metric on every net is regular.

Proof. Suppose F= (F; [ 1,C) is an ordered semigroud of binary
relations between the elements of two sets X and ¥. Let d be a proper
F-metric on 2 net B, and (@, @)  4(0) for some m, e X and z ¢ Y. We
are going.to construct a sequence Tp, L1y .y Topyy such that the terms
with even indices belong to X, the terms with odd indices belong to ¥
and (@, ;) € &((21, 24-+1)) for all 4, 0 <4< n. We are given x, a:nfl @y
Suppose that the elements Zg, &1, ...y Toy—1 satisfying the above condition
have already been chosen. Then

(94, @1) € d () C |2(3i—2)A((3i—1)7")a(30)] ,

Le. there exitt ;¢ Y and @, ¢ X such that (pi,20+1)ed(3i—2)
(26, 2i4+1) € d(3i—1), (24, @) € d(3i). Proceeding as abqve, we .choose the
terms of the sequence @y, ...; Tapr1-
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If p is a chain in B, lea.ding from 0 to 1, then (%, #;) € d(u). Since
this is true for arbitrary @, X and @, ¢ ¥, d(0) C d(u), ie. d is regular,

Sufficiency. As in the proof of Theorem 1, we see that it suffices
to prove the representability of a finite or countably infinite ordereq
semigroud 4 satisfying the condition of Theorem 7. We construct a finite
“or infinite sequence B,<< B, << .. of mnets and d,Cd,C... of proper
A-metries (d; is 2 metric on B;) such that the following condition holds:
(Q) for every chain u in By leading from 2¢ to 2j—1 and for every
gy 8y, a3 € A such that d(u) < [a;a,a;] there exist an n and vertices 2p,
2¢—1 in B, such that m <n and du((2¢,20—1)) < a;, dn((2p, 2q—1))
<, d((2p, 2j—1) < a. ‘
Such sequences may be constructed in a way analogous to that
used for constructing sequences satisfying property (P) in the proof of
sufficiency of. Theorem 1.
» Suppose that such sequences have been constructed and dy(0) = a.

For every be A define a binary relation Pu(b) between even and odd
numbers: (24, 2j—1) € Py(b) iff dy(u) < b for some m, a chain u in B,
leading from 2{ to 2j—1. One can eagily verify that

Pollay 8y05]) = [Pa(@y) Pa(s) Pa(a5)] and ay < o= Py(ay) C Polay) .

Suppose that P(b) is a disjoint union (sum) of binary relations P,(b)
for all a ¢ A. Then P({a,a,a5]) = [P(ay) P(ap) P(ay)] and a, < ay = Pla,)
C P(a,). Now it P(a;) C P(a,), then (0,1)e P, (a) C P, (a); therefore
dn(p) < @, for some chain in B, leading from 0 to 1. By the regulznrity’
of dn, d2(0) < du(u) < a; therefore, a; = dn(0) < 0y, ie. o < ay<> P(ay)
C P(a,). Tt follows that P is an isomorphism of 4 onto an ordered sem;
groud of binary relations, i.e. 4 is representable. Theorem 7 is proved,

Af c?min system in a net B, is a sequence (uy, ..., un, u) where u; is
& chain in B, , leading from p; to ¢; and u is a chain in B, leading from 0
to 1. To every chain v = (e,, e, ..., €,;,_,) there corresponds a polynomial
[#]1= [[e]les] ... [es;]] Where [e;] = u; if ¢; = or e; — J7'If 8 is & chain
system in By, then <§) denotes the following formula:

L] < (21 By ] & (o] < [0, %52) & ... & Litn] < [Bapg Bapg Ty ] = ':7!'0 < [p].
TEROREM 8. An ordered semigroud is representable if and only if it

satisfies the axioms (8) for all chain systems 8 in all nels By.

.This theorem can be deduced from Theorem 7 in the same way as
Theorem 5 has been deduced from Theorem 1. ‘

In what follows [//,.]z denote [x] in the above sense and [u]y denotes
an analogous polynomial in which z; are replaced by ;.

TeROREM 9. A semigroud is representable if and only if for all chain
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systems 8= (pay v, Himy w) and T = (v, ..,v,v) in arbilrary nels By
and Bn respectively the following condition (S, T) is satisfied:
(e = (@1 0%5) & ... & [pim)e = [Ty o Popn 1 Bm] & [0l = 4o &
& [y = [91Y2Ys] & o & Ionly = [Wan—oYsn—1Y8n] & [Vly = @y => 25 = 4, .
Proof. It can easily be verified that the condition of Theorem 9
means that for all nets By and By, all proper 4-metries dy (for a semi-

groud A) agd dn on By and By, respectively, and all chains y and » in By,
and B, each leading from 0 to 1, the following condition is satisfied:

it dm(u) = @n(0) and dn(v) = du(0), then du(0)= d.(0). The proof that

a semigroud A4 is representable if and only if it satisties the latter con-
dition is quite analogous to the proof of Theorem 2 and will be omitted
for this reagon.

Remark 4. Theorem 9 is analogous to Theorem 6; however, con-
ditions (8, 7) of Theorem 9 are more complicated than those of Theo-
rem 6, since two nets and two different chain systems § and I' are in-
volved. In Theorems 2 and 6 we circumvented this complication by adding
an identity to 4 and considering A4'-metrics (in particular, the axioms
,of Theorem 6 should be satisfied by 4*). We could do the same in Theo-
rem 9, considering the conditions of.the form (8, 8); however, in this
case they should be satisfied not in 4 but in an appropriate extension
of A (a new element w such that [wusz]= [zuu] =& for all we Ay {u}

" should be added, unless 4 already has one; this implies that an infinity

of new elements of the form [um,uz,% ... us,u] should be added).

A chain p-iy called straightened if it does not contain subchains of
the form (3i—2, (3i—1)7 3i) or (3i—2, (Bi—1)7% 3¢ p is called
without #zigzags if it does mot contain subehains of the form (v, v, #).
One can easily verify (using B, only) that a representable ordered semi-
groud satisfies the condition

(13) ‘ » < [wex] . |

As in Restrictions 1 and 2, it can be proved that in Theorems 8 and 9
we may consider straightened chains only; in Theorem 8 we may con-
sider chains without zigzags only, provided the ordered semigroud satis-
fies (13). The following analogue of Proposition 3 and Corollary 4 holds:

ProrosITION 10. Free semig%ouds are representable. The alqss of all
representable semigrouds is mot a variety of algebras since it is not closed
under homomorphisms. A N

T4 can be seen that a free semigroud with a set X of free generators
is merely the set of all words of odd length over the alphabet X with
the following ternary operation:

[(@y e Bygy) Yy -oe Yagmn) (B oo Zyp1)] = Wy e Bogg yzi—l e Yy By e Rap -
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F i letter to the author (June 22, 1966).
he introduction to this paper that to ever 8] R. MeKenzie, 4 ‘ _ .
. 1I tt ]ilasse?rfleg]i'oﬁgtil m(l: ,"1) there correspond%plurl) associated Semly %9% J. C. C. McKinsey, Postulates for the calculus of binary relations, J. Symbolic
mvolute: d -

Logic 5 (1940), pp. 85-97.
[10] B. M. Schein, Relation algebras, Bull. Aca.d Polon. Sci. Sér. Sei. Math. Astronom
Phys. 13 (1965), pp. 1-5.

groud [4] = (4; [ ]) where [a,6,0;] = a;0;"a;. In the same way, to every
ordered involuted semigroup A there corresponds an associated ordered

semigroud [4] with the same order relation as in A. [11] — Relation algebras and fumclion semigroups, Semigroup Forum 1 (1970),
. . . . o 1-62.

PROPOSITION 11. A7 (mﬁdwed? involuted Seng?fou‘p ’L!).@th identity is [12] II;IJM Mlatin, Hreoromuposannsie noAyzpynnsl noausx bunapusx ommoutenuii, ORIt
representable if and only if the assocmted (ordered) semigroud is representable. - Asax. Hayx CCCP 156 (1964), crp. 1300-1303.

Proof. The “if” part follows from the obvious fact: isgmorphismg [18] — O mexomopux Kaaccax noasyzpynn Gunapunx ommuowienuii, CrnBHpCKUi MATEN. JKYPHAT 6
of (ordered) involuted semigroups are isomorphisms of the associated ase, crp- 616_6?;3.@&1 u uHeosromuposanHEEe noAyzpynny, MsBecTum BRICHI. YueGH.

Rl A e NOX >
(ordered) semigrouds as well. ' (4] SaB;Z’T"’XZ:T A (1965), crp. 172,154
- To prove the “if” part suppose that 4 is an (ordered) 111V.0111ted se}ni- [15] — Cumnempunecrue 060Gujertsie 2pydu, Hayausie JOKNAZb BbICIEel MKONEL, DH3.-MATEM.
group with the identity 1 and [4] is representable. Let P be an isomorphism mayiy 2 (1), (1959), crp. 88-93. cac 165
of [4] onto an (ordered) semigroud of binary relations between the ele- " [16] — Iosyepynmu npamoyeossusx Guuapu ommouteruil, Il:oxmanbr Axag, Hayx
i = -1 , 1965), crp. 1011-1014. o

ments of t“.ro Sets. X and Y'. Define @(a) = P(1)° « P(a) for all 4 <4, [17] _L(X Tarski, On the calculus of relations, J. Symbolic Logic 6 (1941), pp. 73-89.
Then Q(a) is a binary relation on X. Now Q(ab) = Q (a1b) = Q ([a1]) [18] — Contributions to the theory of models IT, Proc. Koninkl. Nederl. Akad. Wetensch.
= P(l)_1 o P([alb]) = P(l)_l e P(b) ° P( )_ ° P(a/) Q( ) ° Q(a’) Q( _1) ‘ ABT (1954), pp. 582—-588. 1{69'
=Q1a )= Q([1al]) = P(1)™ o P([1lal])= P(1)"'o P(l)o P(a)™to P( ) [19] CseppnoBckasn Terpams, Hepewennvie sadauu meoputs noayepynn, C;CPEHOBZK:UQW;
= (P(a)o P17 P(l))_1 o P(1)= P([1la])™ o P(1)= P(a)" s P(1 the English translation: The Sverdlovsk Tetrad, Semigroup Forum s
= (P Do Pla) ' =Q(a)™ T @Q(a)=Q(b), then Pla) = ([all] Pp. 274-280.

= P([bl1]) = (b), hence, a=1b. If 4 is ordered, then a< b$ P(a

C P(b)= P(1)™+ P(a) C P(1)™" o P(b) = Q(a)CQ(b) = P(1) - Q(a) C P(1)
o Q(b)»P([all])C P([b11]) = P(a) C P(b)=a < byie. a < beQ(a) CQb).
It follows that @ is an isomorphism of 4 onto an (ordered) semigroud of 0
binary relations. Proposition 11 is proved.

It would be interesting to know whether PropositioKn 11 is valid for
" arbitrary (ordered) involuted semigroups.

Reeu par la Rédaction le 20. 6. 1973

)
)
= P(1)e P(1)7 o P(a)= P(1) o Q(a) = P(1) - Q(b) = P(1) o P(1)™* o P(p)
)

i
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