Generalizing Vaught sentences from \(\omega \) to strong cofinality \(\omega \)

by

M. Makkai* (Montréal)

Abstract. We prove a strengthening of C. C. Chang’s interpolation theorem involving infinitary formulas with conjunctions of the size a strong limit cardinal with cofinality \(\omega \) (Corollary 3.3 below). This yields a strengthening of Chang’s Scott type isomorphism theorem involving the same type of formulas (Corollary 3.5). In the last section, using game formulas we reformulate J. Green’s \(\Sigma_\gamma \)-compactness proof.

Introduction. In this paper we generalize a part of Vaught’s theory [V] from \(L_{\omega \omega} \) to a situation involving both \(L_{\omega \omega} \) and \(L_{\omega \omega \omega} \) with \(\alpha \) a strong limit cardinal with cofinality \(\omega \). As a result, we obtain strengthenings of Chang’s interpolation theorem in [C2] (3.3 below) and of a part of Chang’s generalization of Scott’s isomorphism theorem in [C1] (3.5 below).

Although the generalization from [V] is rather straightforward, it has perhaps an interesting technical aspect in the use of Carol Karp’s notion of truth in an ascending chain of models (c.f. [K2]). Using this notion, we obtain results such as 3.3 and 3.5 which are formulated without this notion (and without the game sentences of Vaught).

Most of the proofs are only sketched since they are modeled very closely after existing proofs.

Copying Vaught’s proof of the Barwise \(\Sigma_\gamma \)-compactness theorem, in § 5 we give another proof of Judy Green’s \(\Sigma_\gamma \)-compactness theorem [G].

Games like those underlying the notion of Vaught sentences were used in [M], and in [C-M] they are used in connection with cardinals of strong cofinality \(\omega \).

§ 1. \(\alpha \)-Vaught sentences. Throughout §§ 1–4, \(\alpha \) is a strong limit cardinal with cofinality \(\omega \) and \(\langle \kappa_n ; n < \omega \rangle \) is a fixed sequence of cardinals such that \(\beth^m < \kappa_{n+1} \) and \(\kappa = \bigcup_{n<\omega} \kappa_n \). Though everything goes through

* The author’s research was supported by the National Research Council of Canada.
for $\kappa = \kappa_0$ (as it is already known), it is convenient to assume that $\kappa \geq \kappa_0$ and also $\kappa_0 \geq \kappa_0$.

L_κ is the first order logic using conjunctions and disjunctions of sets of cardinality $< \kappa$ and existential and universal quantifications over a sequence of length $< \mu$ of variables. Note that L_κ and L_{κ_0} are equivalent in expressive power to L_{κ_0} and L_{κ_0}, respectively, since κ is singular. However in most cases it will be important for us that formulas are written as required in L_κ and L_{κ_0}.

If one wants to emphasize which relation (and operation and individual constant) symbols are used, one writes e.g. $L_\kappa(\bar{E})$ to denote a logic using basic symbols in L and the additional symbols in the sequence \bar{E}. In what follows, $\bar{x}_n, $ \bar{y}_n denote sequences of distinct variables, the length of \bar{x}_n, \bar{y}_n is κ_0. A κ-Vaught sentence P is a sentence of the form

$$\forall \bar{x}_n. \exists \bar{y}_n \exists \bar{z}_n \forall \bar{u}_n \exists \bar{v}_n \forall \bar{t}_n \exists \bar{w}_n \forall \bar{x}_n \in \mu \cap \bar{u}_n \in \mu \ldots \wedge n \in \omega \cap N^{\kappa_0} - I_n((\bar{x}_1, \ldots, \bar{y}_n))$$

where the N^κ are (for simplicity) quantifier-free formulas of L_κ with the (free) variables indicated. κ-Vaught sentences are a direct generalization of the game sentences considered in [V].

It is fairly obvious how to interpret a κ-Vaught sentence in a structure. Similarly as in [V], [Ma 1], [Ma 2] etc. we can talk about a game in this connection. The first move of e.g. the \forall-player consists of a sequence \bar{x}_n of elements of the given structure, corresponding to \bar{y}_n. For later use we write down a formal definition of truth for a κ-Vaught sentences.

For this purpose, we need to introduce infinitary predicate symbols with "arities" $< \kappa$. Let, for each $n < \kappa$ and each $\bar{I} = \langle \iota_1, \ldots, \iota_n \rangle \in \kappa^n$, T^κ_n denote a predicate symbol of arity $\kappa_0 + \kappa + \kappa + \ldots + \kappa + \kappa_0 = 2\kappa_0$ (ordinal sum; it is equal to $\kappa_0 + \kappa_0$ if $n > 0$ and to 0 if $n = 0$). Then, with \bar{I} above and arbitrary L-structure \mathfrak{M}, $\mathfrak{M} \models P$ iff there are relations T^κ_n on A such that $(\mathfrak{M}, T^\kappa_n)_{\kappa_0 < \kappa} \models P$, satisfies the formula

$$(1) \quad \forall \bar{z}_n \in \mathfrak{M} \exists \bar{y}_n \in \mathfrak{M} \exists \bar{w}_n \in \mathfrak{M} \forall \bar{u}_n \in \mathfrak{M} \exists \bar{v}_n \in \mathfrak{M} \forall \bar{t}_n \in \mathfrak{M} \exists \bar{w}_n \in \mathfrak{M} \forall \bar{z}_n \in \mathfrak{M} \neg (\bar{z}_n, \ldots, \bar{z}_n)$$

Next we describe Karp's notion of truth in an ascending chain of models (see [Kap]; the notion was introduced and used as early as 1959 in Karp's thesis). Though Karp did not consider infinitary predicates, they are essential for us; however, they do not present any difficulty. Let $\mathfrak{M} = \langle \mathfrak{M}_n: n < \omega \rangle$ be an ascending chain of models, called hereafter a chain-model. A sequence of elements of $A = \bigcup_{n < \omega} A_n$ is bounded if all its elements come from one of the sets A_n. For a formula $\varphi \in L_{\omega_1}$ and for a bounded sequence \bar{a} of elements of A interpreting \bar{x}, we define

$$\mathfrak{M} \models \varphi[\bar{a} / \bar{x}]$$

by the usual inductive clauses for atomic φ and for Boolean combinations and by the following modified quantifier clauses:

$$\mathfrak{M} \models \forall \bar{x} \varphi[\bar{a} / \bar{x}]$$

\Leftrightarrow for all bounded sequences \bar{b} (of appropriate length), $\mathfrak{M} \models \varphi[\bar{a} / \bar{x}, \bar{b} / \bar{y}]$, $\mathfrak{M} \models \exists \bar{x} \varphi[\bar{a} / \bar{x}]$ \Leftrightarrow for some bounded sequence \bar{b}, $\mathfrak{M} \models \varphi[\bar{a} / \bar{x}, \bar{b} / \bar{y}]$.

Any chain model \mathfrak{M} gives rise to its union, $\bigcup_{n < \omega} \mathfrak{M}_n$; however in case we have infinitary predicates, these will not be defined but for the bounded combinations of arguments. Whenever we use the symbols \mathfrak{M} (or \mathfrak{M}), \bar{I}, it denotes a chain-model $\langle \mathfrak{M}_n: n < \omega \rangle$ or $\langle \mathfrak{M}_n: n < \kappa \rangle$ and if \mathfrak{M} (or \mathfrak{M}) is used in the same context then it is the union $\bigcup_{n < \omega} \mathfrak{M}_n$. Notice that for a sentence φ in L_{ω_1}, $\mathfrak{M} \models \varphi$ \Leftrightarrow $\mathfrak{M} \models \varphi$.

For relations \bar{I} on $A = \bigcup_{n < \omega} A_n$, (\mathfrak{M}, \bar{I}) denotes the chain-model $\langle \mathfrak{M}_n, \bar{I} \upharpoonright A_n: n < \omega \rangle$.

For a κ-Vaught sentence P, we write

$$\mathfrak{M} \models ^{\kappa} P$$

if for some (infinitary) relations T^κ_n, we have

$$\mathfrak{M}, \mathfrak{M}_n \models ^{\kappa} \sigma$$

where σ is the sentence in (1). Intuitively, $\mathfrak{M} \models ^{\kappa} P$ involves the restriction of the range of both the universally and existentially quantified sequences of variables to bounded sequences of elements. Actually, for our purposes only the restriction of the universal quantifiers is of importance.

The chain-model $\langle \mathfrak{M}_n: n < \omega \rangle$ is called a κ-chain-model if $|A_n| \leq \kappa_0$ ($n < \kappa_0$).

§ 2. The game form theorem. A Σ_1^1-over-L_{ω_1} sentence is of the form \mathcal{H}_κ where \mathcal{H} is an arbitrary list of length at most κ of "new" relation (and possibly operation and individual constant) symbols and σ is a sentence of $L_{\omega_1}(\mathcal{H})$. One of the basic tools in Vaught's work is the game form theorem for L_{ω_1}-sentences: any Σ_1^1-over-L_{ω_1} sentence is equivalent for countable
Generalizing Vaught sentences from ω to strong cofinality ω

(e) For any n < ω, put \(N^\omega_n(\bar{x}_a, \bar{y}_a, \ldots, \bar{x}_n, \bar{y}_n) \) to be the conjunction of all finite disjunctions \(\delta \) of atomic and negated atomic \(L \)-formulas (i.e., no symbols in \(\bar{R} \) are allowed) which contain the variables in \(\bar{x}_a, \ldots, \bar{y}_n \) at most and such that \(\delta \) is a consequence of \(H_{n-1}^\omega \cup \{ \sigma \} \) with all free variables \(\bar{x}_a, \ldots, \bar{y}_n \) hold constant (i.e., regarded individual constants). Thus, \(N^\omega_n \) is a quantifier-free formula of \(L_{\omega_1^{\omega}}(\omega=\omega_{\omega_{\omega}}) \).

Finally, define \(\Gamma' \) as

\[
\forall \bar{x}_a, \bar{y}_a, \ldots, \bar{x}_n, \bar{y}_n \left(\left(\forall \bar{z} \right) \left(\exists \bar{w} \right) \right)
\]

(f) We submit that it is obvious that \(\mathcal{U} \models \Gamma \). In fact, if \(\mathcal{U} \models \mathcal{U} \models \Gamma \), i.e., \(\mathcal{U} \models \mathcal{U} \models \sigma \) for some \(\mathcal{U} \) on \(A \), then for arbitrary (interpretation of) \(\bar{x}_a, \bar{y}_a, \ldots, \bar{z}_n \) in \(A \) we can define elements (interpreting) \(\bar{y}_n, \bar{y}_n, \ldots, \bar{y}_n \) in \(A \) and ordinals \(l_1, l_2, \ldots < \kappa \) such that (i) \(\bar{y}_n \) and \(l_n \) depend only on \(\bar{z}_n, \ldots, \bar{z}_n \) and (ii) the \(\bar{y}_n, \ldots, \bar{y}_n \) satisfy every element of \(H_{n-1}^\omega \cup \{ \sigma \} \) (with the chosen \(l_1, l_2, \ldots)

(g) It is easy to see that the second condition of the theorem implies the third one. To complete the proof suppose that \(\mathcal{U} \) is a chain-\(\kappa \)-model, (hence \(|A_\alpha| < \kappa \)) and \(\mathcal{U} \models \Gamma' \). We want to see that \(\mathcal{U} \models \mathcal{U} \models \Gamma \). Let \(\bar{x}_a \) be an enumeration of \(A_\alpha \) such that length \(\bar{x}_a = \kappa \). Apply \(\mathcal{U} \models \Gamma' \) to obtain \(\bar{x}_a \) corresponding to \(\bar{y}_n \) and \(l_n < \kappa) \) such that

\[
\mathcal{U} \models \bigvee_{n<\omega} H_{n-1}^\omega \cup \{ \sigma \} \cup \langle \Omega \rangle \cup \{ \bar{x}_a, \ldots, \bar{x}_n \}
\]

(Recall that the \(N^\omega_n \) are quantifier free, hence \(\mathcal{U} \models \Gamma' \) if \(\mathcal{U} \models \bigvee_{n<\omega} H_{n-1}^\omega \cup \{ \sigma \} \cup \langle \Omega \rangle \cup \{ \bar{x}_a, \ldots, \bar{x}_n \} \) implies (3).)

Now, let \(\mathcal{A} \) be the diagram of \(\mathcal{U} \), i.e. the set of atomic and negated atomic formulas \(\sigma \) with variables in \(V \) such that \(\mathcal{U} \models \bigvee_{n<\omega} H_{n-1}^\omega \cup \{ \sigma \} \cup \langle \Omega \rangle \cup \{ \bar{x}_a, \ldots, \bar{x}_n \} \). Let \(\mathcal{W} \) be the set of all valid formulas. Consider the following set \(\mathcal{T} \) of formulas:

\[
\bigvee_{n<\omega} H_{n-1}^\omega \cup \{ \sigma \} \cup \langle \Omega \rangle \cup \{ \bar{x}_a, \ldots, \bar{x}_n \}
\]

Just as in [Ma2], we see that \(\mathcal{T} \) is finitely satisfiable; this fact is a consequence of (3) and the definition of the \(N^\omega_n \). Next we apply the compactness theorem for finitary propositional logic to obtain an assignment \(\bar{a} \) of truth-values to elements of \(\Theta \) which makes every element of \(\mathcal{T} \) true and which respects ("commutes with") finitary connectives. Finally, define any relation symbol \(\mathcal{E} \) in \(\mathcal{U} \), the corresponding relation \(\mathcal{E} \) on \(A \) by

\[
R_{\mathcal{E}} \ldots c_n \text{ is true } \iff a(\mathcal{E} \ldots c_n) \text{ is "true"}
\]

where \(c_1, \ldots, c_n \) are variables in \(V \) and \(a \) corresponds to \(a \) under the interpretations \(\mathcal{E} \mathcal{U} \) of \(\mathcal{E} \) in \(\mathcal{U} \), \(a(c_n \mathcal{U} \ldots c_n) \). On the basis of the definition of \(H_{n-1}^\omega \),

structures to an (ω-) Vaught sentence (Corollary 3.3 in [V]). The corresponding result that we need is

THEOREM 2.1. For any s-1,-L_\omega sentence \(\mathcal{U} \models \Gamma \) there is a \(\kappa \)-Vaught sentence \(\Gamma ' \) such that \(\mathcal{U} \models \Gamma ' \) and for any structure \(\mathcal{U} \) of power < \kappa, \mathcal{U} \models \Gamma ' \) if and only if \(\mathcal{U} \models \Gamma ' \) if and only if there is a chain-\(\kappa \)-model \(\mathcal{U} = \langle \mathcal{U} \rangle; \{ \mathcal{U} \} < \kappa \rangle \) such that \(\mathcal{U} \models \Gamma ' \) and \(\bigwedge_{\kappa \in \mathcal{U}} \mathcal{U} = \mathcal{U} \).

Proof. The proof is very similar to Svenonius’ proof of his theorem from which Vaught deduces his own (see Theorem 3.3 in [V]). The details also will resemble those in [Ma1], [Ma2]. We will limit ourselves to giving the main constructions.

(a) To construct \(\Gamma ' \), we first take a set \(V \) of variables such that \(|V| = \kappa \).
Let \(V = \bigcup_{n<\omega} V_n \cup \{ \nu \} \) and \(|V| = \kappa \). We assume \(\sigma \) as well as any other formula is written with using only \(\exists \), \(\forall \) and finitary connectives.
Consider all subformulas \(\theta(\bar{u}) \) of \(\sigma \); substitute arbitrary variables \(\bar{u} \in V \) for all free variables \(\bar{u} \in \theta \) to obtain \(\theta(\bar{u}) \); let \(\theta \) be the closure of the set of all \(\theta(\bar{u}) \) under finitary connectives. Notice that \(|\theta| < \kappa \).

(b) We next take \(\theta(\bar{u}) \) for each \(n < \omega \) such that \(\bigwedge_{n<\omega} \theta(\bar{u}) \in \mathcal{U} \) and all its free variables in \(V_n \), and for every disjunction \(\bigvee \theta \in \mathcal{U} \).

(c) Next we exhibit a list of “Henkin formulas”. By induction on \(n \), we define the disjoint sequences \(\bar{x}_a, \bar{y}_a \) of variables in \(V \) and the set \(\mathcal{H}_a \) of formulas as follows. Let \(\langle \bar{x}_a, \bar{y}_a \rangle < \kappa \) be a sequence enumerating all members of \(\Theta \) of the form \(\exists \bar{u} \). Let \(\bar{y}_a \) be arbitrary distinct variables in \(V_{n+1} \). Let \(\bar{y}_a \) be a sequence of variables containing precisely the variables in \(V_{n+1} \) \(\cup \langle \bar{x}_a, \bar{y}_a \rangle \) and let

Finally, put

\[
H_n = H_{n-1} \cup \{ \exists \mathcal{U} \rightarrow \exists \mathcal{V} (\bar{y}_a) : a < \kappa \}.
\]

(d) Next we let \(\langle \bigvee \theta(\bar{u}) ; a < \kappa \rangle \) be a sequence enumerating all non-empty infinitary disjunctions in \(\Theta \) (if it happens that \(\Theta \) does not contain any such, we simply add one to it). Recall that \(|\Sigma| < \kappa \) for all \(a < \kappa \). There are \(\kappa a \) \langle \exists \bar{u} \rangle in \(\bigcup_{a<\kappa} \Sigma_a \) and let us index them

\[
\exists \mathcal{U} \rightarrow \exists \mathcal{V} (\bar{y}_a) : a < \kappa \}
\]

Notice that \(H_{n-1}^\omega \cup \{ \exists \mathcal{U} \rightarrow \exists \mathcal{V} (\bar{y}_a) : a < \kappa \} \subset H_{n-1}^\omega \cup \{ \exists \mathcal{U} \rightarrow \exists \mathcal{V} (\bar{y}_a) : a < \kappa \} \).
we can verify that this definition is legitimate and by induction on \(\varphi \) in \(\Theta \)
we can prove that \((\mathfrak{A}, \mathfrak{B}) \models \varphi[\vec{a_0}, \vec{b_0}, \ldots] \iff \alpha(\varphi) \) is “true”

(see the corresponding part of the proof of 2.9 in [Ma 2]). So, in fact
\((\mathfrak{A}, \mathfrak{B}) \models \sigma \) as required. Q.E.D.

Very similarly we could prove (compare [Ma 1] and [Ma 2])

\textbf{Theorem 2.3.} For any \(\mathcal{L}_n \)-model \(\mathfrak{M} \) there is a positive
\(\mathcal{L}_n \)-sentence \(\varphi(n) \) such that \(\mathfrak{M} \models \varphi(n) \) and for any \(\mathfrak{N} \) of \(\mathcal{L}_n \)

there is \(\mathfrak{A} \approx \mathfrak{M} \) such that \(\mathfrak{N} \) is a homomorphic image of \(\mathfrak{A} \)
and only if \(\mathfrak{N} \models \varphi(n) \) if and only if for some chain-\(n \)-model \(\mathfrak{B} \) with
union \(\mathfrak{A} \) we have \(\mathfrak{B} \models \varphi(n) \).

We could in fact develop a generalization of Lindström games and establish generalizations of results in [Ma 2].

\textbf{§ 3.} \textbf{Approximations of } \kappa \textbf{-Vaught sentences.} Here we follow § 4 of [V]
very closely.

Let \(\Gamma \) be a \(\kappa \)-Vaught sentence in the notation used in § 1. Define
for any ordinal \(\alpha \) and any sequence \(\vec{t} = t_0, \ldots, t_n \) of indices \(\kappa < \alpha \)
the formula \(\delta^\alpha \) in \(\mathcal{L}_n \) as follows:

\[\delta^\alpha = \bigwedge_{i < \kappa} \bigwedge_{i < \kappa} (x_i \neq y_i) \]

(in particular, \(\delta^\alpha \) is identically true),

\[\delta^\alpha_{x_i} = \forall y \left[\bigwedge_{i < \kappa} \left(x_i \neq y_i \right) \right] \]

\[\delta^\alpha_{y_i} = \bigwedge_{i < \kappa} \left(x_i \neq y_i \right) \]

for any ordinal \(\alpha \).

We write \(\delta_\alpha \) for \(\delta^\alpha \). Note that for \(\alpha < \kappa^+ \), \(\delta_\alpha \) in \(\mathcal{L}_n \) ("\(= \)" \(\mathcal{L}_n \)).

We can easily prove the next

\textbf{Theorem 3.1.} \(\delta_\alpha \models \delta_\beta \) if \(\alpha < \beta \) and for any ordinal \(\alpha \).

\textbf{Theorem 3.2.} Let \(\varphi \) be a sentence in some logic \(\mathcal{L}_n \). Suppose that
for every \(\kappa \)-model \(\mathfrak{M}, \mathfrak{B} \) we have \(\mathfrak{M} \models \mathfrak{B} \models \varphi \) (in intuitive notation, \(\mathfrak{B} \) in \(\kappa \)-sense) \(\forall \). Then there is \(\alpha < \kappa^+ \) such that \(\delta_\alpha \models \varphi \).

Proof. The proof will follow Vaught's proof of his 4.11 in [V] very closely.

(a) First we formalize the definition of \(\delta_\alpha \) as in Definition 4.5 in [V].
We introduce the unary predicates \(\mathfrak{U}_i, \mathfrak{A} \), the binary predicate \(< \), the
individual constant \(c \) and for each \(n < \omega \), \(t_0, \ldots, t_{n-1} \) \(\kappa \times \kappa \times \ldots \times \kappa \). Then it is clear by (c) that

\[(\mathfrak{A}, \mathfrak{U}_n) \models \delta_0 \]

where \(\varphi \) is the sentence in (1) of § 1, hence \(\mathfrak{A} \models \varphi \). Since we also have
\((\mathfrak{M}, \mathfrak{B}) \models \nabla \varphi \), we have arrived at a contradiction to the hypothesis of the theorem. Q.E.D.

Theorems 2.1 and 3.2 at once yield

1 — Fundamenta Mathematicae, T. LXXII
COROLLARY 3.3. (Main result.) For any \(\Sigma^1_1 \)-over-\(L_\omega \) sentence \(\mathfrak{A} \models \varphi \) and for any \(\varphi \in L_\omega(\mathfrak{A}) \), if

\[\mathfrak{A} \models \varphi \quad \text{and} \quad \mathfrak{B} \models \chi, \]

then for some \(\alpha < \kappa^+ \), \(\delta_\alpha \models \varphi \).

COROLLARY 3.4. In the notation of 3.3, \(\mathfrak{A} \models \varphi \) is equivalent to \(\forall \alpha < \kappa^+ \delta_\alpha \) for structures of power \(\leq \kappa \).

Proof. Assume \(\mathfrak{A} \) has domain \(A, |A| < \kappa \). Let \(D_\alpha \) be the diagram of \(\mathfrak{A} \) written with new constants \(\alpha \models A \). Let \(\psi \) be

\[\neg [\forall \alpha \exists \beta \neg (x = g : \alpha \in A) \land \delta_\alpha]. \]

Suppose \(\mathfrak{A} \models \mathfrak{B} \sigma \). Then clearly, \(\mathfrak{A} \models \mathfrak{B} \sigma \models \psi \). Hence by 3.3, for some \(\alpha < \kappa^+ \) we have \(\delta_\alpha \models \psi \), hence \(\mathfrak{A} \models \delta_\alpha \). Q.E.D.

COROLLARY 3.5. Every structure \(\mathfrak{A} \) of power \(\leq \kappa \) can be characterized up to isomorphism among structures of power \(\leq \kappa \) by a conjunction \(\forall \alpha < \kappa^+ \delta_\alpha \) of \(L_\omega \) sentences \(\delta_\alpha \).

Proof. Apply 3.4 to \(\mathfrak{A} \models \varphi \) where \(\sigma \) is

\[\forall \alpha \exists \beta \neg (x = g : \alpha \in A) \land \delta_\alpha \]

and the \(\delta_\alpha \) are the additional individual constants \(\alpha \models A \).

Remarks. 3.3 is an analogue (a generalization of a part of 4.11 in [V]). It is a strengthening of Chang's interpolation theorem connecting \(L_\omega \) and \(L_\kappa \). 3.5 is a strengthening of a part of Chang's generalization of Scott's isomorphism theorem [C1] (see the third paragraph on page 45 in [C1]; now \(\kappa^+ = 2 \)).

Using 2.2 instead of 2.1, we obtain

COROLLARY 3.6. The class of homoimages of power \(\leq \kappa \) of models of \(\mathfrak{A} \models \psi \) is axiomatized among structures of power \(\leq \kappa \) by a conjunction \(\forall \alpha < \kappa^+ \delta_\alpha \) of positive \(L_\omega \) sentences \(\delta_\alpha \).

COROLLARY 3.7. (Chang [C2].) Any sentence of \(L_\omega \) preserved under homoimages is equivalent to a positive sentence in \(L_\omega \).

\section{4. Non-characterizability of well-order.} Theorem 4.1 below was very likely known to Karp (who wrote in [K] that “the proofs in [K] of a number of important results for \(L_\omega \) generalize ... by replacing the ordinary consistency properties by \(\kappa \)-consistency properties”). In [K], Karp proves a model existence theorem concerning chain \(\kappa \)-models and \(\kappa \)-consistency properties; this is used in the proof of 4.1. For the rather long definition of \(\kappa \)-consistency properties, we refer to [K].

THEOREM 4.1. (i) Suppose \(\varphi \in L_\omega \) where \(L_\omega \) contains the unary predicate \(U \) and the binary predicate \(\Pi_\kappa \) and possibly some finitary \(\kappa \)-ary predicates. Suppose that for each \(\alpha < \kappa^+ \) there is a model \(\mathfrak{B}_\alpha \) of \(\varphi \) such that \(\langle U^\mathfrak{B}_\alpha, <^\mathfrak{B}_\alpha \rangle \) is a well-ordering of type \(\geq \alpha \). Then \(\varphi \) has a \(\kappa \)-model \(\mathfrak{B} \) such that \(\langle U^\mathfrak{B}, <^\mathfrak{B} \rangle \) contains a copy of the ordered set of the rationals.

(ii) The same conclusion holds if we change \(\mathfrak{B}_\alpha \) to a chain-model \(\mathfrak{B}_\alpha \).

The proofs use the model existence theorem in [K] and are exact replicas of the proofs of Theorem 12 in [K]. We only prove the consistency properties used in the proofs.

Using the sets \(C_{\alpha} \) of new constants such that \(|C_{\alpha}| = \aleph_\alpha \) as in [K] and also the further new constants \(d_\alpha \) for \(\alpha \) a rational number, we define \(S_\alpha \) to be the set of all sets \(s \) of sentences of \(L_\omega \) enlarged by adding \(\cup_{\alpha < \omega} C_{\alpha} \) and \(\langle A, \rangle : \rho \) is a rational such that

(iii) for some \(n < \omega \), all new constants in \(s \) belong to \(D = C_0 \cup \cdots \cup C_n \) for some rationals \(r_1 < \cdots < r_n \),

(iv) for every \(\alpha < \kappa^+ \), there is a model \(\mathfrak{B}_\alpha \) of \(s \) such that \(\langle U^\mathfrak{B}_\alpha, <^\mathfrak{B}_\alpha \rangle \) is a well-ordered set of type \(\geq \alpha \) and in fact, (the interpretations of) \(d_{r_1}, \ldots, d_{r_n} \) satisfy

\[a < d_{r_1} < d_{r_2} < \cdots < d_{r_n} < a \leq d_\alpha. \]

Then \(S_\alpha \) can be shown to be a \(\kappa \)-consistency property with respect to \(\langle C_\alpha, n < \omega \rangle \) (see [K]) exactly as the corresponding proof in [K].

(ii) use \(S_\alpha \) defined as \(S_\alpha \) with \((iv) \) replacing (iv): (iv) for every \(a < \kappa^+ \), there is a chain-model \(\langle B_\mathfrak{B}, n < \omega \rangle \) and there are some \(m < \omega \) and interpretations \(\delta \) of all constants in \(D \) (\(D \) is as in (iii)) such that \(\delta \in B_\mathfrak{B} \langle a, \rangle \) and \(\langle B_\mathfrak{B}, n+1 \rangle \delta \langle a \rangle : i < \omega \) is a model of \(s \) with the rest of (iv) holding for \(\langle U^\mathfrak{B}_\alpha, <^\mathfrak{B}_\alpha \rangle \).

Otherwise, it is not difficult to give a direct proof of 4.1 avoiding consistency properties in a way similar to the proof of the interpolation theorem for \(L_\omega \) in [C2].

\section{5. The \(\Sigma_1^1 \)-compactness theorem of Green.} A beautiful application of his theory is given by Vaught for proving the \(\Sigma_1^1 \)-compactness theorem of Barwise [B1], see \(\S \) 6 of [V]. Barwise shows in [B2] that \(\Sigma_1^1 \)-compactness for admissible (in fact for transitive prim. closed) sets \(A \) is equivalent to the strict-\(\Pi_1^1 \) (\(\varepsilon \)-\(\Pi_1^1 \)) reflection principle holding for \(A \). The essential part of Vaught's proof, in fact, establishes the \(\varepsilon \)-\(\Pi_1^1 \) reflection principle for countable admissible sets. We give some definitions.
An ordinary first order formula in an extended language of set theory (containing ϵ, \in, and \ni and some additional predicate variables) is called essentially universal (e.u.) if it is in negation normal form and all existentials quantifiers in the formula appear in contexts like $\exists z (x \epsilon y \rightarrow ...)$). The notion of essentially existential (e.e.) is defined similarly. A strict Σ_2^1 (or Σ_2^1) formula is a second order formula of the form $\exists \bar{F} \in \bar{G} \theta$ where θ is e.e. (we also assume that no free predicate variable other than ϵ and \in appears in $\exists \bar{F} \theta$). Let A be a non-empty transitive set. We write \bar{A} for the structure $(A, \epsilon \upharpoonright A)$. The strict Π^1_2 reflection principle (Π^1_2 R.P.) for A says, in the contrapositive form, that for any Σ_2^1 formula $\exists \bar{F} \theta(\bar{a})$ and elements \bar{a} of A, we have:

$$\forall \bar{a} \epsilon A \; \forall \bar{a} \epsilon \bar{A} \rightarrow \exists \bar{F} \in \bar{G} \theta(\bar{a}) \rightarrow \exists \bar{F} \in \bar{G} \theta(\bar{A})$$

For the reader unfamiliar with the subject, the best way to get a feeling of these notions is to see, first, that the converse of the $\exists \bar{F}^1_2$ R.P. is trivially true, and second, that the set $R(\omega)$ of hereditarily finite sets satisfies the $\exists \bar{F}^1_2$ R.P., and in fact this last fact is more or less a reformulation of the König lemma on finitary trees.

Now, the nice thing about Vaught's proof of the $\exists \bar{F}^1_2$ R.P. for countable admissible sets is that it breaks the argument into two theorems, the first talking about arbitrary countable structures, the second about arbitrary admissible sets.

The first of these theorems is that a $\exists \Sigma^1_2$ formula is equivalent for countable structures to a $\exists \bar{F}^1_2$ formula of the form

$$\forall \bar{a} \epsilon A \exists \bar{F} \exists \bar{G} \theta(\bar{a})$$

where $\exists \bar{F}^1_2$ R.P. is recursively quantifier-free and

$$\vdash \forall \bar{a} \epsilon A : \exists \bar{F} \exists \bar{G} \theta(\bar{a})$$

(Actually, it follows from a result of [Ma-1] that the same conclusion is true for any Σ^1_2 statement preserved for transitive substructures.)

The second part of Vaught's argument is the theorem that the statement of the $\exists \bar{F}^1_2$ R.P. with a game-$\exists \Sigma^1_2$ formula holds for arbitrary admissible sets.

We will use a slightly modified form of this second theorem of Vaught, involving set-primitive recursiveness, see [J-Ka]. A set closed under set-primitive recursive functions is called prim. closed. The use of primitive closed sets would not be absolutely necessary but it is convenient because many set-theoretic predicates are absolute with respect to transitive prim. closed sets.

Let us call a game formula of the form

$$\forall \bar{a} \epsilon A \exists \bar{F} \exists \bar{G} \theta(\bar{a})$$

a special game formula if $\exists \bar{F} \exists \bar{G} \theta(\bar{a})$ is an e.c. formula containing only ϵ and \in, and

$$\vdash \exists \bar{F} \exists \bar{G} \theta(\bar{a})$$

THEOREM 5.1 (Vaught [V]). Let A be an admirable set, $\omega \epsilon A$. Let $\Gamma^1_2(\bar{a})$ be a special game formula, $\bar{a} \epsilon A$. Suppose that for every transitive prim. closed set $w \epsilon A$ such that $a_1, ..., a_n \epsilon w$, we have $\exists \bar{F} \exists \bar{G} \theta(\bar{a})$. Then $\exists \bar{F} \exists \bar{G} \theta(\bar{a})$.

Inspection of the proof of 5.3 in [V] reveals that it establishes 5.1. (We use that $\omega \epsilon A$ implies that any $a \epsilon A$ is an element of a transitive prim. closed $w \epsilon A$. The assumption on Γ^1_2 that it is e.c. is used to make sure that $\exists \bar{F} \exists \bar{G} \theta(\bar{a})$.)

We are going to show that 5.1 can be used to prove Judy Green's compactness theorem [G]. In order to do this, we will "bring $\exists \Sigma^1_2$ formulas to a special game form".

Let A be an admirable set. Let $B_1 \subseteq \cdots \subseteq B_n \subseteq \cdots = A$, and let

$$\lambda \in \bigcup_n \bigcup_{n < \omega} B_n$$

Assume that for some $A \epsilon A$ we have $\exists \bar{F} \exists \bar{G} \theta(\bar{a})$.

Assume moreover that

(i) for every element $a \epsilon A$ there is a function $f \epsilon A$ such that $\forall n < \omega$ and $a \ni \epsilon A$.

(ii) A is of cofinality ω, i.e. $A = \bigcup_{n < \omega} A_n$ for some $A_\omega \epsilon A$ ($n < \omega$).

EXAMPLE 1. Let $B_n = \emptyset$. Let A be a countable admirable set such that $\omega \epsilon A$ and every element of A is countable "within" A. Then the hypotheses are satisfied.

EXAMPLE 2. Let $B_n = \emptyset$. Let A be a sequence of transitive sets such that $\omega \epsilon A$, and for each $n < \omega$, B_n is closed under pairs and the power set of B_n is an element of B_{n+1}. Let A be the smallest admirable set such that $\forall n < \omega : \omega \epsilon A$. Then as Green shows in [G], A satisfies the above hypotheses.

THEOREM 5.2 (Green [G]). Any admirable set A satisfying the above hypotheses satisfies the $\exists \bar{F}^1_2$ R.P., or equivalently, is Σ^1_2-compact.

Let $\exists \bar{F}^1_2 \theta(\bar{a})$ be a $\exists \Sigma^1_2$ formula, $\bar{a} \epsilon A$. We will construct some special game formula $\Gamma^1_2(\bar{a}, \bar{b}, \bar{c})$ such that the following two statements hold:

(iii) For every transitive prim. closed $w \epsilon A$ such that $a, b, c \epsilon w$,

$$\forall \bar{a} \epsilon A \exists \bar{F} \exists \bar{G} \theta(\bar{a})$$

(iv) $\exists \bar{F} \exists \bar{G} \theta(\bar{a}, \bar{b}, \bar{c})$.

Together with 5.1, (iii) and (iv) give the $\exists \bar{F}^1_2$ R.P. for A.
We note that (iii) and (iv) do not require that A be admissible but require (i) and (ii) above. It would be nicer to have a single equivalence instead of (iii) and (iv) similarly to the first theorem mentioned above in Vaught's argument; however, the converse of (iii) does not seem to hold.

(a) To begin the description of Γ and to give an intuitive idea of the proof, we consider an auxiliary language suggested by Green's "indexed languages" in [G]. Define D to be the smallest set of elements of A such that if $f \in A$ is a function with $\text{rn}f \subseteq D$ and either $\text{dom}f = B$ or $\text{dom}f = 0$ or $0 \notin \text{dom}f \subseteq B_n$ for some $n \in \omega$ (we assume w.l.o.g. that $0 \in B_0$), then $f \in D$. We will consider the language $L(S, D)$ of set theory (\in and \equiv) augmented with the relation symbols ϕ and with all individual constants f for $f \in D$. f will not denote f, rather we have the following inductive definition:

$$\text{denote}(f) = \{\text{denote}(g) : g \in \text{rn}f\}.$$

So, every formula of $L(S, D)$ has a standard interpretation in any transitive set-(or class-)model with f denoting denote (f). It is easy to see that assumption (i) implies that for every $a \in A$ there is $f \in D$ such that denote $(f) = a$. This fact will be used in the final part of the argument, (f) below. The reason for the appearance of the two kinds of domains of elements of D is the following. Very roughly speaking, the main feature of the proof (as well as of Judy Green's) is a "two stage instantiation" of restricted existence statements. In other words, having been forced to make $\exists x \in \text{cf} \varphi(x)$ true, we first force some $\exists x \in \text{cf} \neg \varphi(x)$ true, then secondly we force some $\varphi(g)$ to be true for some $g \in \text{rn}(f \upharpoonright B_n)$. We have to do this because we have to deal with many existence statements simultaneously but we can handle them only if there are not too many possibilities for the simultaneous instatiation. Made in one step, for the above simultaneous instatiation we have too many possibilities, roughly as "many" as the set $\{\text{denote}(f)\}$ (where χ is the set of statements considered) that can even be of greater power than A. In the two stage version, however, the first stage entails $\exists a_0$, the second B_n "many" possibilities and both sets will be elements of A. This explanation will become clearer upon seeing the proof that follows.

(b) Let F be a function, $F \in A$, dom$F = B_n$, and let h_0, h_1, h_2 be functions with domain B_n, $\text{rn}h_0 \subseteq \omega$, $\text{rn}h_1 \subseteq B_n$, $\text{rn}h_2 \subseteq 2$. We define a set $\Phi = \Phi(F, h_0, h_1, h_2)$ of sentences of the language $L(S, D)$ constructed on the basis of F, h_0, h_1, h_2, Φ will be a set-primitive recursive function of $\omega, a, b, F_0, h_0, h_1, h_2$ and σ (the formula originally given (ω here is redundant since $\omega = \text{dom} b$). As a preliminary remark, we note that F is used here for enumerating some sentences of $L(S, D)$ as well as some constants in D and h_0, h_1, h_2 are used to instantiate existence statements and disjunctions. Recall that σ is essentially universal.

ϕ is defined as the smallest set such that (v)- (xi) below hold.

(v) $\sigma(f$ for $a) \in \Phi$ if $f \in D$, $b \in B_n$, $f = F(b)$ and a = denote (f).

(vi) If $b \in B_n$,

$$F(b) = \exists x \in \text{cf} \varphi(x)$$

and $F(b)$ belongs to Φ and dom$F = B$, then

$$\exists x \in \text{cf} \varphi(x) \in \Phi$$

where $m = h_0(b)$ (recall that $h_0 : B_n \rightarrow \omega$).

(vii) If $b \in B_n$,

$$F(b) = \exists x \in \text{cf} \varphi(x) \in \Phi$$

then $\forall h_0(b \in \omega$ then either $h_0(b) \notin \text{dom}g$ and $\varphi(g(0)) \in \Phi$ or $h_0(b) \in \text{dom}(\varphi(g(0)) \in \Phi$ and $\varphi(f) \in \Phi$ for $f = \varphi(h_0(b))$ (recall that $h_0 : B_n \rightarrow \omega$).

(viii) If $b \in B_n$,

$$F(b) = \varphi_1 \lor \varphi_2 \in \Phi$$

then $\forall h_0(b \in \omega$ then $h_0 : B_n \rightarrow \omega$.

(ix) If $\varphi_1 \land \varphi_2 \in \Phi$, then $\varphi_1, \varphi_2 \in \Phi$.

(x) If $\forall x \varphi(x) \in \Phi$,

$$f = F(b)$$

then $\varphi(f) \in \Phi$.

(xi) All equality axioms in $L(S, D)$ with constants in $\text{rn}F \cap D$ are in Φ.

(c) We claim that there is an essentially existential formula $N(n, a, b, c, s)$ with the following property. Given any $n \in \omega$ transitive prim. closed to A such that $a, b, c \in w$, and given any F_i and h_i^j in ω ($i < n$, $j < 2$) then for $s = (F_0, h_0^0, h_0^1, h_1^0, h_1^1, \ldots, F_n, h_n^0, h_n^1)$ we have

$$\exists c \in N(n, a, b, c, s)$$

iff conditions (xii) and (xiii) below are satisfied.

(xii) For $i < n$ and $j < 2$, F_i and h_i^j are functions with domain B as above, $h_i^j \in C$.

(xiii) $\Phi = \{\varphi(F_0, h_0^0, h_0^1, h_1^0, h_1^1)"

is "consistent" in the sense that it does not contain $\neg \sigma$ and $\neg \neg \sigma$ for any atomic σ and whenever $f \in g$ or $f \equiv g$ is in Φ, then f is true under the standard interpretation.

To see the existence of N, use the facts that denote is a set-primitive recursive function, F is a set-primitive recursive function of a, b, c and x, and that the graph of a set-primitive recursive function is definable by
an e.o. formula which is absolute with respect to transitive prim. closed sets (see [J-Ka]).

We put \(\Gamma(u, u_1, u_2) \) to be

\[
\begin{align*}
&V_{\infty} \bar{x}_{1} \bar{y}_{1} \bar{z}_{1} \bar{y}_{2} \bar{y}_{3} \cdots \bar{y}_{n} < \infty
\end{align*}
\]

\(N \left(n; \bar{w}_{1}, \bar{u}_{1}, \bar{u}_{2}, (\bar{u}_{0}, \bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{n}, \bar{y}_{n+1}, \bar{y}_{n+2}) \right). \)

(e) Suppose \(w \) is as above and \((w, e, \bar{w}, \bar{e}, \bar{S}_1, \ldots, \bar{S}_k) \in \sigma([a]). \) To show (iii), we have to say how to find \(h^\alpha \) once \(F_0, \ldots, F_n \) are given. First we consider the set \(\Phi \) of sentences in \(L(S, D) \) which are substitution instances of subformulas of \(\sigma \) and which are true under the standard interpretation in \((w, e, \bar{w}, \bar{S}_1, \ldots, \bar{S}_k). \) We "truly" instantiate these by functions \(h^\alpha \) so that the above (vi), (vii), (viii) become true when we read \(\Phi \) for \(\Phi. \) Now, since \(h^\alpha_{\infty} = h^\alpha_0 \circ h^\alpha_1 \circ \cdots \in C, \) we have \(h^\alpha \in C. \) Clearly, \(\Phi(F_0, h^0, h^1, h^2) \subset \Phi \) and by induction, \(\bigcup_{n \in \omega} \Phi(F_n, h^0, h^1, h^2) \subset \Phi \), and so, by (c), \(N(n, a, h, C, e) \text{ is true in } \sigma. \) This shows (iii).

(f) Assume \(A \models \Gamma(a, b, C). \)

Then it is sufficient to apply this fact for some \(F_0, F_1, \ldots \in A \) such that \(\text{dom} F_0 = B_0 \) and \(\bigcup_{n \in \omega} F_n = A. \) Taking the \(h^\alpha \) given by the assumption, we see that

\[
T = \bigcup_{n \in \omega} \Phi(F_n, h^0, h^1, h^2)
\]

is "consistent" in the above sense. It is easy to see that for some relations \(S_1, \ldots, S_k \) on \(A, (A, e \uparrow A, S_1, \ldots, S_k) \) will be a model of \(T \) under the standard interpretation of constants. The relations \(S_t \) are defined according to which of the atomic and negated atomic formulas containing \(S_t \) are in \(T. \) Then an induction will show that all elements of \(T \) become true in the model. The induction is based on the definition of \(T \) and for the case the formula is of the form \(V \varphi, \) it uses the above-mentioned consequence of assumption (i) that every \(\varphi \in A \) is denote (f) for some \(f \in D. \)

This proves (iv) since clearly, \(\sigma \models T \) (see (v)).

By what was said above, this finishes the proof of Green's theorem.

Finally we mention that the \(A \)-recursive enumerability of valid sentences of \(A \) for an \(A \) with the above assumptions (actually, (ii) is not needed) can be proved similarly, following again § 5 of [V]. This result is also due to Green [G].

References

