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K is the least model-class containing {[64]},., a8 element). Then K C 1,

AM, and NCEK. We show that "Mely, (K). Suppose the eo—J:_Ltre:;‘ﬁ
Then K contains a selector for {[onl},en, i-6. there are 7, € [0] such thyf.;
{tn}nea € K. The system {7}, i8 representable as a subset = of I, (ag :
exact functor see [7] 1408) and is in M, ~ M,. Consequently r<Dn
and v <3 # and hence there is an n such.that v ¢ ¥,. But {{o ]}, ;D i
and hence K C N, which contradicts to & C K. eS0T

4.5. Remark. (1) The set {{on]},., Can be re
4.5. o presented as a sequenc
of disjoint sets of subsets of w and hence one has a countable disj(%)intede
gystem of sets of reals without a selector.

(2) X is the least model-class with ¥ as a subclass and we have
N #K by 43. Is K= M, ~ M,;? Can one obtain K as a “symmetric
submodel of a support extension of 1.”? :

(3) An analysis shows that the assumption “V has a set support

over L” in 4.4 can be weakened to the Godel’ i
hotes (5 o 170, el’s form of the axiom of
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Elementary interpretations of negationless arithmetic

by
E. G. K. Lépez-Escobar (College Park, Maryland)

Abstract. Some systems of negationless arithmetic (in the spirit, if not the form
of Griss’ negationless mathematics) are introduced and their relation to intuitionism
are considered.

§ 1. The negationless mathematics of G. F. C. Griss

1.1. Few would disagree with Griss’ criterion that all the well-
formed parts of a meaningful formula should also be meaningful. Un-
fortunately there is plepty of room for disagreement on the meaning of
“meaningful”. Although it may well be impossible to determine what
Griss had in mind, two aspects of this interpretation are (more or less)
evident: namely that for a formula to have meaning it is necessary that
it have a constructive interpretation and that it be satisfiable.

If one accepts such a condition on the notion of meaningful and
still adheres to the principle that all the well-formed parts of a meaningful
formula should also be meaningful, then one finds that the propositional
connectives “or”, “if ... then” and “it is not the case that” cause a lot
of problems. For example the sentence

0=0v0=1

could not possibly have any meaning for Griss, sinee if it had then so
would 0= 1 and the latter could not have any meaning for him since
it is not satisfiable.

The connective “—>” is even more problematic. Already the im-
predicative aspect of the intuitionistic interpretation of “—” leaves much
to be desired, and if to the intuitionistic interpretation one adds Griss’
criterion, the formulae such as

0=1+1=1 and 0=0-0=1
are banighed from mathematics. What is worst still is that a sentence

of the form Vi.Az may have meaning and yet An may be meaningless
for certain numerals n, for example let Az = (= 0—>2=0).
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Intuitionistically, the negation of —A4 i3 identified with 4—0= 1,
so negation has all the problems of “—” (and a few more).

1.2. Other propositional conmectives. In view of the above compli-
cations the connectives “v”, “—” and “—” are not usually included
in the formalizations of negationless mathematics (name usually given
to the mathematiés proposed by G.F. C. Griss 1946). In their place
other  connectives are added (see for example: Nelson 1966, Mini-
chiello 1968). One favourite connective is quantified implication: 4d»—;Ba,
which could be read (by a classical logician) as @ = {w: An} C {n: Bn}.

On the whole the new connectives are quite complicated and the
formalizations of negationless mathematics (or even arithmetic) that
have been given so far are rather cumbergome.

1.3. Some of the aims for negationless mathematics. Null implications,
i.e. implications of the form 4+ B where A is false in all instances, and
null predicates are so ingrained in modern mathematics that Griss’ at-
tempts to develop (constructive) mathematics without their use appears
to be doomed right from the start. In addition the available formali-
zations are not aesthetically pleasing so that the programme of Griss
will probably not attract much attention.

Yet negationless mathematics could- be useful in the foundations
of mathematics. Of course no one doubts that null implications and null
predicates are harmless, what is desired is a proof that they are indeed
harmless. Hilbert did not want to be expelled from the paradise created
by Cantor, we should at least be able to prove that there is no need to
live in the purgatory created by Griss.

1.4. The disparity between v and H. Both 4, and A, are well-formed
parts of 4,V 4;, so according to the criterion of Griss in order that A vA4,
be (negationless) meaningful it is necessary that both A, and 4, be satis-
fiable. On the other hand for the sentence HzAz to be a meaningful
statement about the natural numbers it is nob required that 4Am be satis-
fiable for all natural numbers n, but only for at least onme.

One could modify Griss’ criterion so that it applies to subformulae

- (4% is a subformula of Hz Az for all terms 1), but then the quantifier ©

_Woulq be just about useless; in any case, it is doubtful that Griss had
in mind such a stringent non-nullity eriterion.

In order to maintaiin the standard interpretation of an existential
sf:a.!:emex.lt a8 a large disjunction it is best to relax the conditions on
disjunctions so that only one of the disjuncts of a disjunction need be

- satisfiable. Or in other words, 4,v:4; will be allowed in our formalization

of negationless arithmetic and its neeati i ion i
: gationless interpretation is, loosel,
speaking, the same as that of Hi(i<<2 A Ay). i Y
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1.5. The connective — . From an intuitionistic viewpoint the negation
of A, — A, is often interpreted as A—0=1. However such 2 complex
notion is not needed for the negation of equations between numerical
terms. It is consistent with the constructive interpretation of the natmral
numbers to have, in addition to the equality predicate “=" an apartness
relation “ ",

In the formalization given in § 2 we shall not use unlimited negation,
we shall restrict ourselves to the apartness relation.

1.6. The connective —. From time immemorial the connective — has
been riddled with problems and miseonceptions. Part of the problem may
be connected with the insistence that the connective “if...then” be
somehow related to the verb “implies”. If one is willing to give up any
such connection then “—* causes no problem. A beautiful example of
this is the classical truth value interpretation of “4—B” as “— AvB”.
Under the classical interpretation, iterated conditionals, for example:
((‘A->B)—>O), have an easily understood interpretation (e.g. (4 A —B)vC).
On the other hand, if one uses the intuitionistic interpretation for —,
then even simple looking statements such as:

(0=0>1=1)->2=2

involve not only constructions dealing with natural numbers, but also
constructions on constructions on constructions.

Now, although we believe that eventually a negationless interpre-
tation for the conditional must be found, we also believe that we should
determine how muech can be done if we simply eliminate conditional
sentences from the formalism. Of course from a classical viewpoint nothing
has been lost since we propose to keep V, H, and, v and negations of
atomic formulae. Unfortunately if we use the classical interpretation
then we loose constructivity.

If we were considering only the predicate calculus then the normali-
zation theorem for the intuitionistic predicate calculus, IPC, and its
associated subformula property can be used to show that IPC is a eon-
servative extension of the system obtained by eliminating the rules
corresponding to —-. S,

However the situation for arithmetic is different.

§ 2. The system INA for negationless arithmetic

2.1. The system NA will be a system of natural deduction formalized
in the style of Prawitz 1965 and most of the notational conventions will
be taken from there. Deductions (II, 17y, ...) will be in tree form and as
is usual in systems of natural deduction we shall distinguish between
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variables (z,¥,...) Which can only occur bound in formulae and para-
meters @y, Gy, ...) Which can only occur free in formulae. We shall also
have an individual constant 0 (zero). _

22, In addition to the function symbols: s(successor) and p(prede-
" cessor) we shall also include a function symbol for each primitive recursive
function. More specifically, we shall use the indexing of the primitive
recursive functions given in Feferman 1962 and to each natural number b
such that In(b) we shall introduce the (b),-ary function symbol f; (see
also 4.1).

2.3. The language of NA is to contain gymbols for eonjunetion (A),
disjunction (Vv), universal quantification (V) and existential quantifi-
cation (). . . ‘

The only (primitive) relation symbols that will be used are

= (for equality), 4F (for apartness).

Atomic formulae, formulae, numerals etc. are then defined as usual.

2.4. Axioms of NA.

it=1 for any. term .
i, £ J st for any . term ¢£.
iii. O # st for any term f.

i fbg by =1y, for any equation “ff; ... &, = #,," used in the
primitive recursive definition of a primitive recursive function.

2.5. Logical rules of inference.
A,B AANB AAB

()
AANB A B
A B
(V) A B AVB, é, O
AVE 4AvB ~ C
i
V) Aa ¥ Vods
Vo dx At
Aa*
@) At Hods, O
oAz (o}
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[In the rules * it is assumed that the parameter a (the proper parameter
of the inference) does not occur in any formula, other than Aa, on
which Aa depends; for definition of dependency see Prawitz 1965].

2.6. Rules on inference for = and 3.
L=ty =1 =1
=1 sty = 8ly
t =1 sty = sty
fol ety ety =Tl e bienty  Ti=1

t, 1, t#0
st; sty spi=t

t #tzytl'—”ta
AT

2.7. Rule of induction (IND).

Aa

A0, A-.s'a
At

where a is a parameter not occurring in assumptions on which Asa
depends except for formulae of the form Aa.

2.8. Deductions, derivations, Deductions are supposed to be arranged
in tree form and we shall assume that when 2 deduction is given it is
specified at each node of the deduction which rule of inference it is being
applied. In addition we shall assume that when a deduction is given it
is stated at each of the top nodes of the deduction at which inference the
formula is discharged.

By a derivation we understand a deduction without any undischarged
assumption formulae (other than axioms).

§ 3. NA as a subsystem of HA

3.1. For simplicity we shall assume that intnitionistic arithmetic HA,
has been developed as a system of natural deduction using —> and all
the symbols of NA. Since all the axioms and rules of NA are derivable
in HA we then obtain that NA is a subsystem of HA.

Tn section § 5 we prove that HA is not a conservative extension
of NA. In fact we shall exhibit a prenex sentence only involving ¥, & and
positive atomic formulae which is provable in HA but which is not prov-
able in NA. .
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We conclude this section with some of the sentences that can be
proved in NA. We shall use the notation “[b]” of Feferman 1962 for the
primitive recursive function whose index is b.

3.2. LEMMA.
i. NAbn=n. .
ii. NAFn #m i n#Em
jii. NA Ffyng o g = nypy  f [D](may ooy k) = My
iv. NA Ffomy ooy gy 8 (B30 oy M) 7 Mg

v. NA Rt =1, if t, % are closed terms equal under the
canonical interpretation.
vi. NA ki, #6 if ty,1, are closed terms unequal under

the canonical interpretation.
vii. NA FVa(z 48, ve 3b) of t,t are closed terms unequal under
the canonical interpretation.
. Proofs. Of i-vi by informal induction. wvil uses also the rule of
induction.

3.3. DeFviTION. If A, B are formulae, then by NA-4 4 FB we
understand that there is a deduction of B whose undischarged as-
sumption formulae occurrences are all of the same form as 4.

The following lemma is not interesting from & negationless view-
point, it is included in order to show that there are some ves‘rlglal remains
of null-implications in NA.

34. LEMMA.
. NA+0=1Fn=0.
ii. NA+0=1Fn #0.
iii. NA+0=1Fg,=
iv. NA+0=1}tay Fa,.
v. NA+0=1FA, A any formula.
Vi. NA+0 #£0F0=1.
vii. NA-+0 #0F A4, 4 any formula.

§ 4. Realizability and NA

4.1. We shall nuse Kleene’s 1945 notion of realizability except that
instead of using Godel numbers of partial recursive functions we shall
use indices of primitive recursive functions. In™(b) iff b is an index for
determining a funetion ¢ of (b), arguments from any funection ¢ of m
arguments by adjoining instances of primitive recursive schemata to the
true numerieal equations for y. The n-ary function definéd in that case
from the funetion y will be denoted by [b]%.
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- 4.2. DEFENITION. 8 is the universal recursive function for the primi-
tive recursive functions; that is, for all'n
6(b, n) = [bl(n).

4.3. DErINITION. Given a formula F with parameters @ = aq, «.., ax
we define when a natural number b prim-realizes E for a given as-
signment # = ny, ..., 2z to the parameters @, and express it symbolically

bR;E
as follows:
i. B is an atomiec formula and En, ... nx is true under the canonical
interpretation.

ii. = F,\F, and (b), Rz E,, (b), Rz B,.

ili. B = E,vF, and either (b),= 0, (b)IR E, or (b)y=1, (b); B3 E,.
iv. B = G[mAa: and (), By g, Ao ;.

v. B = Vo Az and In?(b) and for all m, [b]°(m) Ry, Aag,.

4.4, We shall assume that the syntax of NA has been arithmetized
and we shall follow the custom of identifying formulae, deductions, etc.
with their Godel numbers.

4.5. DEFINITION. [T is a proper deduction iff

i. the proper parameter of an application of V- mtroduetlon oecurs
in IT only in formulae occurrences above the consequence of the appli-
cation of the rule,

ii. the proper parameter of an application of H -elimination in IT
occurs only in formulae occurrences above the minor premisses,

iii. every proper parameter in /T is a proper parameter of exactly
one application of the (VI) rule or the (HLE) rule.

It can be shown without to much difficulty that every deduction
in NA can be transformed into a proper deduction (see Prawitz 1965, § 3).

4.6. Given a deduction I7 it is clear that we can primitive recursively
determine the parameters that occur in undischarged assumptions of I7.
We shall let Param (I7) be the enumeration, in increasing order, of the
parameters that occur in wundischarged assumptions of 7. Similarly,
Assum (I7) is an enumeration of the formulae oceurrences of the undis-
charged assumption formulae of II. :

4.7. THEOREM. If a sentence A is provable in NA then A is prim-
realizable.

Proof. We shall prove by induction of the length of /I that to every
proper deduction /T we can associate a natural number e such that

6P, [ , m) .R-»-‘
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whenever
% is an assignment to Param (IT),
§ is a sequence of numbers which prim-realize the formulae m
Assum (11),
m is an assignment to the parameters of A that do not occur in
Param (II),
(such a number ¢ is said to realize the deduction I7).

Basis step. IT consists of exactly one formula. Then A must either
be the assumption formula of II or else 4 is an axiom (and hence an
atomic formula). In either case it is clear how to determine the required
natural number e.

Induection steps.
Case 1. The last rule of inference was (AI) so that /7 must have
been of the form . ’
15, I,
ANA, T

According to the induction hypothesis there are natural numbers ¢, e,
which realize IIy, II; Tespectively. Let 7 be an assignment to Param (II),
b a sequence of numbers which realize the formulae in Assum (IT), m an
agsignment to the parameters of A,A4,. The assignments # ,3, m can
be primitive recursively split into Togy Ty Doy byy Mo, Ty 50 that 7, is an
asgignment to the Param (II,) and so on. We thus need a natural number e
such that

({3, b, m) = {Leo]’ (g, Bo, o), [Ty, By, 7).

Such a number can clearly be found.

Cases 2-6. The last rule of inference applied i is ei
pplied in IT is either (AH
(vI), (VI), (VE), (&I). Similar to case 1. (B

Case 7. The last rule of inference applied in JT is ( VE). Thus IT must
be of the form

A A,

Av4, 00  I,IL,n,
¢ - c :

Let n, b, m be assignpents to Param (II), Assum (IT) and parameters
O]i:fl O that dq not occur in Param (I7). Let P, P,, P; be the set of parameters
!; at oceur m*AD_\»/Al, Ay, A; resp. that occur neither in Param (IT) nor
in G Let n,, iy ”abe assignments to Param (I1,), Param (IT,), Param (T, )
which agree with #n on Param (II) and which assign 0 to th:s paramete;S
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in P, P,, P, respectively. Then let m, be the assignment which agrees
with ’I-)';, outside of P and which assigns 0 to the parameters in P.

According to the induction hypothesis there are natural numbers
€y, €1, & Which realize the deductions IT,, IT, IT,. Let e be a natural number
such that:

-

[P, B, ) = 8g(([eo]’ (o, B, o)) -Ted’{y, B* ([0 Fony B o)} )+
+5§(([90]6(’;;o’ 2;, ”Eo))o) '[33]0(;;2: o <([gu]9(;7'w Z: "77/0))1>; '"-'2) .

Such a number e can be found and e realizes II.

Case 8. The last rule of inference applied in /I is (L E). Similar to
case 7. :

CGases 9-15. The last rule of inference applied in IT is ome of the
rules of inference for = or = In this case the conclusion is an atomie
formula so the determination of e is straightforward.

Cage 16. The last rule of inference applied was (IND). Thus IJ must
be of the form

[4a]

Zﬂ z"l

40 Asa T, IT,
A A4t

According to the induction hypothesis there are natural numbers ¢, ¢,
which realize the deductions I,, IT, respectively. Liet #, b, 7 be such that
7 is an assignment to Param(II),
% is a sequence of numbers which prim-realizes the formulae in
Assum (I7),
m is an assignment to the parameters of At thatb do not oceur in
Param (IT).
Tirst of all note that there is a natural number e; such that
[es]°(, m) = the value of the term ¢ under the assignment n*m to
the parameters of . Next we observe that we can obfain a natural
number ¢, such thabt

[ed’(h, B, ., 0) = [6F(#, b, M),
Lo, B, i, k1) = [e, (R, B*Cel’ (@, B,y 70, B)Y, M) -
Finally let ¢ be such that
[P (i, B, 1) = [e(, B, 7, [6sT°0, m)) « ‘
4.8. Remark. The use of 8 can be avoided if we assume that NA has

only finitely many function symbols.

3 — Fundamenta Mathematicae, T. LXXXIT
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§ 5. HA as an extension of NA

5.1. TEEorEM. There is a prenem sentence A of the language of NA
such that HA F A and yet A is not derivable in NA. '

Proof. Let T(z,y,#) be Kleene’s T predicate and let fr be the
function symbol corresponding to the representing function of 7. Then
et & be the Godel number of a provably recursive function which is not
primitive recursive in 6. Then HA F Vao®y[fz(k, #,y) = 0]. On the other
band VoHy[f.(k, #,y)= 0] could not be provable in NA because sup-
pose it were; then there would be a function ¢ primitive recursive in 6
such that for all n, T (k, ", q?('n)), contradicting the choice of %.

§ 6. Extensions of NA

6.1. It is unlikely that anyone would claim that the sentence
Veldy[fq(k, z,y) = 0] fails to be meaningful from a negationless view-
point. Thus NA is incomplete in the sense that rather simple negationless
correct sentences in the language of NA are not: provable in NA.

One way to try to eliminate the weakness of NA is to introduce
more logical connectives in particular one could introduce connectives
that approximaté, in a negationless fashion, the conditional. However,
there are other alternatives.

NA is supposed to be a theory about the natural numbers. In
particular the quantifiers are intended to range over the natural numbers.
Or put in another way, the quantifiers V and & may be viewed ag infinite
conjunctions and disjunetions resp. Naturally, arbitrary infinite con-
junctions and disjunctions may be objectionable to some constructivist,
however, if one restricts oneself to conjunctions A A, and disjunctions

n

\u/ A, where the 4,, n=0,1,2,.. are given by some predetermined

type of rule (for example, a primitive recursive function) then such

objections can be minimized. There might still be objections on the’

grounds that a sentence A A, (specially if written A AA;AA4A ...)

» . ) e
requires that an infinite set be constructed (and completed). However -

such fears are groundless because /\ A, can be considered to be another

n

name for the rule that generates the Ay, ..., 4, ... Or put in more for-
1;&1131;19 tern]:;s: 1The infinitary formulae can be constructed as well-founded

ees given by lawlike functions and all we ever sét down is the 1 i
the lawlike function). o law (o
. '];here are some further advantages to using the infinitary con-
Jjunctions and disjunctions; for example one can avoid the uge of para-
{netex:s. Also E[,. Y, v‘and A are definable in terms of the infinitary con-
Junction and disjunction. Let NA,, be the system so obtained. That is,
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NA,, has as axioms all true atomic sentences (recall that the distinctness
relation # produces atomic formulae). The rules of inference of NA,, are
the rules for = and 3 given in 2.6 together with the following rules
for A, V.

A
{dp: n=10,1,..} /,‘\ "
(AI) A An (AE) .
Ay A A,
4, \H/A,, ¢,0,0, ..
(vI) V4, (VE) 0

and the structural rule of repetition
A
R —.
(Rep) —

6.2. Derivations in NA, are well-founded trees of sentences. The
top most occurrences being either assumption sentences or axioms. Using
a suitable arithmetization, the derivation in NA, can be coded info
number theoretical functions. Let NA, s be the system obtained by
requiring that the derivations (as functions) be in the class & of functions.

6.3. We shall assume that F D PR (the class of primitive recursive
functions).

6.4. Given a sentence A of HA let A* be the sentence obtained by
replacing subformulae of the forms: HaBw, VeBz, BV ¢, BAC by \/ Bn,

n
A\ Bn, BYOVCVCy ... and BAOACA ... respectively. Clearly, if A is
n
a sentence of NA then A* is a sentence of NA,,.

6.5. Lumna. If the sentence A is provable in NA then A* is provable
m NAoo,f' :

Proof. By induction on the length of the proof of 4 in NA. The
only case worth mentioning is that of (IND). Given an application of (IND)

4]
> X@
-.A_6 _.A.SG

VaodAz

3%
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on then transforms it to an application of (A I) as follows

ZI
[40]
z Z(0) .
[40]  [41] ~

z Z(0) Z()
A0’ A1 A207T
N 4n
n

6.6. Let HA, 5 be the corresponding infinitary extension of Heyting’s
arithmetic (i.e. using the connectives A,\/,—). Then one immediately
obtains that for any sentence A4 of HA if HA F 4, then HA, 4 F 4%
In addition we have the following conservative extension result.

6.7. LeMmA. If A is a sentence of NAy, then A is provable in HA, &
iff A is provable in NA,, &. |

Proof. An immediate consequence of the subformula property of
?.he normal derivations in HA, & and the fact that every derivation
in HA, s can be transformed into a normal derivation [of. Prawitz,
1971].

6.8. Given any sentence A of NA,, let ~A be the sentence obtained
as follows:
if 4 =(v=0) then ~A4A = (7 4 0),
if 4 =(7#0) then ~4 = (v=0),
if 4=/ B, then ~4=\/~B,,
n n

4=\ B, then ~4=A ~B,.
n n

Let % be the collection of all number theoretic functions. Then

a s@ple {non-constructive) induction on the rank of 4 gives the fol-
lowing lemma. ‘

6.9. LeMwA. For every-sentence 4 of N it i
o o b f NA,, either A or ~A is prov-

§ 7. Tmplicative extensions of NA

7.1. One nay reasonably claim, in view of the results above, that
any WOI‘t}.IWhl!.e d}seusgion of negationless arithmetic must include’ some
kind of implication which can be iterated. The favourite candidate
appears to' be quantified implication: Aw—s, Ba.

@ Q:lsla,ntlﬁed unp‘hcamon, the use of variables and Grisy’ criterion on
e well-formed points have some strange consequences. Note first that
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the negationless interpretation of Aa—;Bwx is basically that of
Va(4dz—Bz)A HxAz. Suppose now that x does not occur free in A4,
then A—, Bz leads to 4 AVaBz. In particular y 32— B(y, 2, #) leads
to y H2AVaeB(y, z,2). :

Instead of quantified implication —; one may introduce an infinitary
connective = such that whenever (4,>, (Bayn are infinite sequences
of formulae (given in the reader’s favourite constructive way) then
(Anyn=>{Bnyr is also a formula. Instead of {(An)n=(Bsds oOne may
write: A, =» Bn. We propose that the classical interpretation of Ap=-y Bn
be A (4n—>Bu)A\/ 4n. Whether A, =, B, can be justified negationless

n n

remains to be seen; one small thing in its favour is that A(x)—s B(x)
can be interpreted as A(m)=>» B(n).

7.2. The rules of inference associated with = are

A, 4, An
Am, By, By, ey Bu, .
I
(=I) Ap =n By
and
Ap=nBa, A
E — R,

The derivations should be restricted to some suitable class of con-
structive functions. In any case for reasonable classes of constructive
functions one can prove a normalization theorem (i.e. eliminability
of maximal segments in the segments in the sense of Prawitz 1971).
From the normalization theorem one can show that unsatisfiable sub-
formulae can be removed from closed derivations. More specifically given
a formula A4 let A* be the formula obtained from A by deleting all un-
satisfiable atomic formulae (some convention must be agreed upon for
dealing with infinite disjunctions (conjunctions) which may become
finite when the unsatisfiable disjuncts (conjuncts) are eliminated). Then
if A is derivable, so is A* and 4* has a derivation in which only formulae
of the form B* are used.

<@

§ 8. The functional interpretation

8.1. A calculus which only involves equations between numerical
terms is certainly negationless acceptable. Thus one might be tempted
to believe that Godel’s Dialectica interpretation gives a negationless
interpretation for intuitionistic arithmetic.

There is no doubt that if A% is the Godel interpretation of 4, then
A% ig negationless acceptable (at least for 4 which are provable in HA)
even if 4 is not. The trouble is that 4 itsélf may be negationless accept-
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able but the negationless interpretation of A may be different from
that 4% Thus the Dialectica interpretation does not succeed in showing
that every negationless acceptable statement which is provable using
non-acceptable formulae has a derivation which only uses negationless
acceptable formulae.
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On nonmonotone inductive definability

by

Yiannis N. Meschovakis (*) (Los Angeles, Cal.)

Abstract. The paper studies the class of relations on a set 4 which are defined
inductively by nonmonotone operators in some collection & satisfying certain minimal
structural conditions. There are several conerete applications, including the construction
of some interesting admissible sets.

The purpose of this paper is to apply the methods of EIAS (%) to
the study of nonmonotone inductions.

In the first three sections we have attempted to codify the most
basic properties of nonmonotone induction. These are general versions
of tricks and methods which have been well known to the researchers
in this field for some time. Many of them were formulated in similar
abstract forms independently by P. Aczel, see Aczel [1973].

After the basics, we apply the theory of Spector classes of Chapter 9
of EIAS in Sections 4, 5 to obtain a characterization of the class of in-
ductive relations relative to a “typical, nonmonotone class of operators.”
This is Theorem 15, the main result of the paper.
~ In Section 6 we consider in some detail the important examples of
inductive definability in the higher order language over a structure —
ie. XP- and ITP-inductive definability, m=0 and k>2 or m,k> 1.
The significant but “atypical” case of II-induction is discussed briefly
in-Section 8. . .

Finally, in Section 7 we apply the theory of companmions of Spector
classes of Chapter 9 of BIAS to characterize various nonmonotone in-
ductions in terms of admissible sets with related, interesting properties.
The main result here is Theorem 21. There are also some applications

(*) During the preparation of this paper the author was partially supported by
NSFEF Grant = GP-27964.

(#) By EIAS we will refer to Elementary Induction on Abstract Structures, Amster-
dam 1973.
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