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Relativization of cylindric algebras (%)
by

Leon Henkin and Diane Resek (*) (Berkeley, Cal.)

Abstract. The classes of cylindric algebras, and of cylindric relativized algebras,
are described, and it is shown that the latter can be characterized by equational
identities for dimension < 2, but not for higher dimensions. Some other results for higher
dimensions are mentioned without proof.

It is well and widely known that if
D=<(B,+,,—,0,1

is any Boolean algebra (BA) and ¢ is any (%) element of B, then the func-
tion h, on B such that he(s) = a-2 for all # € B, is a homomorphism of D
onto another BA ’
Da= {Ba, +, "y —a; 0,8, )

called the relativization of © with respeét t0 @, where B, = {# e B|] £ < a}
and —4% = a— for all « € By. In this paper we shall study the process
of relativization in the case of cylindric algebras (CA’s), which are a kind
of multi-dimensional BA’s; we shall be concerned especially with CA’s
of dimension 2 and 3.

It turns out that the process of relativization extends in a natural
way from BA’s to (A’s, but that in -general an algebra obtainéd by
relativizing a OA. of dimension greater than 1 is not ifself a CA; we call
& structure obtained in this way a cylindric relativized algebra (Cr). In
§ 2 below we shall characterize the class of 2-dimensional Cr’s by means
of equational identities, .and in § 3 we shall show that such a characteri-

() This work was supported by the National Science Foundation, Grant No.
GP-35844X. : )

(*) Some of the results to be reported below were obtained by Reéek.in 1968 Wh1'le
working at the University of Warsaw, some were obtained by Henlkin in 1969 while
working at the Mathematical Institute and at All Souls College,‘ Oxford Umversr‘hy.
Both authors have had the pleasure and mathematical stimulation of contact with

Andrzej Mostowski.
(®) If BA’s are defined to require that 0 s 1, then a must be chosen so that a # 0.
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zation is impossible for the class of Cr’s of dimension 3 or higher. Some
results concerning CA’s and subalgebras of Cr's for dimensions greater
than 2 are briefly mentioned in the concluding § 4. In § 1 we pregent the
basic definitions and known results which are used in the sequel.

- § 1. The concept of BA’s is abstracted from the notion of a Boolean
set algebra
=<l vyny ~, 0,75,

where V is an arbitrary set, ~ is tho operation. of complementation with
respeet to V, and F is a non-empty family of subsets of V' closed under
U, ~, ~.In case V is the Cartesian power of some other set U, say V =<7
where o iy any ofdinal number (1), then we can consider certain richer
structures called cylindric set algebras, obtained as follows. For », A <
we distinguish the diagonal sets

D,={weU| w,=w,},

" and we consider the operations C, of cylindrification such that, for any
X CeU, '

0, X = {ye°U| for some xe X, y,== x;, for every A # %, 1< a}(d).
If @ is any family of subsets of *U such that D, ¢ ¢ for all », A< o and
@ is cloged under each of the operations v, », ~, 0,, then the structure

G = <G‘7 MYy N,({;:”U: Om Dul?"u,l-:a

is called an a-dimensional cylindric set algebra (USA,).

The notion of a cylindric algebra is obhained by abstraction from
the notion of a cylindric set algebra by selecting certain equations which
hold identically in every cylindric set algebra and using these as axioms
to define the class of CA’s. Specifically, by an a-dimensional cylindric
algebra, CA,, we mean any structure

. =<4, +, ,—,0,1,¢, G s, 100
such that .
(Cy) the strueture <4, -, <, —, 0,1 is a BA, cach d,ed and
each ¢, is a one-place operation on A; and for every w, i e A and », 4, p<
(@) ¢,0=0; '
(Cy) z< o (Le., 2 c0 = 0);
(Ca) efw-c,y) = ¢, 0,y;

(') We assume ordinals defined so that cach ordiual numbor coineides with the
set of its predecessors. . '

() If we visualize @ as an a-dimensional Cartosian spaco over U, thon each D8
a diagonal hyperplane of the space, and for any point soti X of the space, 0X is the
cylinder generated by ‘qra.nslai;ixlg X parallel to the xth coordinate axis.
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(Cy) c.0® = €,0,%;

(Cg) du=1;

(Cy) if = # 4, u then dy, = ¢,(d-d,,);

(Cy) if % % A then ¢(d, ») ¢ (d, —z)=0(°).

Among the laws, derivable from these axioms, which hold in every
CA,, are the following: '

(11 () cem=-¢,x;
T ) ofety) = a6y
(ill) ¢,(—c,0) = —o0,2;
(iv) g = dys
(V) Gly=1;
(vi) e,dy, = dy, i x # 4, u;
(vil) e d,— ) = —c A, ®) if x # A

From (i), (ii), (iii), and (Cs) we see that the set

oA = {em] we A}
is closed under --, -, —, and hence by (C,) the strﬁcture
(1.2) A=A, +, 55—, 0,1

is a BA, the BA of x-eylinders of U
For any element a of a CA,, let d% = a-d,; and let ¢; be the oper-
ation. such that ¢z = a-c,» for all 4 ¢ A. Then the structure

W= CAgy +, 5 —ar 0y @5 6 BiDsica
is called a cylindric relativiced algebra of dimension a, Cr,. Note thab tl}e
mapping h, of A onto A,, such that h,z = a-z for all z e, is not in
general a homomorphism of % onto Az, since in general we will not have
he ) = ¢¥h,») (although this will be true in case 0= @, _by ((_33.)).
In consequence we cannot be sure that all of the equational identities
(C)-(C,) holding in the CA,, will also hold in the Cr,%,. It turns out
that while every Cr, is a OA, for « = 0,1, it is easy to construct. a
Cr, which is not a CA, for every a>1; for example, in the CSA,

" 91 of all subsets of U, where U is a set with more than one element, if

we put @ = — d,, then the Or,%, will fail to satisfy (O,) and (C,). However,
we have the following result.

(1.3) ProrosrTioN. In any Cr,, all of the laws (UD).-(Cs), (Gs)s ('07),
and (1.1) (i)-(iv) hold identically. If A is a CA, aa:bd A, is az'(}r,z obtained
Sfrom U by relativizing to the element a, then Wy will also satisfy (Cy) and

() This definition and much of the elementary theory of CA’s, in particular all
results stated below in this section without proof, are to be found in [2].
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(C,) — and hence will be a CA,— iff the following conditions hold for 41
%, A< a ond @€ da: :

(i) elom ) < ofo,000);

(i) @< ed, a)-

The principal result of § 2, Theorem 2.8, states that for dimension
a =2, the identities (Co)-(Cs), (C5), (Cy), and (1.1) (iv) characterize the
clags of Cr.' 5. Given any structure D satisfying these identities, we shall
construct a OA, %, and an element a of U, such that D = A,. This con-

struction will proceed by first forming certain BA’s associated with D,

and then combining these in a suitable way by forming direct products
and Boolean products. :
The well-known construetion of the direct product P €, of a given
jel '

family {€},.; of similar structures (") produces a structure €, and ca-
nonical homomorphisms p; (called projections) of € onto €; for each i,
which can be characterized up to isomorphism by the propeity that,
given any structure ¢ with homomorphisms p; onto €; for each 4, there
exists a unique homomorphism A of € onto € such that pj= p; ok for
each i e I. Since the formation of a direct product preserves equational
identities, we can be sure that the direet product of BA’s iy itiself a BA.
In case each @ is a Boolean set algebra of subsets of some set Vi, where
VinVi=@ when i # j, the direct product € of the algebras €; is iso-
morphic to & Boolean set algebra of subsets of | Vi, the elements of €

congisting of all sets () X, such that X;e G, fof—:muh tel.
iel .

The construction of a Boolean product © of given BA's {D,},.r, while
related to the general algebraic notion of free product, is special to the
theory of BA’s (]). The Boolean product D is a BA, equipped with ca-
nonical homomorphisms g of D, fnito D for each 4, and can be characterized
up to isomorphism by the property that given any BA ©’ with homo-
morphisms g; of D4 into D' for each 4, there exists a wnique homomorphism g
pf D into D’ such that g} = g o ¢; for each 4 ¢ I. It is not hard to show that
if © is the Boolean product of the BA’s {D,},; and if ¢; ix tho canonical
homomo‘rphism of Dy into D, then ¢; is one-one, and D is gencrated by the
union of the subalgebras ¢i(Dy).

In case each Dy is a Boolean set algobra of subsots of some set Vi,
the Boolean produet D of the algebras Dy is isomorphic to a Boolean seb
algebra of subsets of the Cartesian product P V,; the elements of this

i : s . iel
field consist of all finite unions of sets P X, such that X, eD; for each
. iel

() See [2], See. 0.3,

" s

(®) See [4], § 13. Within the theory of duality for BA’s, the constrnetions of divect
products and Boolean products are dual motions.
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i eI and (in case I is infinite) Xy =V for all but finitely many 4 ¢ I. The
canonical isomorphism ¢; in this case is defined so that, for each element X
of D¢, ¢i(X)= P ¥, where Yi= X and ¥;=V; for each j I~ {i}.

jel

Since every BA is isomorphic to a Boolean set algebra by the Stone
representation theorem, the above example actually provides a way to

_construct the Boolean product of an arbitrary family {Dg},; of BA’s.

‘When a Boolean product D is obtained in this way as a Boolean set al-
gebra of subsets of some set PV, we can introduce cylindrifications ¢;

iel
on® for each j ¢ I in the same way as the operations ¢; were defined for
OSA’s, specifying that for any element z of D,
¢jg= |ve PVl for some u ez, vi=ui for all ¢ eI~ {1},
iel .
Tt is easy to infer that D will be closed under each ¢;, from the fact that
it X; eD; for every i e I, then ¢j( P X;)= P Y; where ¥;="V;or ¥;= (6]
iel

i€ tel

according as X; # @ or X; =0, and Y= X, for all ¢ e I ~ {j}. The oper-
ations {o;};.y defined in thiy way satisfy all of the laws (C,)-(C,) that
hold in CA’s. :

In the general case the connection between the canonical isomorphisms
g; of the BA’s D, into the Boolean product D, and the cylindrifications o4
on © described above, is not very simple. However, for our purposes
we shall only need to deal with this situation in the case where I={0,1}.
In this special case the definitions for ¢,, ¢, and ¢y, ¢; show that g, is an
igomorphism of D, onto the BA D for eachj= 0,1 Also, in this case,
we have ¢,o,z = 1 and ¢} ¢yz = 1 whenever 2 is an element of D with z # 0.
Writing ¢, for ¢, _; for convenience, We eXpress these results by the following.

(1.4) ProposTrioN. Let Dy, Dy be arbitrary BA’s, and let © be their
Boolean product with canonical isomorphisms q¢ of D¢ into for i=10,1.
Then there exist operations ¢y, ¢ on D satisfying the laws (C1)-(Cy), such
that g; is an isomorphism of Dy onto the BA 6iD formed from D as 'm (1.2).
Furthermore, for any element 2 of D, if # # 0 them 6,012 = 6,67 = 1. We call
the system (D, ¢, ¢,y the eylindric product of the BA’s Dq and D;.

§ 2. Throughout this section we ghall use the word siructure t9 refer
to any system 2 of the same similarity type as CAy’s and Cr,’s, i.e., to
systems
. QI=<-A-7+7':"“70>1:0:=1 dxz>n,z=n_,1 ’
-+ and - are binary operations on A, —, ¢y, 6, are unary
doyy Gaoy s € A.
lass of all structures A satisfying
(Cy), and (1.1) (iv).

where A is a set,
operations on 4, and 0,1, doos

(2.1) DEFINITION. We let £ be the ¢
the equational identities (Co)-(Ca)s (Cs)
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Our aim is to show that 2 = Cr,. Sinee we already know that Cp co
by (1.3), we concentrate on demonstrating the opposite inclusionafv
shall need several elementary facts about structures in £, which We e£>11 ;
in the following. ot
(2.2) Lumma. Let U be any structure in Q. Then the followi
(for any @,y e A and any » =0, 1): Jollowing 3ola
(i) 6,00 = ¢,
(i) efz+y) = ¢+ 6.y,
(111) cu<_ oum) = —0,%,
(iv) ¢, < ¢,y whenever ® <y,
(V) e @ dy) = ¢, Aoy — e, {w+dy;)
(Vl) e dog) Aoy = - dy,
(v}l) the struczwe'c,fﬂt, formed as in (1.2), is @ BA,
(viil) if wecid then o, (zy) = ®0y.
Proof. Parts (i)-(iil) are copied from. (1.1); their i
. 1.1); proofs in the theor
of O_A’s depend only on (Cy)-(Cs), which hold for % « 2 by (2.1). Part (iv) i};
an 1mmedmt’e consequence of (ii), since from =y follows Tty =
To obtain (v) we first use (i) to get v

A Ayy) = 0, (— @+ dyy) == ¢,dy, ,
then by (C,) get
' Ol doy) 0, (— @ dyy) = 0

(v) then follows from. the theory of BA’s.

To obtain (vi) we firgt use (C,) to get - dy, « ¢ (a

T dyy =5 o (we ] i

we see that @-dy < o2 dy) dy,. : ¢ o )y from whih

The opposite inequality may be obtained by computing

olo - dy)- Ay + — (@ dyy)]

= 0@ ) 6, (g, - — (@-dy)) Dby (G)
= 00 dyy) 0, dyy — o (- dy) Dy (V)
=0

’
whence

O dog) oy - — (1 dy) == 0 by (Gy),

and tsn(;r cngw;do1)-d01 < my-.tlm, completing the proof of (vi).
wnder — by tfﬁ?a:;ﬁ(‘{f”’ we sco that ¢4 is closed under - by (i) and
to (viki), it & e c*A Eﬁ » With (Cy), is enough to assure (vii). Finally, as
With (2.2) p"rovedelll o8 v by (i), heneo o(w-y) = -6,y by (G)-
To do this we choose, © "G(tm’ﬂ to the task of showing that 2 C Cr,.
element 4, of 9 any D e £ and must produce an 9% ¢ CA,, and an
» 8uch that D = 9,. To constract this % wo shall form various
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direct products and cylindrie products of BA’s, but in addition we need
a new type of product for strnctures in @, which we now describe.

(2.3) DEFINITION. Let B, B’ € 2, where .
B =B, +,,—, 0,1,¢, dxl>u,l=0,1 ’
B =B+ =0V, Ao
Suppose that for » = 0,1 we have a one-one map h,: ciB-—>c*B’, and
let b, = h,(1). Let
<4, '|‘A9 'A’ ““‘17 0'4: 14’ df;.>n,z=n,1
be the direct product ‘
(B, 4+, —s 0,1, d,»X B+ = 0,1, & s
and define operations cgl, ¢ff on A as follows: For x= 0,1 and any
(w, Yy e A set i :
c;:i(m’ y) = <ﬂxw’ 0;’[J> —I—A<h;1(b”‘,0;y), h’zaxm>'.
Then the structure
U = ‘\’-A-; ‘l"l; 'Aa ”‘Ay 047 1A’ chf d$>x,l=ﬂ,l
is called the superposition product of B and B’ (with respect o hy and hy).
In case h, and h, are fixed in advance we denote this B ® B’ .
(2.4) LemmA: Let B, B', by by b, by, be as in Definition (2.3), and

lt W= B @ B as defined there. Assume that for %= 0,1, the map h, is
an isomorphism of the BA. ¢ B onto the BA (¢," B)y,, obtained by relativizing
¢*B' 1o b,. Assume, furthermore, that for == 0,1, we have h (e, dy) " doy
= 0'. Then U € Q. If, furthermore, we have cloyy = 1" whenever = # 1 and
y £ 0 in B, then also chcitz = 14 whenever 2 # 04 in U

Proof. Tt is clear from (2.3) that A gatisfies (C), since a direct product
of BA's is a BA. Tt is also clear that 9 satisfies (1.1) (iv), since B and B’
do by (2.1), and di= <d,,d,> for each %, A= 0,1. Thus, to show
9 e Q it remains to show that U gatisties (Cy)-(Ca)y (Cs), (Co)- Of tl.wse,
(Cy), (Cy), and (C;) are very simple and straight-forward computations,
50 we confine our efforts to proving (C;) and (Cy). .

Before demonstrating (Cs) let us show that (2.2) (ii), the additive
laiw, holds for ¢4 in %A. For any » = 0,1 and <z, ¥, {¥, ¢ A we have:

eif<m, y>+4u, 0]

= ot u, Yoy
— cofotu), efy+ 0>+AET B Sy D) huefot
' ' (by definition of ¢7),

(by definition of +4),
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= <e,a+ 0,0, ey -+ o> AT (b, ey +'b, o), hlea4c, u)>
(by 2.2 (i) for B, B,

' . .
== ¢, %, 0;y> 'I“A<0 x'lcu?/)a /"ucu'%/’

AW,

, e, -+4ChTHb

Ye,w), heuy  (by the fact that &, is an isomorphism
and by definition of 4-4),

= oo, yy+2efu, vy (by (Cy) for A and by definition of ¢2),

Thus (2.2) (i) holds in %, and we now use it to show that (Cs) holds in 91

(C;) For x= 0,1 and (&, y>, <, v>»ed woe have:
<@, gy Ao, 03]
= cf[<a, y> Ao, 60+, y> AhTHb, ¢,
= om0, Y o>+ o b (b, o), ¥ o0
(by definition of -4 and by (2.2) (ii) for €A,

’0); 7z'ucuu>']

= (e @ e,u), oy o)y
AN b, ey €,0)), b0 (@ e,u)Y
+4Lefm hMb, o)), ey h,em)y
4R, el ’h,‘c W)y e fu- b, e0))>
(by definition of ¢?)
= {6, ¢,u, c,Y " cLv>

+ACRHb, oy) M, L), By e b
+4 e, N,
+4<HTD, (by (Oy) for B, B, the
facts that b, is an isomorphisw with range Ce @ and
that b, == h(1), and by (2.2) (viii),

'/c;ﬂqj)l cn\/. II[}{UK,‘L)
G Y) e, om0 onwd

= e, @, ¢,y 1e,u, cLv>

A pp— b s -
FACRTHY, ), o, A hT VD,
+A<c:¢w? c}:y\) '1£<]l’;l(bn'l

AT

Cen), he,u
s b N
0;0), h,e

o GY)y b,y Ao, cluy

, vy (by definition of +4),

= cf(w,.y\/-*’-‘ G, > (by (Cy) for % and by detinition of ¢f) .

With (Cy) proved, let us now consider (G,).
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(C;) In order to demonstrate that this condition holds for % we firss
show that for = 0,1 and <u, v> e 4 we have:

(*)  efdoy-u) R (b, efdg -0 9))=0 and R, (g ) ey, - 0) = 0.

To obtain (%) we begin with the hypothes1s (e, dy) " dg, = 0 of (2. 4),
Multiplying through by v, applying c., and using (C,) gives ’
Ou(h0,dgy) - dgy+'v) = 0" .
Since range (k) C ¢,*B’ we can use (2.2) (viii) to get
b€, ) Cld ) = 0.
Now multiplying by b, and recalling that h, an isomorbhism, we get
o N el ) =
But dy < ¢, dy by (Cy), S0

(Agy-u) h2 (b, o dyy )):O.

Finally apply ¢, and use (2.2) (vili) again to get the first equation of ().
The second equation is derived from the first by applying the isomorphism
h, and recalling that b, = h(1).

Now let us use (x) to derive (C,). For any »= 0,1 and <z,y>ec A
we have:

(Ao, ) Adh A, )

= o, doy 'y A 0 gy — @y dgy 'y

= Kooy @), edey " y)> +4 7 by el y) s it oy )) ]
A<l dy—2), (‘,,(d('u ="y Ay ( ey —"Y))s By,

='0,( @) ¢, {dyy Cldgy"y) " eldey ' —"y)>
A0y ) B (b ‘e, dsl 1), ey 9) " Rt =)
FAChTH (b, el gy " Y)) 6.y — ), e o, ) eldoy'—"1)>
+4AChTH b, ooy~ y) " gy +"Y))s Beled Doy @) 0y — @)>

. =40,0" by (C,) for 8 and B’, and by equations (*),

=04 .

The proof above that (C,) holds in % completes our proof that A € 2,
and we turn to the second part of Lemma (2.4). Assume, therefore, that
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for » # A and any y € B’ we have ¢,e;y = 1', and consider any (o, y) ¢ 4
with <(a, yd> # 04, Then:

(k%) clei<m,y>

= ¢f[<em, >+ b eay)y haoa)]
= [<0,0;@, e y>+ RN b, €,009), 0,00
Ao, h by 03Y) s Gy KR HD, Ty @)y e i (b, )]

Now from <z, yy # 0 we have eifher @ 0 or y # 0. In casey # 0,
then by hypothesis ¢/¢;y = 1', and hence h7Yb, ¢ 0;0) = h*b, = hrth,(1)
=1, and thus (sx) gives ¢Z¢<®, ¥y = 1* by detinition of -4 and by (Cy)
for A

On the other hand, suppose that # 5 0. Then ¢, 5 0 by (C,) for B,
and hence 0,0 # 0' because %, is an isomorphism. But hye,» = ¢k, 0,0
by (1.1) (i) for B*, since the range of %, is ¢;*B’. Thus ¢,h,¢,@ = 1' by the
hypothesis; and from this we have also h*(b, c.h,c0) = h7'(b,) = 1.
Using these in (x%) gives cfe¢i(z, y> = 14 again.

This completes the proof of Lemma (2.4).

Having defined superposition products in (2.3) and derived their
basic properties in (2.4), let us see how we can use them. Recall that we
wish to show that 2 C Cr,, by considering any B ¢ and showing that
B = A, for some CA, ¥ and element a of WA. The way in which we shall
find A and ¢ is suggested in the following lemma.

(2.5) LeMMA. Suppose that B, B' € Q. Assume that for each x= 0,1
we have an isomorphism, h, of ¢ B onto (¢,*B'),,, where b, = h,(1). Let A be
the superposition product B® B’ (with respect 1o hy, hy), and suppose that
N e CA,. Then B is isomorphic to the Cr,W,, where a= (1,07 e A.

Proof. Let B, B, A be as in (2.3), and let j be the map of B into 4
such that j(#) = <z, 0> for all # e B. Clearly j is a one-one map of B
onto Ag={a-2| zecA}.

It is obvious that j(0)= 04, j(1)==a, j carries -- and - into 4+
and -4 respectively, and for any w e B

Jl=) ==, 0" = <1, 0 A¢—m, 1"
. a,A__,~L<m, ()r} - a-"»—’j‘j (.’)ﬁ)
= a—"j(m).

Thus it remains only to show that j carries d,, to (d4)* and ¢, into (¢2)%
Let us compute

j(dxﬂ.) = <d,m 0" = <1, Olit‘"/l(dxza d;ﬂ\)

_ U"ACZ;’;_= (d:a)a.
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And for any ® ¢ B,
j(e,0) = (e, 0% = <1, 0> 4<0,m, b6,
= a4[¢0,@, 0 +40, h,0,2]
= a4, 0 = (¢)% (@) .

This completes the proof of (2.5). ‘
Tn the light of Lemma (2.5) and the remarks immediately preceding
it, our aim. will now be to show how, starting with any B ¢ {2, we can
find another B’ <L, with isorhorphisms %, of ¢iB onto (" B'), for
%=0,1, such that B® B« CA,. We shall construct B’ in two stages.
(2.6) LeMma. Let B be any structure in 0, .

B=1(B,+,—,0,1,0,d0,10.-
Then we can find another structure D' e,
D' = <D, 47,7, =P, 07,17, 62, 43410

with the following properties:
(i) dg = 0%; *

(i) PcPw =17 and cPePn =17 whenever © e D and z # 0%;

(iii) there are isomorphisms f, of ot B onto (¢P*D'),, for each x=10,1, -
Iu)hwe 6% = fn(l); .

(iv) there is an isomorphism m of @'D" onto cP'D’ such that mfy(cedn)
= fi(e )

Proof. For »= 0,1 let G, be the BA ¢/B. Set a,= —¢,do;, 8O
thab a, is an element of €, by (1.1) (iii), and form the BA €, = (C,),, by
relativization. Now form further BA’s D, and D, by taking direct products,

'

D,=C€x¢_, for x=0,1.

Let D = <D, +2, 2, =2, 07, 1%, P, ¢P> be the cylindric product of Dy
and D,, as in (1.4), where g, is the canonical isomorphism of D, onto
¢P*D. Finally, set dB = d5 = 17 and dj = d2 = 0P, and put

:D, = <D7 +D7 'D; —“D7 OD: 1D) ch7 dg.>x,).=0,l'

Clearly ®" satisfies (Co)-(Cy) by (1.4). Also, ‘D’. sa.tisﬁes"((}s) and (C;)
by choice of d5. Thus D' e, and clearly (2.6) (i) and (ii) hold — the

former by definition of dy, the latter by (1.4). ,
Now for »— 0,1 define f, from ;B (= G,) to 2*D', as follows.

For any @ ¢« B form the element <c,%, 0 €D, = €, xC,_,, and set ]fx(c”w)
= ge,x, 0> e cP*D'. Set e, = (1) = 4,1, 0. CEI}@ cle:_a,rly f, is an
isomorphism of €, onto (¢2*®'),,, 80 that (2.6) (iii) is satisfied.
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Finally, let us define a map m of ¢?*D’ to ¢”*D’, ag follows. Consider
any element z ¢ cP*D', 88y 2= @,3> With oG =B and yeg
= (6} B)g, = (6] B)_rya,,- Then we seb

(1) m(2) = MmoC, Yy = ¢ dpy) - Y, B — Cody> .

To establish (2.6) (iv) we wish to show that m is an isomor‘phiﬁn of
the BA ¢P*D’ onto ¢P*D'. Since (1), the definition of m, leads directly
to the conclugion

2) Mgo<@, Y+ 4o’y Y21 = Mol Y> +Pmgolar’, '

for all gz, ¥), 4o, y'> € (P, using (2.2) (ii) for B, let us show that
m preserves negation.
Recalling that

3) . —Pqu, Y = qol—@, =Yy — ey dy>
for <@, y> e Dy= C;x €, we easily get
(4) Mg, Y+ (—P 4o, ) = @1, — Gydyy> = 1P

by (2), definition of +7, (3), and (1), sinee ¥ < —¢ydy,. Now
mao(@, Y -Pm(—PgK@, y))
= !I1<[01(m'do1)+?/}'[01("* & )=y = d(u] :.0,“'
by (1) and (3), since ¢, is a homomorphism ,
= €l1<(01(97'd01)‘ -y ‘"Clde“ (?/'Gl(“w‘dnl)),"0> . (by (07)) .
But o(z-dy) < oydy by (2.2) (iv), 80 cy(@-dy)- — ¢,y == 0; and simil-
arly e(— ' dy) < ¢,dy, so"y-al(‘~w-d,,l) = 0 gince ¥ < — ¢, dy,. Hence
| M@, 9> Pm(—P 0@, 90) = (0, 0) = 07, |
which, together with (4), shows that

(5) - m(=Paw, yr) = —Pmga, g

From (2) and (5) we see that m is o homomorphism, so let us now
show that it is one-one. Suppose, thon, that Qoo y> and g la’, g are
elements of ¢®*D’ such that
(6) Mo, Y = My’ '

By (1) and the fact that ¢ is an isomorphism we can infor from (6) that

(7a) (@ dy)+y = oy(@'-dyy ) v
-and
(7h) @ — Codyy = & — ¢yl .
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Sinee ¢ dyy) < 6,4y by (2.2) (iv) while y < — 6, dy;, and similarly ¢,(2'dyy)

< ey, Y < —dy, we obtain from (7a) that

(8a) 6@ dyy) = (2" dyy)
and
(8b) y=1y"

From (8a), multiplying through by dy and using (2.2) (vi), we get @-dy,
= g'-dy, which, upon applying ¢, to both sides and using (2.2) (viii), gives
-yl = @' 6oy . When this is combined with (7b) we get, finally, & = ".
Since this equation, as well as (8b), have been derived from (6), we have
completed the proof that m is one-one, and so by (2) and (5) we know that

(9) m is an isomorphism of ¢>*D’ into ¢*D".

Let us now show that the range of m is the whole of ¢P*D’. Consider,
’ ( *
therefore, an arbitrary element g {u, v € c?*D’, where u e €, = ¢/ B and
v e@) (s0 that ve ;B and v < —6dy). Put

(10) = co(th-dy)+v, y———u-—cld,,l.‘
Using (1) we compute ' ’
mael, Y> = q1<cl((co(u-dm)—|—'v)~d01)—{—u' — 6y gy 5 (Co(%" dor) + ) —cud01>,
so that ) '
(1) Mmoo, 45 = Ger(t- dog) + (v o)+ — enllon s o d) - = Con+
4o — el ,

by (2.2) (i) and (2.2) (vi). Bubt ey(u-dn)=u-cidn by (2.2) (vill), vrdy
< v-ydyy DY (Cy) and 80 v-dyy = 0 (since v < — Godu), and ey dy ) — Codo
< 6y — oy = O by (2.2) (iv). Thus (11) yields mg(s, ¥> = <%, V>-
Since ¢,¢u,v> was an arbitrary element of ¢P*D’, we can now conclude
from (9) that
(12) m is an isomorphism of ¢P*D’ onto *D’.
Thus, the following computation completes the proof of (2.6) (iv):
My(odyy) = MmyeCopdon, 0y  (by definition of fo) ,
= Q1<01((60d01)'d01)+0$ (Gooz)* — Coor?
= g6y, 05 (bY (2:2) (v1))
= fi(t1dn) -

(by definition of m),

"This finishes the proof of Lemma (2.6).

§ — Fundamenta Mathematicae, T. LXXXII
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We are now ready, starting from any B ¢ 2, to form a structuye B
of the kind described in Lemma (2.5).
(2.7) LeMMA. Let B be any structure in 2,

§B = <B7 +7 Ty T 0) 17 c:c} dul>x,i.=0,1'
Then we can find another structure B’ e,
"= (B A+, =01, d;l>u,l—0,1

with the following properties:

(i) ez =1" and ¢jew= 1" whenever x e B' and x # 0';

(i) there is an isomorphism h, of the BAcE®B onto (c;*%’),,, where
b,= h(1), for each %= 0, 1; ”

(i) cydgy = —h(c ) for x=0,1;

(iv) the superposition product B B’ (with vespect to hy, h,) is a CA,.

Proof. Starting with the given structure B, we first find a structure D,
mappings fy, fi, m, and elements e, ¢, satisfying the conditions of
Lemma (2.6).

For %= 0,1 let i,=—Pf(c,dy)eD, lot I bhe the BA(cP*D)
and write '

1

1p)
I=«I, +7, 4, =1, 07, 175

in particular, wehave I = {¢z ¢ D| Pz <.}, 17 = igy and —Ty = j,-P—Dy
for each y ¢ 1. ‘

Now for ,4=0,1 define df, = 17 and ¢ly =y for any yeI. It is
then a trivial matter to verify that

(1) the structure I’ = <I, -7, %, —7, 0, 17 f | @5>, o0,
is an element of Q.
Next'we need certain mappings j, and j, of I into D. In fact, we
can take j, to be the identity map on I (recalling that I C D). As for j;,
for‘alrjty y < we define jy(y) = m(y). Since jy(17) = m(iy) == m(—2fy(eody))
= —"fi(erdy) = iy, we easily see thatb ‘ ‘
(2)  TFor x==10,1,j,is an isomorphisin of the BAc*T onto (6P*D");.
Furthermore, by (2.6) (i) wo have, of course,
(3) GACdE) AR =07  for ' x=0,1.

Let By combining (1), (2), and (3) we are able to apply Lemma (2.4).
etting B’ he the superposition product I’ @D’ (with respect to j; and ji)

we thus see that B’ e.Q. Algo (2.7) (i) holds by (2.4), in view of (2.6) (if). .
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To obtain (2.7) (ii), we define h, from ¢}B to ¢;B’, for each »= 0,1,
by setting .
(4) h(2) = ci(0f,f,2) for all zec;B.

Using the definition of superposition products (2.3) we get
ho(#) = <GL0%, 62f, 2+ <5 (0,062 f %), 5,607

and so, by (2.6) (iii),

(5) h(2) = G0y f2), fur>  for all e (B

From this, using (2.6) (iii) and (2) above, we obtain (2.7) (ii):
Next, using (2.3) and the definitions of I’ and D’, we compute
C;(d('n)yz c;(dgn d(ﬁ) = 0;(117 OD)
= <of7, Q0P+ (i, 6 0P), 017>
= <1I: j»lI}
= _'<0I7 —'Dix>
= —'h(c,dy) (by (4) and definition of 4,),
which proves (2.7) (iii). ,
Now let % be the superposition product B ® B’ (with respect to
hoy hy). Since h(c,dy,) " dg, = 0’ by (2.7) (iil), and using (2.7) (i), we can

apply (2.4) to obtain %A 2. Again by (2.4), this time with (2.7). (i), we
obtain cfedz = cflctz = 14 whenever 2 # 04, so that by (Cy) for %A we
have ¢Acflz = oficdz for all z e A; thus (C,) holds for . Finally, by (2.3)
we co'mpute
Of(dﬁ) = ¢ <doy s doy>

= <cnd017 a;d61>+4<h’n—1(bn"c;dél)i hncxd[)l).

=, 1y (by (27) (i)

=14,
so that (C,) holds for %U.

Putting together the facts that U ¢ 2 and that (

we obtain % e CA, by definition of 2 and CA,.

All the lemmas are now at hand for our eqt_w{
of the class Cr, of 2-dimensional cylindrie relativized algebras.

0,), (C,) hold for A,

tional characterization

(2.8) TEEOREM (°). For any structure U we have Y e Cr, iff LeL

st shown by Henkin in 1969 by a method involving the
an atomistic structure of Q. The prese?ﬂ: proof
and is also due to Henkin.

(°*) This theorem was fir
embedding of a given structure of 2 into !
involving the notion of superposition products is new,

6%
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Proof. By (1.3) we have Cr, C Q. To obtain the opposite inelusion
we take any B e and, by (2.7) (i), (2.7) (iv), and (2.5), we conclude
that B is isomorphic to some Cty, Ay. But then, by the “exchange pringi-
ple” of the general theory of structures, B is itself a Cr,.

§ 3. In the preceding section we presented a set of equational iden-
tities (2.1) which characterize the class Cr, of 2-dimensional cylindrie
relativized algebras. In the present section we shall show that no such
characterization is possible for Cr; (or for any Or, with « > 2)(v),

(3.1) TumorEM. There is a structure B  Cry, and o subalgebra D of B,
such that D ¢ Cr,.

Proof. In § 1 we introduced the notion of an a-dimensional ¢ylindric
set algebra (CSA,), from which the notion of a eylindric algebra is ab-
stracted. To construct the B of (3.1) wo begin with an 9% « OSA,, chosen
as follows. We take 14 to be the set 3w of all ordered triples gy Byy B
of natural numbers, we let 4 be the set of all subsets of 14, and we take

U=<4,u,n, ~,0, IA7 an‘, dﬁ) wA<ge
Next we choose an element aed by specifying that for any
{9y 1y W) €20,
(1) <&y, @y, By € a iff:
(i) Either o) = #,-+1 or 4, = x,+1, and
(ii) Either a, is even and m, = 0, or
else z; is odd and @, = 1.
And then we take B = U4, the relativization of % to a. Thus, writing
B=(B,v,n,a~,0,a,ds, dﬁ>x,}»<8 ’
we see that B is the set of all subsets of a; that ¢fY = a ~ ¢AY for all
Y e B (80 <@, @1, )€ L X, 0.8, Iff <oy, 0y, 3,5 e 0 and <uy, v, @) € ¥ for
some y ¢ w); and that @7 = a ~ d4, so that by (1) we get
) p=d=d=0a, dB=d=0, and
dg = {<0,1, 05, ¢1, 0,13, <1,2,1>}.

Now let D be the set of all those clements X of B such thatb either X
Or o ~X is finite. It is well known (and obvious) that . is closed under
v, N, a~, and that it containg @ and o among its elements; and from (2)
we see also that each dZ e D. Let us check now that D is also cloged under

. (1°) The results of th.is section (but for Cr, instead of Cry) wore obtained by Resek
in 1968. Her proof was simplified in 1969 by Henkin, and was thon seon fo yield the
sharper result for Cr,. It is this proof that is given hore for (3.1).

1
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%

each ¢, Indeed, for any Y B and »<<3 we have () ¢fY = | J cB{w},
cel

and for any #ea we see from (1) that ¢?{z} has at most two elements.
Thus if ¥ is finite then 8o is ¢EY, while if , ~ ¥ i3 finite then 50 is 4 ~ By
because ¥ C ¢ZY; 5o D is closed under ¢Z. These observations show that:

(3) The structure D= <D,v,n,a~,d,a,06?, d5>, ., is a sub-
algebra of B.

Thus, to complete the proof of (3.1) we need to show that D ¢ Cr;. We
do this by contradiction.

(4) Assume thatD e Ory, so that for some CA, € having a as an element,
D is the relativization of € to a, ie., D= G,.

If we write, as usual,'
C=<E®, +E7 'Ei *E7 OE’ 1E: 0;?7 dfl)n,i&ay

then from. (1) we see that D = {v e HB| v <% a}, and that for any YeD
and » < 8 we have ¢5¥ = a-FoLY.
Now we are going to derive from (4) the conclusion fhat

(8) TFor any o= (@, %, %> ea we have {} <¥cFef{c0,1,0)} iff
2, = 0.

To see this observe that by (1), if <2n+2,4,,0> ea then also
On+2, 2n+1, 05 and <24, 2n+1, 0> are in a, and by definition of ¢f
and ¢ we get: :

{<2n+2, 41, 00} C B{(2n+2, 2nF+1, 03}
C cBcB{¢om, 2n+1, 0>} .
Since, for any X,Z e D, we have X C 7 iff X < Z, and X <_E X,
by definition of & and since (2.2) (iv) holds in €, we thus obtain
{<2n+2, vy, 05} <® Fel{com, 2n+1, 05} .

Using (C,) for G, and (1), we can then employ induction to conclude:

(6) Whenever <{%,, ,, 0> ¢ @ we have
{(woy L1y 0>} <E 0F0§{<07 1, O>} .

(1) The additive law for ¢, given as (1.1) (ii) is only a special case of the completely
additive law ¢, 3 w¢= Y ¢, i which holds in any (A, whenever the sum on the left

iel iel .
exists. This law is derivable from (Cy)-(Cs), and hence holds also in every Crg.
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And by similar reasoning we obtain:
(7)  Whenever <y, ¥, 1> ¢ a we have
{<1,2, 15} <F (<o, 4, 10}
Let us assume, now, that there is some <y,, ¥;, 1> € @ such that
(8) {<¥os 91, 1} <7 '6{<0, 1, 05} .
App]y.ing cE and ghen ¢f to both sides of this inequality (as we may i)y
(2.2) (iv)), and using (C,) and (1.1) (i) for €, we get
PeF{Yos W1, L} <? Gfﬁﬁv{CO: 1,05}
and hence, by (7), .
{c1,2,10) < Pef{c0,1, 05} .
But {<1,2,1)} <"dg < d%, and similarly {<0,1,05} <% dZ . Thus
{1, 2, 1>} <¥ ofefdf; 2{<0, 1, 05)1 %%
= oldg *ef{<0,1, 03}1-Fd  (by (C,) and (1.1) (vi)),
= &% FeF{C0,1, 05} (by (2.2) (vi)),
<F oP{0,1,05}.
But {<1,2,1>}Ca, so by (4) we get
1,2, D} C (<0, 1, 05} .

But this i impossible, since by definition of ¢f each triple in 0{3{{ 0,1,03}
hag the form <0, z, 0>. This contradiction arose from assuming that (8)
bolds for some <y,, Yy, 1> ea.

It follows, by (1), that whenever Yoy Y1y Yoo € & and
{<?/O’ Y, :’/2:’}-5%'/:'%; 0F0§{<0, 1, 0:*} ]

We mus have y, = 0. This fact, together with (6), complotes the demon-
stration that (5) holds — assuming (4).

Of course a-"cfcP{<0,1, 05} is an olement ¥ of D, according to (4),
and so by definition of D we must have either ¥ of 4~ finite. On the
other hand from (5) we infer that v consists of all those (@, @, @,y €0
such that #, = 0, whence by (1) both ¥ and ,~¥ are infinite.

Thus a contradiction has been obtained from the assumption (4),

and this shows that D ¢ Or,. This fact, together with (3), completes the -

proof of Theorem (3.1)

Since any equational class is elosed under formation of substr uetures,
(8.1) leads directly to the following. '
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(8.2) CororLARY. There is no set of equational identities that character-
izes the class of structures Cry.

It is a simple matter to modify the proof of (3.1) so as to establish
a counterpart of this theorem for any dimension o >3; and hence its
Corollary (3.2) may be similarly extended.

Although, for a = 3, we see that there are subalgebras of Cr’s which
are not themselves Cr,’s, it is an open question whether every homo-
morphic image of a COr, is itself a Cr,.

§ 4. In this section we mention several results without presenting
proofs. ‘

Let SCr, be the clags of all subalgebras of Cr)’s. In the preceding
section we have seen that for ¢ > 3 we can find a structure U € SCr, such
that 9 ¢ Cr,, and hence we have concluded that Cr, is not an equational
class for a = 3 (although it is for a <C 3). What about the class 8Cr, — is
it equational?

(4.1) THROREM (*2). For each a >3 an infinite set I', of equational
identities is kmown which characterizes the class of structures SCr,. This
class cannot be characterized by any finite set of such identities.

In addition to the equations defining @, I', contains (1.1) (vi) and
the equation

cn(dln. duy) < dlu fOl‘ % 9& )'7 ]

a weakened form of (C,;). The remaining equations of I', are grouped into
various infinite bundles, of which one example is:

0,66, ... 616, d,) 4, < ;@

whenever «, 4, u are distinct. By a general theorem of Jonsson and Tarski
on Boolean algebras with operators (8), it follows that any structure
satisfying the equational identities of I', can be extended to a complete
and atomistic structure satisfying those same identities. The proof of
(4.1) is obtained by showing that any complete atomistic structure satisfy-
ing I', is a Cr,, and then applying the Jonsson-Tarski result. This method
of proof gives the following.

() This theorem -was proved by Resek in 1968; a full deseription of the setf I,,
and a proof of the theorem, will be included in her doctoral dissertation. An indirect
proof of the equational character of SCr, was given by Pigozzi in 1969, who showed
that the class SCr, is closed under formation of homomorphisms; since clolsu.re u._ndem‘
direct products was known, and closure under formation of suba,lgebra,s} is obvious,
this allows the application of Garrett Birkhotf's characterization of eqw.atfonal classes.
(See [2], pp. 11 and 266). Pigozzi’s proof does not furnish the set I', explicitly, nor deal
with the question of finite sets of equations.

(8) See [3], Theorem 2.15.
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(4.2) CoROLLARY. Hvery complete atomistic structure of SCr, is Or,.
It is natural to conjecture that (4.2) can be strengthened, namely,
that every complete structure in SCr,, whether atomistic or not, is a Cr,.
However, this remains an open question at present. In thig connection,
recall that the structure D of § 3, which is in SCry but not in Cr;, is in-
complete, and that this incompleteness plays a central role in showing
that D ¢ Cr,. .

We now turn our attention to the operation relativization on the
cylindric et algebras (OSA’s) introduced in § 1. Although avery BA is
isomorphic to a Boolean set algebra, there can be no similar result for
0OA’s in general since for finite a a U8A,, is always simple, and hence a divect
product of two such algebras, while obviously a OA_, is not isomorphic
to any OSA,. A CA, which is isomorphic to a subdirect product of CSA s
is called representable. Equivalently, an 9 e CA, is representable if, and
only if, for every non-zero element « of 9 there is a homomorphism % of 9
to some COSA, such that h(z) # 0.

For every a > 2 there are non-representable CA_’s, and the relativiza-
tion of CSA/s is one of the principal ways of constructing these (4.
Another method of constructing non-representable OA’s that has been
employed is a method of “adjoining elements” which is closely related
“to the formation of superposition products (introduced in 2.3 above)
However, all non-representable CA,’s that can be constructed by adjoining
elements to a OSA, turn out to be isomorphic to relativized CBA’s.

The last observation obviously raises the question whether every
CA, may be isomorphic to a relativized CSA, (). But the answer is

negative. There are equational identities which hold in every CA, which -

Is a relativized OSA,, but which fail in certain CA ’s obtained from CSA s
by a process of “twisting eylindrifications.” These identities are Telated
to certain operations called substitutions which can he defined in every CA,.

If » # 2, and », A< a, we define the operation 8% on any CA Y by
the rule 8%z = ¢ (d,,-») for all elements « of Y. This operation is called
a substitution because if U is a OSA, whose clements are subsets of g,
then for every w ¢ “U we have w e 8(¢,) iff o’ ¢ ¢, 2, where o' is obtained
from o by substituting the »th coordinate for the Ath eoordinate. The
identities to which we have referred in the proceding paragraph can be
expressed in terms of these substitution operations as follows:

For all distinet w,, ..., %, ;, A< a and all ed,

C QA Qe — " A 1 )
RS oo Sint Qna( o, ) == 880 .. 8im=8(o,m) .

() See [1] for a description of such a construction in a nu‘)mlogic'a,l, rather than
2 set-theoretical, context.
() In particular, every represent.

. able CS8A, is known to be isomorphic
tivized CSA,. This is an unpublished

to a rela-
result of Flenkin’s. :
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These identities are called MGR — the “merry-go-round” identities.

Although it is not known whether MGR characterizes the class of

CA.’s that are isomorphie to relativized OSA,’s, we have the following.

(4.3) THROREM. An atomistic CA, is isomorphic to a relativized CSA,

iff it satisfies MGR. Furthermore, any CA, is isomorphic to a subalgebra
of a relativized CSA, iff it satisfies MGR (*).

(%) The proof of this theorem of Resek’s, found in 1969, will be included in her
dissertation.
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