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Pinning countable ordinals
by

Fred Galvin* and Jean Larson ** (Los Angeles, Cal.)

Abstract. We determine all countable ordinals o for which there is a map into w®
such that the image of any subset of a of order fiype a has order type ws. 3

Let .4 and B be well-ordered sets. A function m: A—B is called
a pinning map in case, for every subset X C A which is order-isomorphic
to 4, its image m(X) is order-isomorphic to B. If o and § are ordinals,
we say o can be pinned to f, in symbols a—p, if there is a pinning map
from a into B. Clearly, if A and B have order-type « and f, respectively,
then ¢—p if and only if there is & pinning map from A into B.

Specker introduced this notion in [8], where he studies partition
relations of the form a—>(a, »)* where ¢ is an ordinal and » a cardinal.
(See [2] for a definition of this partition relation.) To rule out trivial
cases, we may assume that a >1 and » = 3. Positive partition relations
of this sort have been proved for only three countable ordinals. Ramsey’s
theorem [6] says that w—(w, )2 Specker [8] showed that w?—(w?, n)®
for every n << w. Chang [1] showed that w®->(w® 3)’, and B. C. Miner
(unpublished) generalized Chang’s result by showing that w®—(w®, n)?
for every n < w. (See [3] for a proof of this result.)

Specker [8] observed that, if a—>p and a->(a, %)%, then f—>(8, )%
He proved that w®4 (o, 3)% and that o™ «® for 3 < m < w, thus proving
that o™ (0™, 3)% for 3 < m < w.

In this paper, wo answer a question raised by Specker in [8], by
characterizing the countable ordinals which can be pinned to ®. It follows
from our results that, if o i3 a countable ordinal such that a—(a, 3%,
then either a e {0, 1, w®} or else a= w*® for some f< ,. One can con-
jecture that cu“’ﬁ——>(m“’ﬁ ,7@)“’ for all f< w, and » < w. As we have already
remarked, this hag been proved only for f= 0 and f=1.

Rotman [7] has also done some work on pinning countable ordinals;
the notation a—f is due to him.
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This paper is a reworking of part of Chapter 2 of the Ph. . Thesis [4]
of the second author writben under the direction of Jameg T, Baum.
gartner. ;

We assume that the reader is familiar with basic broperties of ording]g

and ordinal arithmetic. The order type of a well-ordered set 4. ig the unique

ordinal isomorphie to 4, and is denoted tpA. An ordinal is decomposable

if it is the sum of two smaller ordinals. An indecomposable ordinal ig g non-
zero ordinal which is not decomposable. Tho indecomposable ordingls
are just the ordinal powers of w. Milner and Rado [5] proved that, if
tpA = e is an indecomposable ordinal, then, for any partition 4 = B o i
either tpB = o or tp ¢ = a. Bvery nonzero ordinal can he uniquely ex-
pressed in the form ay+ ey ... 4 a, where #n < W5 Ooyeeey O are inde-
composable; and oy > ay 3= ... = an. It A and B are subsets of an ordered
Set, the notation 4 < B means that a < b for all a ¢ 4 and b e B,

The following theorem reduces the study of the relation a—f o the
case where both ordinaly are indecomposable. The proof is left to the
reader. :

TEBOREM 1. Let a and B be nonzero ordinals. Write o = %t o +ay,
B= Bo+ ... +Pn, where My N < @5 Gy ey Umy Poy ey P are indecompos-
able; oy > ... = am ond By = .. = Pu. Then a-=B if and only if there is
a one?to-one Fundtion f: {0,1, ..., n}{0,1, ..., m} such that Ay P for
each ie{0,1,..,n}

Our main theorem characterizes the countable indecomposable
ordinals that can be pinned to .

THEOREM 2. Hor every ordinal o< wy, we have w'—w? if and only
if a is decomposable and o > 3.

Proof. In Theorem 3 below we prove that, if a is decomposable and
3 < a< oy, then w%+® In Theorem 8 we prove that, if « is indecompos-
able and o< w,, then w'p ©®, Obviously o'+ w®. Since Spocker [8] has
proved that w*A w?, the theorem follows.

Using Theorems 1 and 2, we can chavacterizo tho eountable ordinals
that can be pinned to Namely, suppose a == o @ ... |- o™ < o,
where n < o and & =8 2 ... 22 &, Then a-»w® if and only if some e Is
decomposable and > 3.

THEOREM 3. If 3 < a < w, and q is decomposable, then oo,

Proof. The proof for the cage of a successor ordinal @ == §4-1 consists
of Lemmas 4 and 5 below, since = '+ = . 4. The proof for the
case of o a limit ordinal ig Lemma 6 below.

Lemwa 4. (Specker B If ®<ax Wy then a->ob.

Lm0k 5. If a is an indecomposable ordinal and u—> B, then aw—po.
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Proof. Let aw == |JAdn, where 4,< 4,< .. and tpd,=a for
n<o )
each n< w. Let fo= B4, where By< B;<.. and tpB,= g for
n<w .
each 1< o. For each n < o, there is a pinning map ms: A,—>B,. Let
= |J 7. We claim that m: aw—fw is a pinning map. Suppose X C aw
n<w

and $pX = aw. Let Xu=X () 4y and 'let ¥ = {n< o: tpXn= a}.
Then Nis infinite, since tp X = aw and « is indecomposable. Since = (X,)
= n,,(Xn) and m, 15 a pinning map, we have = (X,) = for all n ¢ N. So
tpn(X) = ﬂ()). o . - ,
LeMMA 6. If a << o, and a is a decomposable limit ordinal, then o~ o®,

Proof. Let a = f--y, where ¢ > f > y > w. Then o® = o**” = vl
Let o= |J 4,, where tpd, = wf and A, < A, for p<v< . Let
w?
o= B’: where tpB, = o and B, < B, for 4 < » < % By Lemma 4,
2
there“;swa. pinning map ¢: w'—w® For each u<< .w”, let ,: A“_)Bﬂ(‘g b_e
a oné-to-one function. Let 7= |J m,. We claim that a: o>’ i3
p<w? R
a pinning map. . ) .
Suppose X C w* and tpX = w® For each u < ¥, let X, =X n.AM. .
Let N = {u< o X, is infinite}. Note that tp LEJ X, < o’ < 0" Since

pEN .
tpX = o® and «* is indecomposable, it follows that tp | X, = w% so

weN

tp N = w". Therefore, since ¢ is a pinning map, tpo(N) ——..wz. qu‘ faa.eh
we N, since m(X,) =, (X,) and z, is one-to-one, m(X,) is an infinite
subset of B, . So tpn(X) = w-w?= o’

The following lemma will be used in the proof of Theorem 8.

LeMMA 7. Given any ordinal a<< w,, any Vimit ordinal > w, and
any function f: o> P, there is a set X C o? with tpX = a and tpf(X) < f.

Proof. Let a2= |J 4,, where tp.4d, = « for 4 < o, and 4, < 4, for

pH<a

p<v<a Let a= {m: n< w} be an enumeration of a. If tpf(A,)<ﬂ‘
for some », then X = 4, works; so we can assume _that 1.;pf (4,) =1 B ffn
all » < a. Then f(4,) is cofinal in B, which is a Hmit ordinal. Thelefm;},
we can choose w, e A, for n< m, so that f(u)<f(w)<.. Let -
= {#: n< w}; then tpX = a and tpf(X) = o< f. .
TaEoREM 8. If o< 0, and o is indecomposable, then w'>a’. .
Proof. The case a = 1 i eagy, 80 'wo assume o 3> o. Then there is
a sequence of ordinals 8(0) < A(1) < ... such that sup B{n)=a= sup B(n)-4.
Hence o= 3 f®™ = ' o™, Lot w“:mg"A (n), where A< A< .y
n<w

and tpA(n) = ofm+ nf<<;u‘r each n<< o. Let «*= |JB(n), where B(0)

. n<w
<B(l)< ... and tpB(n) = w* for each n < .
5 — Fundamenta Mathematicae, T, LXXXIX
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Let a function f: w"—>w® be given. By Lemma 7, for each n < o,
we can choose Ay(n) C A(n) so that tpdyn) = o™ and tpf (Ao(n) < .
Since «*™* iy indecomposable, we can choose Ay(n)C Ayn) 5o that
tpAy(n) = o*™* and tpf(4i(n)) < o®. Repeating this argument, we
obtain Ay(n) C 4y(n) with tpAy(n) = o™ and tpf(dy(n)) < o. Finally,
using the indecomposahility of w""f’, we can choose W(n) C dy(n) so that
tpW (n) = o*™ and, either f(W(u)) C B(3) for some 4 < m, or else f(W(n))
C U B(@). . T

WLN ote that, for any infinite N C w, we have tp {J W(n) = o°

neN
For i< w, let Ni={n:f(Wn)CB@E)}. Let N, = {n: F(W (m)
C UB(i)}. Now we consider three cases. .
>n
Case 1. N; is infinite for some ¢<w. Xet X = (_ W(n); then
neNg
tpX = 0% and tpf(X) < w? since f(X)C B(3).

Case 2. N; #+ @ for infinitely many i< w. Let T - {i < w: N: # 0}

For each i eI, choose nie Ni. Lot X = | ) W(ny). Then tpX = ©*; and
tel

tpf(X) < w?, since tpf(X) ~ B(i) < w for each i < w.

Case 3. N, is infinite. Let X = | W(n); then tp X = «* For each
neNg
i< w, we have f(X)~ B(i)C UF(W(n)); hence tpf(X) ~ B(5) < w? for

n<y

each i< w; hence tpf(X) < ot :
Finally, we give an application to the partition caleulus.

TaEOREM 9. If a< o, and a—(a, 3)2, then, either ae{0,1, w2}, or
else a= w for some < w,.

Proof. Clearly o cannot be decomposable. Hence, either «= 0,
ora=ao’=1, of a=o0'= 0*, or a= w?, or a = o where 3 <:< w,.
Suppose a = " 3 < &< 0. By the results of Specker [8], a cannot be
pinned to «®. Tt follows by Theorem 3 that ¢ is indecomposable, i.e.,
e =0 for some f< w; 80 a = o*
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