

Pinning countable ordinals

by

Fred Galvin * and Jean Larson ** (Los Angeles, Cal.)

Abstract. We determine all countable ordinals α for which there is a map into ω^3 such that the image of any subset of α of order type α has order type ω^3 .

Let A and B be well-ordered sets. A function $\pi\colon A\to B$ is called a pinning map in case, for every subset $X\subset A$ which is order-isomorphic to A, its image $\pi(X)$ is order-isomorphic to B. If a and β are ordinals, we say a can be pinned to β , in symbols $a\to \beta$, if there is a pinning map from a into β . Clearly, if A and B have order-type a and β , respectively, then $a\to \beta$ if and only if there is a pinning map from A into B.

Specker introduced this notion in [8], where he studies partition relations of the form $\alpha \rightarrow (\alpha, \varkappa)^2$ where α is an ordinal and \varkappa a cardinal. (See [2] for a definition of this partition relation.) To rule out trivial cases, we may assume that $\alpha > 1$ and $\varkappa \geqslant 3$. Positive partition relations of this sort have been proved for only three countable ordinals. Ramsey's theorem [6] says that $\omega \rightarrow (\omega, \omega)^2$. Specker [8] showed that $\omega^2 \rightarrow (\omega^2, n)^2$ for every $n < \omega$. Chang [1] showed that $\omega^\omega \rightarrow (\omega^\bullet, 3)^2$, and E. C. Milner (unpublished) generalized Chang's result by showing that $\omega^\omega \rightarrow (\omega^\omega, n)^2$ for every $n < \omega$. (See [3] for a proof of this result.)

Specker [8] observed that, if $\alpha \to \beta$ and $\alpha \to (\alpha, \kappa)^2$, then $\beta \to (\beta, \kappa)^2$. He proved that $\omega^3 \not\to (\omega^3, 3)^2$ and that $\omega^m \to \omega^3$ for $3 \le m < \omega$, thus proving that $\omega^m \not\to (\omega^m, 3)^2$ for $3 \le m < \omega$.

In this paper, we answer a question raised by Specker in [8], by characterizing the countable ordinals which can be pinned to ω^3 . It follows from our results that, if α is a countable ordinal such that $\alpha \to (\alpha, 3)^2$, then either $\alpha \in \{0, 1, \omega^2\}$ or else $\alpha = \omega^{\omega^{\beta}}$ for some $\beta < \omega_1$. One can conjecture that $\omega^{\omega^{\beta}} \to (\omega^{\omega^{\beta}}, n)^2$ for all $\beta < \omega_1$ and $n < \omega$. As we have already remarked, this has been proved only for $\beta = 0$ and $\beta = 1$.

Rotman [7] has also done some work on pinning countable ordinals; the notation $\alpha \rightarrow \beta$ is due to him.

^{*} This research was supported in part by NSF Grant GP-27964.

^{**} This research was supported in part by NSF Grant GP-34711.

F. Galvin and J. Larson

This paper is a reworking of part of Chapter 2 of the Ph. D. Thesis [4] of the second author written under the direction of James E. Baumgartner.

We assume that the reader is familiar with basic properties of ordinals and ordinal arithmetic. The order type of a well-ordered set A is the unique ordinal isomorphic to A, and is denoted tp A. An ordinal is decomposable if it is the sum of two smaller ordinals. An indecomposable ordinal is a nonzero ordinal which is not decomposable. The indecomposable ordinals are just the ordinal powers of ω . Milner and Rado [5] proved that, if tp $A = \alpha$ is an indecomposable ordinal, then, for any partition $A = B \cup C$, either tp $B = \alpha$ or tp $C = \alpha$. Every nonzero ordinal can be uniquely expressed in the form $a_0 + a_1 + \ldots + a_n$ where $n < \omega$; a_0, \ldots, a_n are indecomposable; and $a_0 \geqslant a_1 \geqslant \ldots \geqslant a_n$. If A and B are subsets of an ordered set, the notation A < B means that a < b for all $a \in A$ and $b \in B$.

The following theorem reduces the study of the relation $\alpha \rightarrow \beta$ to the case where both ordinals are indecomposable. The proof is left to the reader.

THEOREM 1. Let a and β be nonzero ordinals. Write $\alpha = a_0 + ... + a_m$, $\beta = \beta_0 + ... + \beta_n$, where $m, n < \omega$; $\alpha_0, ..., \alpha_m, \beta_0, ..., \beta_n$ are indecomposable; $\alpha_0 \ge ... \ge a_m$ and $\beta_0 \ge ... \ge \beta_n$. Then $\alpha \to \beta$ if and only if there is a one-to-one function $f: \{0, 1, ..., n\} \to \{0, 1, ..., m\}$ such that $\alpha_{f(i)} \to \beta_i$ for each $i \in \{0, 1, ..., n\}$.

Our main theorem characterizes the countable indecomposable ordinals that can be pinned to ω^3 .

THEOREM 2. For every ordinal $a < \omega_1$, we have $\omega^a \rightarrow \omega^3$ if and only if a is decomposable and $\alpha \ge 3$.

Proof. In Theorem 3 below we prove that, if α is decomposable and $3 \le \alpha < \omega_1$, then $\omega^a \to \omega^3$. In Theorem 8 we prove that, if α is indecomposable and $\alpha < \omega_1$, then $\omega^a \not\to \omega^3$. Obviously $\omega^0 \not\to \omega^3$. Since Specker [8] has proved that $\omega^2 \not\to \omega^3$, the theorem follows.

Using Theorems 1 and 2, we can characterize the countable ordinals that can be pinned to ω^3 . Namely, suppose $\alpha = \omega^{\epsilon_0} + \omega^{\epsilon_1} + \ldots + \omega^{\epsilon_n} < \omega_1$, where $n < \omega$ and $\varepsilon_0 \ge \varepsilon_1 \ge \ldots \ge \varepsilon_n$. Then $\alpha \to \omega^3$ if and only if some ε_i is decomposable and ≥ 3 .

Theorem 3. If $3 \le a < \omega_1$ and a is decomposable, then $\omega^a \rightarrow \omega^3$.

Proof. The proof for the case of a successor ordinal $\alpha = \delta + 1$ consists of Lemmas 4 and 5 below, since $\omega^{\alpha} = \omega^{\delta+1} = \omega^{\delta} \cdot \omega$. The proof for the case of α a limit ordinal is Lemma 6 below.

Lemma 4. (Specker [8]). If $\omega^2 \leqslant \alpha < \omega_1$ then $\alpha \rightarrow \omega^2$.

LEMMA 5. If α is an indecomposable ordinal and $\alpha \rightarrow \beta$, then $\alpha \omega \rightarrow \beta \omega$.

Proof. Let $\alpha\omega = \bigcup_{n < \omega} A_n$, where $A_0 < A_1 < ...$ and $\operatorname{tp} A_n = \alpha$ for each $n < \omega$. Let $\beta\omega = \bigcup_{n < \omega} B_n$, where $B_0 < B_1 < ...$ and $\operatorname{tp} B_n = \beta$ for each $n < \omega$. For each $n < \omega$, there is a pinning map $\pi_n \colon A_n \to B_n$. Let $\pi = \bigcup_{n < \omega} \pi_n$. We claim that $\pi \colon \alpha\omega \to \beta\omega$ is a pinning map. Suppose $X \subset \alpha\omega$ and $\operatorname{tp} X = \alpha\omega$. Let $X_n = X \cap A_n$ and let $N = \{n < \omega \colon \operatorname{tp} X_n = \alpha\}$. Then N is infinite, since $\operatorname{tp} X = \alpha\omega$ and α is indecomposable. Since $\pi(X_n) = \pi_n(X_n)$ and π_n is a pinning map, we have $\pi(X_n) = \beta$ for all $n \in N$. So $\operatorname{tp} \pi(X) = \beta\omega$.

LEMMA 6. If $a < \omega_1$ and a is a decomposable limit ordinal, then $\omega^a \rightarrow \omega^s$.

Proof. Let $\alpha=\beta+\gamma$, where $\alpha>\beta\geqslant\gamma\geqslant\omega$. Then $\omega^a=\omega^{\beta+\gamma}=\omega^{\beta}\omega^{\gamma}$. Let $\omega^a=\bigcup_{\mu<\omega^{\gamma}}A_{\mu}$, where $\operatorname{tp}A_{\mu}=\omega^{\beta}$ and $A_{\mu}< A_{\nu}$, for $\mu<\nu<\omega^{\gamma}$. Let $\omega^a=\bigcup_{\mu<\omega^{\beta}}B_{\mu}$, where $\operatorname{tp}B_{\mu}=\omega$ and $B_{\mu}< B_{\nu}$, for $\mu<\nu<\omega^{\gamma}$. By Lemma 4, there is a pinning map $\varrho\colon\omega^{\gamma}\to\omega^{\gamma}$. For each $\mu<\omega^{\gamma}$, let $\pi_{\mu}\colon A_{\mu}\to B_{\varrho(\mu)}$ be a one-to-one function. Let $\pi=\bigcup_{\mu<\omega^{\gamma}}\pi_{\mu}$. We claim that $\pi\colon\omega^a\to\omega^3$ is a pinning map.

Suppose $X \subset \omega^a$ and $\operatorname{tp} X = \omega^a$. For each $\mu < \omega^{\nu}$, let $X_{\mu} = X \cap A_{\mu}$. Let $N = \{\mu < \omega^{\nu} \colon X_{\mu} \text{ is infinite}\}$. Note that $\operatorname{tp} \bigcup_{\mu \neq N} X_{\mu} \leqslant \omega^{\nu} < \omega^a$. Since $\operatorname{tp} X = \omega^a$ and ω^a is indecomposable, it follows that $\operatorname{tp} \bigcup_{\mu \in N} X_{\mu} = \omega^a$, so $\operatorname{tp} N = \omega^{\nu}$. Therefore, since ϱ is a pinning map, $\operatorname{tp} \varrho(N) = \omega^2$. For each $\mu \in N$, since $\pi(X_{\mu}) = \pi_{\mu}(X_{\mu})$ and π_{μ} is one-to-one, $\pi(X_{\mu})$ is an infinite subset of $B_{\varrho(\omega)}$. So $\operatorname{tp} \pi(X) \geqslant \omega \cdot \omega^2 = \omega^3$.

The following lemma will be used in the proof of Theorem 8.

LEMMA 7. Given any ordinal $\alpha < \omega_1$, any limit ordinal $\beta > \omega$, and any function $f: \alpha^2 \to \beta$, there is a set $X \subset \alpha^2$ with $\operatorname{tp} X = \alpha$ and $\operatorname{tp} f(X) < \beta$. Proof. Let $\alpha^2 = \bigcup_{\mu < \alpha} A_{\mu}$, where $\operatorname{tp} A_{\mu} = \alpha$ for $\mu < \alpha$, and $A_{\mu} < A$, for $\mu < \nu < \alpha$. Let $\alpha = \{\nu_n \colon n < \omega\}$ be an enumeration of α . If $\operatorname{tp} f(A_{\nu}) < \beta$ for some ν , then $X = A_{\nu}$ works; so we can assume that $\operatorname{tp} f(A_{\nu}) = \beta$ for

 $\mu < \nu < a$. Let $a = \{\nu_n : n < \omega\}$ be an enumeration of a. If $\operatorname{tpf}(A_r) < \rho$ for some ν , then $X = A_r$, works; so we can assume that $\operatorname{tpf}(A_r) = \beta$ for all $\nu < a$. Then $f(A_r)$ is cofinal in β , which is a limit ordinal. Therefore, we can choose $x_n \in A_{\nu_n}$ for $n < \omega$, so that $f(x_0) < f(x_1) < \ldots$ Let $X = \{x_n : n < \omega\}$; then $\operatorname{tp} X = a$ and $\operatorname{tpf}(X) = \omega < \beta$.

THEOREM 8. If $a < \omega_1$ and a is indecomposable, then $\omega^a + \omega^3$.

Proof. The case a=1 is easy, so we assume $a \geqslant \omega$. Then there is a sequence of ordinals $\beta(0) < \beta(1) < \ldots$ such that $\sup_{n < \omega} \beta(n) = a = \sup_{n < \omega} \beta(n) \cdot 4$. Hence $\omega^a = \sum_{n < \omega} \omega^{\beta(n)} = \sum_{n < \omega} \omega^{\beta(n) \cdot 4}$. Let $\omega^a = \bigcup_{n < \omega} A(n)$, where $A(0) < A(1) < \ldots$, and $\operatorname{tp} A(n) = \omega^{\beta(n) \cdot 4}$ for each $n < \omega$. Let $\omega^3 = \bigcup_{n < \omega} B(n)$, where $B(0) < B(1) < \ldots$ and $\operatorname{tp} B(n) = \omega^2$ for each $n < \omega$.

Let a function $f: \omega^a \to \omega^s$ be given. By Lemma 7, for each $n < \omega$, we can choose $A_0(n) \subset A(n)$ so that $\operatorname{tp} A_0(n) = \omega^{\beta(n) \cdot 2}$ and $\operatorname{tp} f(A_0(n)) < \omega^s$. Since $\omega^{\beta(n) \cdot 2}$ is indecomposable, we can choose $A_1(n) \subset A_0(n)$ so that $\operatorname{tp} A_1(n) = \omega^{\beta(n) \cdot 2}$ and $\operatorname{tp} f(A_1(n)) \le \omega^2$. Repeating this argument, we obtain $A_2(n) \subset A_1(n)$ with $\operatorname{tp} A_2(n) = \omega^{\beta(n)}$ and $\operatorname{tp} f(A_2(n)) \le \omega$. Finally, using the indecomposability of $\omega^{\beta(n)}$, we can choose $W(n) \subset A_2(n)$ so that $\operatorname{tp} W(n) = \omega^{\beta(n)}$ and, either $f(W(n)) \subset B(i)$ for some $i \le n$, or else $f(W(n)) \subset U(n)$.

Note that, for any infinite $N \subset \omega$, we have tp $\bigcup W(n) = \omega^{\alpha}$.

For $i < \omega$, let $N_i = \{n : f(W(n)) \subset B(i)\}$. Let $N_{\omega} = \{n : f(W(n)) \subset \bigcup_{i>n} B(i)\}$. Now we consider three cases.

Case 1. N_i is infinite for some $i < \omega$. Let $X = \bigcup_{n \in N_i} W(n)$; then $\operatorname{tp} X = \omega^a$, and $\operatorname{tp} f(X) \leqslant \omega^2$ since $f(X) \subset B(i)$.

Case 2. $N_i \neq \emptyset$ for infinitely many $i < \omega$. Let $I = \{i < \omega : N_i \neq \emptyset\}$. For each $i \in I$, choose $n_i \in N_i$. Let $X = \bigcup_{i \in I} W(n_i)$. Then $\operatorname{tp} X = \omega^a$; and $\operatorname{tp} f(X) \leq \omega^a$, since $\operatorname{tp} f(X) \cap B(i) \leq \omega$ for each $i < \omega$.

Case 3. N_{ω} is infinite. Let $X = \bigcup_{n \in N_{\omega}} W(n)$; then $\operatorname{tp} X = \omega^{a}$. For each $i < \omega$, we have $f(X) \cap B(i) \subset \bigcup_{n < i} f(W(n))$; hence $\operatorname{tp} f(X) \cap B(i) < \omega^{2}$ for each $i < \omega$; hence $\operatorname{tp} f(X) \leq \omega^{2}$.

Finally, we give an application to the partition calculus.

THEOREM 9. If $\alpha < \omega_1$ and $\alpha \rightarrow (\alpha, 3)^2$, then, either $\alpha \in \{0, 1, \omega^2\}$, or else $\alpha = \omega^{\alpha\beta}$ for some $\beta < \omega_1$.

Proof. Clearly α cannot be decomposable. Hence, either $\alpha=0$, or $\alpha=\omega^0=1$, or $\alpha=\omega^1=\omega^{\omega^0}$, or $\alpha=\omega^2$, or $\alpha=\omega^{\varepsilon}$ where $3\leqslant \varepsilon<\omega_1$. Suppose $\alpha=\omega^{\varepsilon}$, $3\leqslant \varepsilon<\omega_1$. By the results of Specker [8], α cannot be pinned to ω^3 . It follows by Theorem 3 that ε is indecomposable, i.e., $\varepsilon=\omega^{\beta}$ for some $\beta<\omega_1$; so $\alpha=\omega^{\omega^{\beta}}$.

References

- C. C. Chang, A partition theorem for the complete graph on ω^ω, J. Combinatorial Theory (A) 12 (1972), pp. 396-452.
- [2] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), pp. 427-489.
- [3] J. Larson, A short proof of a partition theorem for the ordinal ω^{ω} , Ann. Math. Logic 6 (1973), pp, 129-145.
- [4] On some arrow relations, Ph. D. Thesis, Dartmouth College, Hanover, New Hampshire, 1972.

- [5] E. C. Milner and R. Rado, The pigeon-hole principle for ordinal numbers, Proc. London Math. Soc. 15 (1965), pp. 750-768.
- [6] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), pp. 264-286.
- [7] B. Rotman, A mapping theorem for countable well-ordered sets, J. London Math. Soc. 2 (1970), pp. 509-512.
- [8] E. Specker, Teilmengen von Mengen mit Relationen, Comment. Math. Helv. 31 (1957), pp. 302-314.

UNIVERSITY OF CALIFORNIA, Los Angeles

Reçu par la Rédaction le 10, 9, 1973