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Notes on a class of tiling problems
by

Hao Wang (New York)

Abstract. The class of problems considered here was at first ‘called the “domino
problems” and Has found extensive applications with regard to the decision problem
of the predicate caleulus. This paper includes, apart from a brief survey of work related
to this class of problems, a number of isolated results which have been obtained over
the years. These results mostly have little direct connection with mathematical logie
but may be, for that very reason, of some interest to a wider circle of mathematieians.

The class of tiling problems deals with the following general situation,
Suppose that we are given a finite set of unit squares with colored edges,
placed with their edges horizontal and vertical. We are interested in
tiling the plane with copies of these tiles obtained by translatives only.
The tiles are to be placed with their vertices at lattice points, and abutting
edges must have the same color. The first question, the unrestricted
tiling problem, is whether there i3 a general method of deciding which
finite sets of colored squares are solvable (i.e., can be used to tile the
plane in this way). The second question (closely related to the first, see
below) is whether every solvable set has a periodic solution (i.e. yields
a square of some size which repeats to cover the plane). If we think of
the first quadrant instead of the whole plane, it is more convenient to
speak also of the origin-constrained (i.e. the tile at the origin is restricted
to a given subset) and the diagonal-constrained (i.e. the tiles along the
main diagonal are restricted) tiling problems. These apparently frivolous
problems have led to various interesting investigations. And it is my
purpose here to give a number of fragmentary results mostly obtained
in discussions with colleagues and students some time ago. In particular,
several of the bagic ideas are due to Edward F. Moore. I shall begin with
a Drief historical survey of some of the results in the literature.

Around the beginning of 1960, while continuing my work on.the
mechanization of mathematical arguments, I was diverted into a study
of the theoretical problem of deciding the class of sentences with the
simple quantifier prefix ATA in elementary logic. After a period of effort,
T succeeded in transforming the decision problem into the easily under-
standable combinatorial or geometrical tiling problem (called the "do-
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mino problem” by a colleague). This greatly faeilitated not only my
communication with my colleagues at the industrial laboratory who were
mostly ignorant of mathematical logic, but also the ability to focus atten-
tion on the mathematical core of the original decision problem. At this
time, I also discovered that the origin-comstrained tiling problem is un-
solvable, because operations of any Turing machine can be simulated
by a particular tiling problem. The formulation of the tiling problems
was written up in May 1960 and published in January 1961 ([17]), and
the result on the origin-constrained problem was written up in August 1961
for circulation (see [18]).

In the autumn of 1961, I lectured on these things. And in collaboration
with Kahr and Moore, I was able to show that the diagonal-constrained
tiling problem was also unsolvable for much the same reason as the origin-
constrained problem. We were able to infe¥ that the decision problem
for the AEA case is unsolvable. In fact, the AEA sentences with only
dyadic predicates form a reduction class. These results were published
in [11]. Shortly afterwards, Kahr further refined the result to eliminate
all but one dyadic predicate, using only monadic predicates otherwise.
A summary of this last result is included in [10] and [19], and the full
proof is given in Kahr’s MIT Ph. D. dissertation (June 1962). After-
wards Berger, another student of mine, demonstrated that the (original)
unrestricted tiling problem is also unsolvable (in his Harvard dissertation,
June 1964; a briefer version appeared as [1]).

Over the years, there have appeared a number of papers related
to these tiling problems and decision problems. The following items
have come to my attention. There are three pairs of natural subclasses
of the AEA sentences with dyadic predicates only. Two of these three
pairs have been shown to be decidable (see [2] and also [19]). The re-
maining pair is, surprisingly, shown to be undecidable by 8. Aanderaa
 (in his Harvard dissertation, August 1966). Elaborations, extensions,
and simplifications of [10], [11], and [19] are contained in the papers
by Genenz, Hermes, and Maslov ([3], [4], [8], [9], and [12]). On the question
of nonperiodicity, Berger’s published proof of the unsolvability of the
tiling problem contains a complex solvable set of #iles with no periodic
solution. In his dissertation, he includes a simpler set with 104 tiles.
In April 1966, H. Lauchli sent me a nonperiodic set with 40 tiles which,
as far as I know, has not been published. In [15], Robinson has gone
into the solvability and the periodicity problems carefully and obtained
more economical solutions. Tn a somewhat different direction, Hanf
has shown in [6] that, under the origin constraints, there is a finite solv-
able set of tiles which has no recursive solution. This was extended by
Myers (in [13]) to the unrestricted case. The tiling obtained by Hanf
can be described by a 1-trial predicate (a concept of Putnam [14]). Carl
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Jockusch has found a solvable finite set of tiles which has no m-trial
tiling for any m. Hanf’s work was aimed at proving Conjecture I of [7],
put these results have failed to settle his conjecture,

Let N Dbe the class of unsolvable tile sets, F be the class of tile sets
with periodic solutions, and J be the class of solvable sets without periodie
solutions. It is proved in [5] that the classes N, F, J are pairwise Tecursively
inseparable.

I proceed to list a number of fragmentary results,
complex constructions.

With the origin constraint, it is possible to force special solutions
with amusing properties. One example is to distinguish prime from
composite numbets, first done by Edward F. Moore and then simplified
by M. Fieldhouse.

often omitting

1. There is a set of 30 tiles, including three tiles 4, P and C, such
that if A is required to appear at the origin, the set has a unique solution
in which P and ¢ oceur respectively at the prime and composite positions
in the first row.

A variant formulation of the tiling problem is to eolor the corners
rather than the cdges so that each tile can naturally be represented by
& 2 by 2 matrix giving the colors of the four corners. It is easy to show
that this formulation is equivalent to the other one in an obvious sense.

It can be verified that permitting all rotations or all reflections would
make all sets of tiles solvable. If, however, we use regular hexagons instead
of squares and allow reflections and rotations, we have:

2. Given a set of square plates, we can find effectively a set of regular
hexagons such that there is a one-to-one correspondence between the
solutions of the two sets. Conversely, given a set of regular hexagons, we
can also find effectively a corresponding set of squares. )

Given a set of squares 4,, ..., 4,, we introduce a set of 2n-+1 hexa-
gons with 6-+n new colors as follows. A “cementing” hexagon:

8

Suppose A; is:
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Introduce two hexagons with a new color a::

It can be seen that on account of the cementing piece, each pair of hexa-
gons can only be used as a unit thus:

1

)

Conversely, given a set of regular hexagons Hy, ..., Hn, We give one
block of three squares for each of the 12 positions for each H;, using
two new colors for each position. For example, if H; is

we use for the particular position the obvious combination of the three
squares: ‘ .
‘ b g b

a; b; e

The letter » indicates a new color used for every triple.

Hence, we get a set of 36m squares with 24m-+1 new colors.

‘We omit the detailed proofs of the two halves of Proposition 2.

It is convenient to speak of a “torus” when we have a square oOr
rectangle of some size such that the top agrees with the bottom (in colors)
and the left edge agrees with the right edge. As we have noted before,
Berger and others have given solvable sets which yield no tori because
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they have no periodic solutions. An easier question had been considered
and answered earlier, viz. to find a set which has a solution in which no
torus occurs.

This uses an interesting construction due to Thue (see [16]), accord-
ing to which the union R of the infinite sequence obtained from a by
successively replacing a by ab, b by ba contains no part TUyV with Uy
= yV. Such a two-way infinite Thue sequence R can be applied to design
a pattern of a’s and 0’s on the plane in which there is no “torus”. We
put the sequence R horizontally on the plane and copy each symbol
across the diagonal bisecting the first and the third quadrants. Then
there can be no rectangle block which forms a torus. For, suppose there
were such a block, say

3

Ty Ly Tp By
Py g By Yy
@y & Y1 Y,
Then 2,2,@,% = %41 % Y. and, in particular, @,z,2, = 2,2, Y. Therefore,
23y @y % 4, Would be a part Uw,V such that Us,= x,V.

In order to find a set of tiles with a solution in which no torus oceurs,
we represent @ and b by several tiles, taking into consideration the two

neighbours in the same row. Since we do not permit aaa or bbb, we need
only six tiles:

It can be verified that the pattern of o’s and b’s described above can he
simulated to any size. Hence, applying 5.1 to be proved below, we obtain:

3. There exists a set of six tiles which has a solution in which no
torus oceurs.

Incidentally, Thue also found that, for any alphabet with three or
more letters, there arve sequences in which no part is of the form DD.
A sequence of this kind with three letters has been found which is simpler
to deseribe than Thue's: '

4. The sequence T obtained from the sequence R described above
by substituting ca for aa, ¢b for bb contains no part DD.

We recall that R is the union of:

By = a, Ry= ab, Ry= abba, R, = abbabaab, ...

Consider now the even tarms of R beginning with R,: R,, R, etc.
We observe that, hecause neither aaa nor bbb occwrs in R, the results
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of substituting ¢a for ae and cb for bb are composed of occurrences of
only the following 4-letter sequences:

A =acba, B=beab, Cy=acb¢c, C,= becac.

We distinguish different occurrences of ¢ and use ¢, in a ‘context bea,
¢, in a context ach. Define T, T,, T, ete. by:

Ta, b, ¢, ;) = acybabe, ab ,
Tn+1(“; by 6, 0) = Tu(4d, B, 0y, 0,) .

Then T is the union of the Ty’s and I', is obtained from R,, 1o DY sub-
stituting ca for aa, cb for bb. Pa

If DD oecurs in T, then there is some T, such that DD occurs in 7,
and Ty, containg more letters following DD. Let M be obtained from D
by substituting 4, B, ¢, C, for @, b, ¢, 6. Then MM occurs in Thies
and M beging with g or . Suppose M = 2N (z = a or b). We then have
2Nz in T, ... The letter following «N«¥N must also be # because z fol-
lows ¥ once in T, in #¥«N. For example, if # is a, then M must begin
with 4 or C,, but ¢, can only follow B, and A can only follow O, or B.
Hence, M must end with €, or B. But (, can only be followed by 4,
and B can only be followed by 4 or C;. Therefore, the part in T, ., after
#NzN must begin with & (i.e., as head of 4 or (1). Hence, we have Nz Nz
in T,,, and, therefore, zKoKz in R,, +2; contradicting the fact that R
containg no part UaV with Uz = «V. )

There are a number of more or less direct congequences of the infinity
lemma coneerned with solutions of sets of tiles.

5.1. For a given tile set P, if, for every n, there is a solution of size u
by n, then P has a solution.

We consider partial solutions of size 2n—1 for n — 1,2,.. and
make & tree such that a block K of size 2n—1 by 2n—1 leads dirvectly
only to blocks of size 2n 41 by 2n41 with K in the center. The hypo-
thesis and the fact that any part of a partial solution is also a partial
solution ensures an infinite tree. Hence, thé infinity lemma yields an
infinite path in the tree which represents a gsolution of P.

5.2. A tile set is solvable over the whole plane if and only if it is
solvable over a quadrant. '

If it is solvable over the plane, we can of course get a solution over
a quadrant by deleting the other quadrants from a given solution. Con-
versely, if it is solvable over a quadrant, then it has a solution of size n
by » for every n, Hence, by 8.1, it has a solution over the whole plane.
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53. Given a tile set P for which it is possible to form two adjacent
infinite rows such that for every m, any 1 by m block occwrring in the
top row also occurs in the bottom row. Then the 8et P is solvable.

Let 4 be the given top row, B be the given bottom row. For each m.
and 2 1 by m block Op in A, there is & Dy, in 4 such that Dy, can be cor—,
rectly pub on top of Om, because 0y, also occurs in B, Repeating this
process with Dy, and 80 on, we can obtain g Partial solution of size m
by m. Hence, by 5.1, the set P has a solution,

A golvable tile set is said to be minimal solvable if

in every solution
every tile of the set ocecurs.

54. Given a minimal solvable set, there exists an integer n such
that every tile of the set occurs in every n by « block in every solution.
Assume 5.4 false and we have for every n some solution § and gome
tile T'; such that there is an # by # block not containing 7;. If the numper
of tiles is k, make % trees K, ..., Ky a8 in 5.1 so that K; includes all the

20—1 by 2n—1 (n=1,2,...) blocks which does not include T; in some

solution. By our assumption, at least one of the trees, say K;, must be
infinite. This determines a solution in which T; does not oceur at all,
contrary to the hypothesis that the given set is minimal solvable.

- 5.5. If the (unrestricted) tiling problem is unsolvable, then there is
a solvable set with no periodic solution.

This was observed in [17]. If every solvable set had periodic solutions,
we would have the following situation. Rither a set is solvable, there
would then be some n such that there is a torus of size n by n. Or a set
is unsolvable, then, by the infinity lemma, there would be some # such
that there is no solution of size n by n. Hence, we would be able to test
successively for each m, whether there is a solution or a torus of size n
by n. This process must terminate at some finite stage, and we would
have a decision method for the tiling problem.

Of course, as mentioned before, we now know that the tiling problem
Is unsolvable and we possess also relatively simple examples of solvable
sets with no periodic solutions.

5.6. Given a solvable tile set and an integer n, there exists a solution
in which every occurring finite block of size no bigger than n by n oceurs
infinitely often.

Consider any given solution. Since there are only a finite number
of tiles, there must be at leagt one which occurs infinitely often. Let AL,
be the set of all tiles which occur infinitely often. Let M, be the
set of all 2 by 2 Dblocks of tiles each of which oceurs infinitely often
in the solution and, in addition, consists only of members of M,. M, is
again not empty, since the set of 2 by 2 blocks which oceur finitely often
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can only take up a finite area in the plane. In general, given I{,, the
set M,,, of n+1 by n+1 blocks each of which occurs infinitely often
and contains only members of M, ..., M, is not empty. Hence, by the
infinity lemma, there is a solution with a member of M; in the center,
2 member of M, as the central 2 by 2 block, etc. This gives a solution
in which every finite block occurs infinitely often in the original solution.
To make sure that we get the desired solution for a given n, we repeat
the process of eliminating blocks which occur only finitely often. Since
there is only a finite number of distinet blocks of size no bigger than n
by «, this process must come to an end.

5.7. Every solvable set has a solution § such that every finite block
occurring in § oceurs infinitely often in 8.

Given a solution T and the set K of all finite blocks occurring in T,
eonsgider the set I of all subsets of K such that a subset A of K belongs
to I if there is a solution covered by 4, i.e., in which all the occurring
finite blocks (or, equivalently, just squares) belong to A. The set L is
not empty because K belongs to it and it has minimal members. Take
any minimal member B and any solution § covered by B. If there is
any block in B which appears only finitely often in 8, we can eliminate
it by 5.6, and B would not be minimal. Hence, every block in B must
appear infinitely often in every solution § covered by B.

5.8. If a solvable set P has no periodic solutions, then it has as many
distinet solutions as there are real numbers.

Since the set P is solvable, it has, by 5.7, a solution § in which every
occurring finite block occurs infinitely often. Hence, if an % by » block
occurs in §, it must have two nonoverlapping occurrences. Begin with
two occurrences in S of a single tile 7. There must be some #,, such that
the n; by 7, blocks with T at the center at the two places are different.
Otherwise, the two infinite columns ¢ and D containing the two oceur-
rences of ' (or rows if they are in the same column) must be the same
at corresponding positions, in which case we join the two occurrences
of T by a staircase and consider all analogous staircases between the
two columns. Since there are infinitely many staircases, at least two
niust be identical. But then we can take the region R bounded by C, D
and two identical staircases and repeat it up and down to get an infinite
strip S bounded by the modified columns ¢’ and D'. Since ¢ and D are
identical at corresponding places, the two vertical parts V; and ¥V, bound-
ing B are identical. Therefore, we can also repeat the infinite strip § and
cover the plane. Since each column consists of repetitions of V, (or, what
is the same thing, V,), there must be two infinite columns which are
identical (i.e., without any stairease shift). Since there are infinitely many
segments of rows bounded by the two columns, two of them must be
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identical. Therefore, we would have a torus, contradicting the hypothesis
of nonperiodieity.

Hence, beginning with T and its two occurrences, we can expand to
two different n; by n, blocks. Each n, by 7, block has two nonoverlapping
occurrences which, for similar reasons, ean be extended to two distinet
Digger blocks. Hence, we have, by repeating the process, a full binary
tree with as many infinite paths as there are real numbers, But each
infinite path determines a solution.

Given an infinite set K of solutions of a tile set P, a solution § of P is
said to be a limit solution of P and K if every finite block in § agrees
with infinitely many solutions in K over that block.

5.9. Every infinite set of solutions of a tile set has a limit solution;
in other words, if there are infinitely many infinite paths, then there is
a path on which every node appears in infinitely many infinite
paths.

Suppose K is an infinite set of solutions of the tile set P. Form a tree
as follows: The nodes on the nth level of the tree consist of all 2n—1
by 2n—1 partial solutions of P which coincide 'with infinitely many
members of K when these members are restricted to the 2n—1 by 2n—1
block centered at the origin. A node on the nth level is connected to z
node on the (n--1)-st level if and only if the smaller partial solution
comprigses the center of the larger one. To see that the resulting tree is
infinite, we need only verify that there is at least one node on every level.
But this is true because there are infinitely many members of K, but
(for fixed n) only finitely many blocks of size 2n—1 by 2n—1. Finally
it is clear that only finitely many branches spring from each node. Hence,
by the infinity lemma, the tree has an infinite path. This path describes
a solution, which is a limit solution to the set K; i.e. every finite block
of the solution coincides with the corresponding block in infinitely many
members of K.

‘We mention incidentally an application of the infinity lemma in
a different context.

5.10. If a Turing machine halts for every initial state and every initial
tape (which may confain infinitely many marked squares), then there ig
a number N such that the machine always halts before N steps.

Consider at each moment ¢ the pair (gf, 8}), where ¢} is the state
and 87 is the symbol under sean at . At the initial time ? =1, we have
only a finite number of (¢f, 87). At each moment, from each (qf, 8f), we
have only a finite number of (¢f,,, §7,,). Since the machine always stops,
the tree containg no infinite path. But, by the infinity lemma, it there
are altogether infinitely many finite paths, there is some infinite path.
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Hence there can be only & finite number of finite paths, and hence a finite 41 J. Grene'nz, Untersu?hungcn cwmn Entscheidungsproblem, Miingter 1965, pp. 44.
bound N to the height of all paths. The theorem is proved. (5] Gurjevits and Korjakoy, Bemarks on a paper of Berger on a problem of dominoes

We conclude this paper by giving H. Lauchli’s solvable set without 6] %rrl ]}E;uﬁlfanl)\;oiﬁénﬁ?ﬁﬁiﬁlﬁnﬁ zlhi 1(;21311»(91 91722111?&*;:; ?6?3' 8 i

periodic solution. The matching condition requires that the adjacent E7] _ Model-theoretic methods in the study of elem;mam/ logic, T?leo;*y i?];z‘[iiﬁc'lgss

tiles haive the same color (so0lid or broken) and that lines must continue pp. 132-145. ’

across edges. There are five classes of eight tiles each. [s} H. Hermes, Hntscheidungsproblem wund Dominospicle, Seleota Mathematica IT
(1970), pp. 114-140.

[9] — A simplified proof for the unsolvability of the AEA. case, Logie Colloguium 1969,
(1971), pp. 307-309.

{10] A. 8. Kahzr, Improved reduclions of the Enischeidungsproblem to subclasses of AEA
formulas, Mathematical Theory of Automata 1963, pp. 57-70.

111 — E. TF. Moore, and H. Wang, Bntscheidungsproblem reduced io the AEA case,
Natl. Acad. Sci. US 48 (1962), pp. 365-377.

[12] 8. Ju. Maslov, The inverse method for logical caleuli, Trudy Mat. Inst. Steklov.
98 (1968), Pp. 26-87 (see § 12.3).

[18] D. Myers, Nonrecursive tilings of the plane II, to appear.
[14] H. Putnam, Trial and error predicates, J. Symb. Logic 30 (1965), pp. 43-57.
[15] R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, In-
vent. Math. 12 (1971), pp. 177-209. : ’
[16] A.Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kristiania,
1913, pp. 67.

[17] H. Wang, Proving theorems by pattern recognition II, Bell Systems Technical J.
10 (1961), pp. 1-41.

(18] — An unsolvable problem on dominoes, Harvard Computation Laboratory report
no. BL-30 (II-15), duplicated August 1961, bound Jan., 1962.

[18] — Dominoes and the AEA case of the decision problem, Mathematical Theory of
Automata 1963, pp. 23-56.

===

L-_____J - (S S| L._-J —

N

<
s

Regu par lo Rédaction le 30. 1. 1973

Frem——mq e e

References

[11 R. Berger, The undecidability of i}, dom
1088y s Y of the domino problem, Mem, Amer. Math. Soc. 66

2] B. Dreben, A. §. Kahr, and H Wan ifioati
s . s - g, Classification of ARA las by leth
aloms, Bull. Amer. Math. Soc. 68 (1962), pp. 528-532. d ormules by tater ]

{31 J. Gen i i
. loes P;?;Q'Red'ukmomiheome mwhrder Methode von, Kahr-Moore-Wang, Miinster



Artur




