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Prioric games and minimal degrees below 0%

by

C. E. M. Yates (*) (Manchester)

Abstract. The purpose of this paper is to present an analysis of one particular type
of priority-argument in terms of what we call prioric games: one interesting feature of
this analysis is that prioric games in no way involve recursion theory. The ype of priority-
argument referred to is that which involves o . approximation by means of trees, and
in full generality the framework which we devise is adequate for all known, applications.

" A side-product of our investigation is a notion of (C, d) -priorcomeager set, which seems
o be more restrictive than the notion of (C, d)-priorabundant set arising from prioric
games. It is nevertheless adequate for classifying many sets: for example, {b: b is mini-
mal & BT > bU 00} is weakly (C, 0)-priorcomeager for certain C; this yields a very
recent result due to Sasso: there is a minimal degree < 0 whose jump is >0 .

It is easy to translate most of the basic existence-problems in the
theory of degrees of unsolvability into questions of the form: is + non-
empty? where # is a Borel subset of 2°. It has been known for some time
that some of the more elementary questions of this type can be settled
by proving that 4 is comeager (**) in the usual product topology on 2%
then using Baire’s theorem. More recently, we have shown that far more
of the general theory can be developed in this way than had hitherto
been thought; this will appear in particular in our forthcoming book [16].

(*) Many of the idess in this paper grew out of a seminar on the degrees of un-
solvability which was held at the University of Colorado when I took sabbatical leave
there in 1971/72. I would like to fake this opportunity of thanking the members of
that seminar for their enthusiasm and encouragement. The ideas were further developed
in response to some lectures which I gave at the University of Illinois, Urbana, in May
1972, and I am particularly indebted to Professor Carl Jockusch Jr. for pressing me
further towards a game-theoretic approach. I am also grateful to Professor Leonard
Sasso Jr. for early notice of his results.

(**) Le. residual, or complementary to a set of first category.
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The wider development is made possible by allowing a variety of topo-
logies other than the standard ome and by formulating a constructive
notion, that of a (C,d)-comeager set, where C essentially describes
g constructive neighbourhood system formed by adding new perfect sets
to the old topology, and d is a degree of unsolvability bounding both
that of C and that of the intersection operation in the formation of the
comeager set concerned. The relevant existence-theorem then asserts
that every (C, d)-comeager set contains an element of degree <d. Ag
an example of an application of this method, it may be proved that the
set of minimal degrees, and more generally the set of degrees b such
that D (<) is isomorphic to a given finite distributive lattice, is (C, 09)-
comeager for certain systems C. The existence-theorem then implies
the existence of & minimal degree below 0%, or more generally that any
finite distributive lattice may be embedded as an initial segment of
D (<09). .

An alternative notion is the following: a set 4 C 2 is (C, d)-abundant
if there is & winning strategy of degree < d for entering # in G(C; ),
which is a straightforward generalization to the topology defined by C of
the Banach-Mazur game associated with #. This notion is not important
for most of the basic applications because, for most useful C, d, it is
equivalent to the more elegant notion of a (C, d)-comeager set. This
equivalence is proved by generalising a classical theorem of Banach
concerning Banach-Mazur games. Nevertheless, there are some situations
in which the game-theoretic notion is more intuitive and others in which
it admits of appropriate refinements for which one can extract no obvious
parallels from the notion of comeager set. Hence, even in the general
theory one concludes that the most appropriate overall framework must
be game-theoretic.

Now, the type of problem which is usually of most interest to a de-
gree-theorist consists of constructivising existence-theorems; this in-
variably requires some sort of priority-argument. There are two types
of problem here: (I) reducing degree and (II) improving the quantifier-
form. The priority-method was first introduced to deal with a problem
of type (II), namely Post’s problem: Kleene and Post has exhibited the
existence of A3 incomparable degrees, and Friedberg and Muénic inde-
Pendently devised the new method in order to replace 42 by 9. The
first application of type (I) was Sacks’ use of a priority-argument [3, 5]
to improve Spector’s construction of a minimal degree below 0® by
replacing 0® by 0“. Both of these applications involve priority-argu-
ments which are fairly simple in comparison with much of the more recent
work in the field, but they do serve as an appropriate starting point for
analysing the priority-method. Our purpose here is to analyse those
arguments of type (I) which involve a single approximation, such as in
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Saks’ result mentioned above. There are of course now many results
about the degrees below 0%, beginning with our construction [12] of
a minimal degree below an arbitrary 3P degree, which involve an ad-
ditional recursive approximation mueh more complex than those analysed
here."We plan to treat these in a later paper. Although we shall not touch
on problems of type (II) here, we should mention that finjte-injury argu-
ments can be treated in & framework which is similar to and in some wWays
simpler than the present one; this will be described in [15]. Again, most
of the more difficult constructions lie outside the bounds of this framework,
in this case because they need infinite-injury arguments. These we also

- plan to treat in a later paper.

We now turn to describing the layout of the present paper. After
the introductory section on tree-systems and operators, we begin work
in earnest with the study of the prioric game PG (C; 4) in § 2. Thenin § 3
we define a set £ C 2% to be (C, d)-priorabundant if there is a winning
strategy of degree < d for entering # in PG(C; #); this is accompanied
by a basic existence theorem which asserts that any such set contains
an element of degree < d. The next section is devoted to a rather technical
discussion of what we call remedial strategies for PG(C; #). This is
directed to showing that these strategies are well-behaved and do not
forfeit the game in any trivial way; one reason for needing this section
is that all the strategies mged in applications are remedial. It would be
possible at this point to prove that, for example, the set Mt of minimal
degrees is (C, 0)-priorabundant for certain C. We choose, however,
to devote § 5 to a notion of (C, d)-priorcomeager set, showing in particu-
lar that every (C, d)-priorcomeager set is (C, d)-priorabundant. “The
converse of this result, which would provide an analogue of a classical
theorem of Banach, does not appear to hold although the matter has
not been finally settled. Another disadvantage of the notion of (C,d)-
priorcomeager set is that in order to prove that a given such set # con-
taing an element of degree <<d it is necessary to use the fact that #£ is
(C, d)-priorabundant. Since it appears to be generally just as easy to
prove directly that 4 is (C, d)-priorabundant, the latter procedure leads
more quickly to existence-theorems in degree theory. For these and other
reasons, it would seem that a game-theoretic framework is even more
appropriate for priority-arguments than it is for the general theory.
Nevertheless, in order to obtain the strongest possible classifications,
we go on in § 6 to prove that, in particular, the set {b: b is minimal &
b U 0® < B} is weakly (C, 0M)-priorcomeager for certain Cj it follows
immediately that there is a minimal degree < 0% whose jump is >0%.
The trick behind the proof remains the same one used by Sasso [7] to
first obtain the latter result, thus answering & question which we raised
in [12]. Other applications are mentioned in the concluding § 7.
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Tinally, we survey the little notation which we need to a.ssume., in
addition to some general background knowledge from [2] and [5]. First,
we assume that the basis of recursion theory has bfaen set up on the
hereditarily finite sets rather than the integers.; this foll9ws a trend
initiated by Shoentield [9]. In particular, a dominant role is played by
the set S of strings, i.e. finite sequences of 0’s and 1’s. Small G.rreek letters
will be used for denoting strings, with the exception of w which as usual
denotes the set of nonnegative integers. o will'be used to denote the
empty string as well as the empty set. 0 *-3.1.1(1 1 will be used to denote the
two strings of length 1 in addition to their normal use. If o, e s then.
we write o < v to mean that o is an initial segment of v; o < 7 indicates
that o is & proper initial segment of v. We also write o < B where B ¢ 2°
to indicate that ¢ is an initial segment of B. |o| denotes the length, i.e:
number of elements, of the string ¢; o(n) “denotes the (n-+1)-st element
of 0. o % © denotes the concatenation of o and =, i.e. the string formed by
adding = to the end of 0. o and v are said to be compatible if one iy an
extension of the other, and incompatible otherwise (written o|z).

Relative recursiveness is treated as in [12], by using a uniformly
recursive sequence (F,) of recursive order-preserving S-maps such that
X is recursive in. Y (written X <, ¥) if and only if F}(Y)= X for some ¢,
where F¥Y) = lim(Fe(o): o< ¥). A string ¢ is Fe-gplit by o, ot if o'<‘o‘°,
o< ¢ and Fyo®)|Foc?). Also, we let (RE) be a standard enumeration
(Z? in B) of the subsets of w which are 2% in B. Then as usual we can
define BV = {z: z « RE}.

The degrees of wunsolvability are the equivalence classes of 2°
under =,, where X =, Y if and only if X <, Y and ¥ <z X. We denote
the degree of X €2° by X. In general, however, small boldface Roman
letters are msed to denote degrees. They are ordered by the relation <
induced by <, the resulting partial ordering being denoted by D. The
jump operation is induced by the map B—B®; iterations of the jump
are defined by setting BV = (™), Initial and final segments of D
consisting of the degrees < or > a given degree b are denoted by D(<¥H)
and D (=b) respectively. We shall frequently abuse notation by confusing
a set of degrees, both with its set of constituent elements of 2°, and with
the corresponding subordering of D.

§ 1. Tree systems and operators. There are numerous notions of tree
in the literature. For the general theory of D it is most natural to Limit
attention to what we call perfect trees, and these can be defined in many
different ways even for the purposes of degree-theory. The following
very general notion, however, best serves our purpose in studying priority-
arguments involving trees.
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1.1. DEFINITION. A ire¢ is any subset T of S which
(i) possesses a least element (denoted from hereon by u(1))

(i) is such that every element of T' which hag g proper e,xtension
in T has a pair of incompatible extensions in 7.

A tree T is defined to be a subtree of T if T C T.

‘We think of a tree as being partially ordered by <. Note that trees
may be finite, and that in fact even singleton trees are admitted although
they do constitute a special case (see 1.6 below). S.itself is of conrse
a tree. Bach tree T' genevates a subset N°(T) of 2°, which may be loosely
described as the set of all branches of T, but is more precisely defined
in 1.3 below.

1.2. DEFINITION. A subset X of a tree T is a braneh of T it

(i) X is linearly ordered by <,
(i) X is closed under predecessors in T,

(ili) whenever an element of X has a proper successor in T then it
has one in X.

An element B of 2° is said to lie on T if B = Lim X for some branch
X of T.

1.3. DeFINITION. For each tree 7 we define

N(T) = {B: B lies on T}
and call N(T) the neighbourhood generated by T.

The basic ordering between trees is D, and this clearly impli;as the
same relationship between the corvesponding neighbourhoods.

1.4, DEFINITION. A tree 7' is perfect if every element of T has a pair
of incompatible extensions in 7.

Note that if T is perfect in the sense of 1.4 then R(T) is perfect in
the usual sense relative to the standard topology on 2°. '

1.5. DerINrTIoN. For each tree T and string 7. T we define
ThAt={o: ceT &rv<o}.

We sometimes refer to this tree as T above T.

This brings us to an important concept, that of a tree system. Rather
than discuss it in full generality we will restrict ourselves to the most
important special case. We ghall also introduce an extra aspect *(C)
to our systems C which is unnecessary when we are dealing (as in [14]
and Part I of [15]) only with perfect trees.

1.6. DEFINITION. A tree-system C is a countable set of trees such that
(i) S<C, -

(i) if TeC and 7¢ T then TAveC.
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In addition, there is a distinguished. subset *(C) of C whose 6nly
required property is that any singleton trees in C must all belong to %(C),

In most applications it is suificient to let % (C) consist of the singleton
trees, but in the last theorem of this paper it will be necessary to expand
*(C) a little, although it will still be restricted to finite trees. The rTole
of *(C) is to distinguish a subset of C containing frees which are too
small to be useful for the application concerned.

In the general definition (used in [15] for example) one weakens
condition (i) to assert the existence of a maximal perfect tree in C. This
ig necessary in particular for proving relativised results about D (> e¢)
for arbitrary ¢, but we prefer to leave such technicalities to the interested
reader gince they will only confuse the main issues.

‘We shall restrict our applications to ) tree-systems, in other words
to systems consisting of X trees; in this case it is advisable to assume
also that *{C) is of degree <<0: by this we mean that the indices of
elements of * (C) form a subset of the set of all indices of 27 trees (usually o
of course) which is of degree <O0W. It is surprising how many subsets
of 2° may be classified using arbitrary X7 systems, although for various
special cases it is necessary to introduce further closure conditions on the
system C. There are two obvious extreme cases: the smallest system S*,
which consists of all trees of the form SA ¢ for arbitrary o, and the maximal
system M, which consists of all =) trees. In both cases, their * sets are
taken to consist simply of their singleton trees and that is the purpose
of the subscript in the second case; S* of course contains no singlefon
trees and 50 *(S*) is empty — we shall generally ignore *(C) for any
perfect system for exactly this reason. We have elsewhere [14] devoted
o fair amount of space to elucidating the interesting inverse relationship
which exists between the complexity of an initial segment D (<b) and
the size of the systems which can be used to construct b. In the present
paper, our classifications will either involve all C or else be limited to
fairly large C such as M, which satisfy closure conditions additional
to 1.6 (ii); in the latter case, $* will in particular be excluded.

Finally, we turn to defining the operators which will play such an
important role in the sequal. .

L7. DeFviTION. Let C Dbe a X7 tree:system. A (C, d)-operator
21y ey tms T% ..., T™ is a many-valued map from o™ x C<® into which
has the following property: there is a function.v: o™X 0<*— w, which
is partial recursive in J and whose domain is of degree < d, such that
if 4y ..., % ave indices of T ..., T™ ag 30 subsets of § then

V(815 o5 Om3 Gy eunyln)

iz an index of a value of Q(e, ..., em; T% ..., T"..
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Our convention is that whenever £ is nsed to construct a sequence
of trees then we will have fixed indices of 1% ..., T in mind (provided
by the earlier stages of the inductive construction) so that the value of
O(8yy ey bm5 T oot T™) is also fixed. This seemingly roundabout procedure
qaves constant reference o indices and the resulting complex notation.

We should also take this opportunity to clarify the operation u(T).
Tt is possible to arrange that all applications involve tree-systems for
which a partial recursive z may be provided (this is of course for 20 sys-
tems). Nevertheless, it is usually sufficient for u to be of degree <09,
and it is easy to see that such a u is always available. For the question,
as to whether or not a 2) subset of S possesses & least element w.r.b. <,
is of degree < 0W: we first agk whether a given T iy nonempty and then,
given an affirmative answer, choose an element which has no predecessor:
if any of the finitely many strings which are no longer than it and are
incompatible with it have an extension in T' then there is no least element,
put otherwise it ¢s the least element.

Finally, we shall frequently need to pick a pair of incompatible ele-
ments of a tree T when that tree is not a singleton. Such a pair will be
denoted by uo(T), w(T) and it is easy to see that they may be assumed
to be uniformly of degree < 09, This may be generalised in the obvious
way to provide u(T) for any string o: if p,(T) has been defined and
TAp(T) is not a singleton then just let pouolT)s fosa(T) e (T A a1},
m(TA ,u‘,(T)), where for uniformity we derive the enumeration of TAu,(T)
from that of T.

- § 2. The prioric game PG (Cj #). The impottant notion of (C, d)-prior-
abundance will be defined in § 3. As we have already mentioned, this
involves the existenice of a winning strategy for entering £ in an ap-
propriate prioric game: this game is the subjeet of the present section,
and in no way involves recursion-theory.

2.1. DerFNITION. Let 4 C 2° and let C be & tree-system. We describe
a two-person infinite-positional prioric game PG(C; #) in whieh the
ultimate purpose (as with the generalised Banach-Mazur game G(C; +#)
introduced in [14] and Part I of [15]) is for the two players to produce
the alternate members of a contracting chain Up2 Uy2 ... of elements
of C in such a way that B =1lim(u(U,) exists and of course belongs
to () N(T,). We then declare Player 2 to be the wmne.r 1f.B eA and
Player 1 to be the winner if B ¢ £, subject to certain limitations on the
manner of play deseribed below. A

The difference in the present game is that the two players actually
make a succession of atbempts at each U, associated with them, the lagt
of these attempts being U, itself. More precisely, they produce 2 chain
Ty <* T, <*... (which just means that p(T) < p(Ty) < ...) of elements

3 — Fundamenta Mathematicae T. LXXXII
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of C in which each T} is an attempt at some particular move Uz Where
R(%) is defined inductively by setting E(0) = 0 and for & > 0:

the least r < R(k—1) such that U, requires attention at
R(k) = | stage k, if such an r exists; '
R(k—1)+1 otherwise.

The notion U, requires attention at stage & is deliberately left undefined
here, although it is of course made completely precise in applications;
this notion will be pinned-down a little in 3.1 below, when we digeuss
strategies for PG(C; #). The last stage at which U, is attempted (if such
a stage exists — see the last paragraph of this definition) is denoted
by K (r) and we define U, = Tk, _

Now, there are three stage-by-stage limitations on the conduct of
play needed to ensure that U, 2 U, D ... and that B = lim(u(U,)) exists;
that they succeed in achieving these aims will be verified after we have
completed the definition of the game.

(i) Ty C Ty for all k, where M (k) = M(R(k)—1, %) and M(r, k)
ig the largest j < k such that E(j) < v, for all r and %,

(i) i T ipAps(Ty) € *(C) but Type A (Ty) ¢ *(C) for all s<r
then, agsuming that » < E(k), U, requires attention at stage k-1,

(iil) if B(k+1)= R(E)-+1 then (Ty) < p(Tipy)-

These limitations are enforced simply by ruling that the first player
to transgress them loses the game. In our discussion of ingtances of
PG(C; ) it is obviously easiest to assume that neither player is so stupid
a8 to lose the game by flouting these conditions, and so we shall assume
them always to be observed. We lose no generality by doing this.

Finally, we come to the central limitation on the conduct of the game.
This limitation is a deeper one which can not be satisfied at a single stage.
Tt asks that the stability function
(x) K(r) is defined for all r.

In other words, each player makes only finitely many attempts at each
of its moves, hence that the moves only require attention finitely often.
This is enforced by ruling that (the stage-by-stage conditions (i)-(iii)
being observed) the player associated with the least » such that K (r) 18
undefined (if there is such an r) loses the game. This completes the de-
finition of PG(C; ).

Let us now look at a play T, T,, ..., of the game PG (C; ), assuming
that all the conditions are observed so that neither plajyer trivially loses

the game. Hence, in particular, K (r) is defined for all ». We wish to prove
that in this case we do have:

(@) Ty2 T, 2 ..,
(b) B = lim(u(U,)) = lim (u(Tx)) is a well-defined element of 2°.
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That (a) holds is a consequence of condition 2.1 (i), and follows
jmmediately from the lemma below. Notice first that R(K(r))=r,
R(k) > for all k> K(r); also, it is easy to see that K (r)< K (r--1) for
all 7.

2.2. LeMMA. If r<< R(k) then Ty, C Ty yy for all v and k.

Proof. By induction on k. It follows from 2.1 (i) that T C Tryrp—1.5)>
go that if 7= R(k)—1 then there is nothing to prove. If r< R(k)—1
then M(r, %)< M(B(k)~1, %)< k. Also, r< R(M{R(k)—l, k)= R(k)—1
and M ('r, M (R (k)—1, 70)) = M(r, k) so that it follows from the induction
hypothesis that T ywon-1 C Luranmm-10y = Lo We deduce thab
T3 C Tagry- W

Tt follows immediately that if %> K(r) then T, C Tk, and hence
that Tgge1yC Treys 1. Upya € U, for all 7, thus proving (a).

It is relatively easy to verify (b). It follows from 2.1 (ii) that TgyA
A p(Tx) is not a singleton, for all & > K (r). Since R{E (r)+1)= R(K (r)+1,
it then follows from 2.1 (iii) that u(Tge) < #(T'gp+.) for all 7. Hence (b)
is satisfied.

There is one final point which should be cleared up. It might seem
rather unfair to rule that in 2.1 (iii) the player moving at stage k-1
should lose the game if u(7T}) < p(Ty.q), since Ty might be a singleton.
But in fact if B(k+1) = R(k)+1 then M(E(k), k) =k and so R(k-+1)
< R(k) by 2.1 (i) if T% is a singleton (remember singleton trees & x (C)):
contradiction. Therefore T is not a singleton and this problem does
not occur.

To conclude this section some motivation would no doubt be helpful.
Although the definition of PG(C; +#) involves no reference to recursion-
theory, this-is the only area where it has as yet been utilised and so we
should explain why it is useful there. The point of this prioric game I8
that an element B = lim(u(U,)) constructed in some wltimate play
U,D U,D ... can also be defined to be lim(u(Tx)) where the sequence
T, ,7['1 , :, may be arranged to be of lower degree of ugsolva,blh_ty than
U,, Uy, ... This will of course be familiar to those recursmn—j;h.eorlsts who
are intimate with the construction of, for example, a minimal degree
below 0W. A rough explanation is that the less constructi?r.e a,spects. of
the sequence U,, Uy, ..., have been visited upon the -stablll'ty functlo‘n
K () rather than the sequence Ty, Ty,.. The sense in which W.hﬁ.nt. is
usually called the Priority Method is involved here ]je.s in the def]_mtlon
of R(k) as the index of the move of highest priority (i.e. smallest index)
which requires attention at stage k.

§ 3. (C, d)-priorabundant sets. We now turn to a means of ela.ssi;.fsfmgr
subsets of 2%, and prove an existence-theorem for any set so classified:
every (C, d)-priorabundant set contains an element of degree <d.
3
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Tirst, we need to define exactly what we mean by a strategy for PG(C; )
which is of degree <d.

3.1. DEFINITION. A (C, d)-strategy Q(e; T%, ..., T") is a (C, d)-oper-
ator (see 1.7) such that:

(i) Qe; T% .., T C T & u(I") < M(‘Q(6§ .., Tn));

(i) 2(e; T) is always defined and such that u(T < ,,,(.Q(g; )
if Tt is not a singleton.

The way in which Player 2 uses a strategy £ is as follows (the infer-
pretation for Player 1 is exactly analogous but less important). Firss,

0 notifies Player 2 when a move requires attention: more precisely, if

(65 Tyrponys s Ty 15 defined for 2641 < E(k—1) then U, Tequires
attention at stage k. Secondly, if R(%k)= 2¢+1 then Q is actually used
to define Ty: if R(k) = R(k—1)+1 then T\ = 2(¢; Ty_;) = Q(€; Tarany)s
and otherwise Ty = 32(6; Tyyeenys --r 1)

There is nc reference to the trees T, for h << M (26, k) simply because
in practice they play no role. We shall always assume here that d > 0.

3.2. DeriNITION. Let Q be a (C, d)-strategy. 2 is a winning strategy
for £ in PG(C; #) it Player 2 always wins when he uses £, irrespective
of the play of Player 1.

3.3. DEFINITION. A set £C2° is (C, d)-priorabundant if there is
a winning (C, d)-strategy for £ in PG(C; #).

It is obvious that any superset of a (C, d)-priorabundant set is

(C, d)-priorabundant. It is also not difficult to prove that the (C,d)-

priorabundant sets are clogsed under finite intersections: one just combines
the strategies in a rather obvious way, coding them alternately. It is also
possible to prove closure under certain rather limited countable inter-
gections but we shall not need any of this in the present paper.

We now prove our simple but absolutely basic Existence Theorem:

3.4, THEOREM. If £ C 2% and # is (C, d)-priorabundant then s contains
an element of degree <d and has the cardinality of the continuum.

Proof. We deal with the two assertions simultaneously. Let X be
an arbitrary element of 2°. We shall describe a strategy 2% for Player 1
which is of degree <X U 0W. Hence, in particular, if X & d then the
resulting play, in which Player 2 uses the winning strategy available
for #, must be of degree <d (taking into account the constant limitation
that d > 0"). On the other hand, the play is dependent on X and so

we obtain 2 continmum of different plays all of which produce elements
of .

The simple strategy to be used by Player 1 is as follows: 2%(e; T) is
defined to be T A ux(T), and Q% is otherwise undefined. In any particular
play, it is easy to see that QF obeys 2.1 (i), (iii) and (s), and it is not much
trouble to verify 2.1 (ii); so we leave this to the reader.
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Olearly, Q% is of degree <X U 0%, go that since d is always =00
it follows that if X < d then Q¥ is a (C, d)-strategy. Hence, it only remaing
to prove that if X # ¥ then the resulting plays (%) and (T¥) result in
distinet elements BX and BY of 2°. But if e is the least such that X (é)
~ Y(¢) then it is clear that R(T7,,) and N(TE,,) are disjoint so
that BX and BY must be distinet.

The essence of our approach is that, in order to prove that a seb
4C 2* contains an element of degree <d, we no longer need & construe-
tion: we simply prove that A is (C, d)-priorabundant and then use the
theorem which we have just proved. To prove that +# is (C, d)-prior-
abundant requires the production of a winning (C, d)-strategy which
complies with the stage-by-stage conditions of PG(C; #). This is the
only penalty which we have to pay for the formal notion of (C, d)-strategy,
and it leads us in the next section to describe a elass of strategies which
are well-behaved in this way.

§ 4. Remedial strategies. In this section we introduce and examine
a class of strategies which comply in a natural way with the stage-by-
stage restrictions of PG (C; ). These strategies. which we call remedial,
are used in all the applications which we know of in degree-theory. They
also turn out to be needed for the concept of (C, d)-priorcomeager set,
discussed in the next section. It is probably worth emphasising that
the material in this section is only made necessary through formalizing
the notion of (C, d)-strategy, and so does not correspond to any steps
in the usual ad hoe congtructions which are hereby replaced. It appears,
therefore, to be. the penalty we pay for the organised framework of
(C, d)-priorabundance.

Before turning to remedial strategies, we define an auxiliary operator
which is crucial to their definition.

41. DErINITION. Let @ be a (C, d)-strategy. Then Q(e; T, ..., T%
is defined as follows. We set 2(e; T = T" and forn > 1 set 2(e; T, ..., T7)
=Q(e; T% ..., ™) where m is the largest number <= such that
Q(e; T ..., T™) is defined.

It can be seen that £ is also a (C, d)-operator and has the advantage
of being everywhere-defined.

The notion of remedial strategy arises in a quite obvious way. Sup-
pose that @ is a (C, d)-strategy which is used by Player 2 in PG(C; #).
Let Ty, T, ..., be the play produced and let us assume all the notation
of 2.1. The following lemma is intuitively fairly clear but we prove it
in detail.

4.2. Lmvwa. For all k and all e such that 2e-+1 < R(k):

TM(ze+1,k) = L(¢; TM(2c,k)7 ey Tho)
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Proof. We prove the lemma by induction on %, and there are three
cages.

Oase 1. 2¢6-+1= R(%) > R(k—1). Then E(k) = E(k—1)41 so that
R(k—1) = 2¢ and M (2¢, k) = k—1. Tt follows that T} = Q(e; T,_,) and
80 Tygerrny = Tr = Q(e; Tyy, Tp) = L2(e5 Trrceys L)

Case 2. 2¢+1= R(k) < R(k—1). In this case

T, =26 Tygeny s Toa)

whence Tygerriy = Tx= 2(6; Targesys -» Ti) 8 Tequired.
Case 3. 26+1< R(k). Then 2¢+1< E(k—1) and k—1 > M(2e, k)
== M (2¢, k—1) so that

Q("; Toroeys -9 Ti) = .Q(e; Ty, 6~y 8 + 3 Tmt) -

The R.H.S. may be identified with Tpyp04q15-q) bY the induction hypo-
thesis, and hence with T'y,.1, because E(k) >2¢+1. B

We can now observe that if 2.1 (ii) is satisfied by £ then,
whenever 2 (e; Trigeys -y Ti) A (L) € x(C) with & > K (2¢) we must have
0Q(e; Traeys -y Ty) defined. This may be analysed more closely with
respect to 2.1 (ii), but anyway we have said enough to suggest the follow-
ing concept:

4.3. DEFINTTION. A (C, d)-strategy @ is remedial if Q(e; T4, ..., T
is defined whenever Q(e; T% ..., T Au(T™ e x(C) but T*Au(T™) ¢ *(C).

We are assuming in this paper that *(C) is restricted to finite trees

so that if C consists solely of perfect trees then every (C, d)-strategy
is remedial.

The following result justifies our choice of Definition 4.3:

4.4, TuEOREM. If Q is remedial then Q complies with 2.1 (i)- (iii).

Proof. Any (C, d)-strategy satisties 2.1 (i) and (iil). To verify 2.1 (ii),
note that if Ty 1yAp(Ty) € x(C) with 2¢4+1 < R(k) and there is no
8< 2641 such that TypApu(Ty) e *(C) then R(6; Taggony: s Te) 8
defined by 4.2 and 4.3. We deduce that 2¢-+1 requires attention at stage
k+1, by 3.1 m

It should.now be clear that the remedial strategies form a class
which it is nabural to isolate. Their usefulness in applications lies in the
result which we have just proved; for, it is usually easy enough to see
on inspection that a given strategy is remedial and we know then from 4.4
that it complies with the stage-by-stage conditions of PG(C; ).

To conclude this section we mention a very common type of remedial
strategy, namely those £ which take the form

Qe; T ..., T = T'AS(¢; T, ..., T™)
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where 8(¢; T ..., T™) belong to I* and is >u(T%). Clearly, Q(e; T%, ..., Tm)
is atways of the form T*Ad(e; Tt ..., T™) for some m < # and so

Q65 T ooy TYAp(T™) = T'Ap(T™) .
Therefore, 2 is trivially remedial.

§ 5. (C, d)-priorcomeager sets. The purpose of this section is to introduce
a notion of (C, d)-priorcomeager set and prove that every (C, d)-prior-
comeager set is (C, d)-priorabundant. We shall in fact alse introdmee
a weaker notion of (C, d)-priorcomeager set which also has this property
put which is less matural; the significance of this weaker notion is that
if seems to be needed for a number of applications.

In order to show that a (C, d)-priorcomeager set contains an ele-
ment of degree <d it does seem mnecessary to resort to the Existence
Theorem of § 3 along with the result mentioned above; certainly the
only direct proof which we have produced (we do not do so here) makes
implicit nse of both of these results. This is an unsatisfactory situation
a8 regards existence-theorems in degree-theory, but we are devoting the
rest of this paper to the two notions of (C, d)-priorcomeager set in order
to demonstrate that they are natural and useful concepts.

5.1. DEFINITION. Let £ be a remedial (C, d)-strategy. Let e be
fixed and let T%, 1% ..., be & proper <* chain over C {ie. u(T™) < p(IT™)
for infinitely many »). We say that 1%, 1%, ..., is Q, e-prioric if for all n:

(a) if Q(e; T, ..., T" ) iy defined then it is =17,

(b) Q(e; T4, ..., T") D T™,

() T Aw(I™) ¢ *(C).

Note that (e) is redundant if C is a perfect system. It is easy to prove
by induction on n that if 1%, 1% ..., is 2, e-prioric then 7D T" for all x.
It follows that if B = lim(7™) = lim(u(T")) then B e R(T").

The next definitions lead up to the notion of (C, d)-priorcomeager
set; the corresponding weaker notions will be defined in parentheses.

5.2. DEFINITION. Let (#;) be a sequence of subsets of 2° and let Q
be a remedial (C, d)-operator. We say that Q is a (C, d)-prioric probe
for (#) if, for each ¢, whenever T% T ..., is & @, e-prioric <* chain then:

(a) T = lim,Q(e; T%, ..., T" exists,

() N(TV®) C .

We say that Q is a weak (C, d)-prioric probe for («) if it satisfies
(b)” below instead of the stronger (b):

(b)? B = lLim(u(I™)) belongs to s, .

5.3. DErFINITION. Let (#£,) be a sequence of subsets of 2°. We say
that (o) is (weakly) (C, d)-priordense if (#;) possesses a (weak) (C, d)-
prioric probe.
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5.4. DeFINITION. Let £C 2% We say that 4 is (weakly) (C,q)-
priorcomeager if £ (1) &, for some (weakly) (C, d)-priordense (). Algo,
we say that # is (weakly) (C, d)-priormeager if 2°— 4 is (weakly) (C, d)-
priorcomeager. ) ‘

Every superset of a (weally) priorcomeager set is obviously (weakly
priorcomeager. Also, as with priorabundance, it is easy to prove thas
the (C, d)-priorcomeager sets are closed under finite intersections. We
again note that this generalises to certain countable intersections, namely
those which can be roughly deseribed as being of degree <Cd.

Our main interest in this section lies in the following resalt:

5.5. TEEOREM. If £C2% is weakly (C, d)-priorcomeager them +# is
(C, d)-priorabundant.

Proof. We claim that if Q is a weak (C, d)-prioric probe for (#,)
then it is also & winning (C, d)-strategy for # in PG(C; #). Let us there-
fore examine a typical instance of the game PG (C; #) in which Player 2
uses 2. We use all the standard notation for various aspects of the game
introduced in 2.1. Since otherwise there is nothing to prove, let us assume
that Player 1 plays a strategy which complies with the conditions 2.1
(1)- (i) and («).

We claim that K (r) is defined for all 7, an assertion which we now
need only prove for odd #. Also we claim that if B is the result of the play
then B e #, for all e. Clearly, this will complete the proof of the theorem.
We shall be able to justify these claims once we have proved.:

Levva. For each 6; (Ty)isicee 18 2, 6-priovic. -

Proof. We verify the three clauses in Definition 5.1.

(@) It £2(6; Tgpgy vy Toy) is defined for %> K(2¢) then R (k)
=26+1 and 50 Tp=Q(6; Ty, ., Ty_,) because K(2¢) = M (2, k).

(b) In order to prove that Q(e; Ty, ..., Ty) T; We prove more
generally that Q(e; Trpy, ..., T%) 2 T, for all' j such that I (2¢+1, k)
<j <% and we do this by induction on j. For j = M (2¢+1, k) it follows
immediately from Lemms 4.2. For Jj > M (2e+1, k) note first that B(j)
>2e+1 so that M(2e+1,j)= M(2¢+1,k) and hence M (26--1,%)

< M(j)<j.

But Tpyy D T; by 2.1 (i) and so we may then use the induction
hypothesis.

(0) Trpghu(Ty) ¢ *(C) for all k> K (2) by 2.1 (i). m

Now, it follows from 5.2 (a) that limg2(e; Tp,, ..., Tj) exists for
each ¢, and by Lemma 4.2 is equal to lim, T eerre) = Trpery- It further

follows from 5.2 (b) that B e ,, for all ¢, and hence B ¢ #. This completes
the proof of the theorem.

5.6. CoroLLARY. If #C 2°

. is (C, d)-priorcomeager then # is (C, d)-
priorabundant. m
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This corollary is the true amalogue for the present framework of the
comparatively trivial observation that every (C, d)-comeager set is
(, d)-abundant. As we have already mentioned, it is possible to gener-
alise & theorem. of Banach to prove conversely that every (C, d)-abundant
st is (C, d)-comeager; this is subject to the minor restrictions that C
consist of closed trees (i.e. their neighbourhoods are closed in the standard
topology) and d = 0@, (The latter restriction can be lifted when C= S¥,
which is the case Banach was implicitly dealing with). It is natural to
ask whether some converse result like this can be found for the theorem
above or its corollary. We feel, however, that in neither case is this likely.
Tt does not need a very detailed examination of the Banach-type theorem
which we have just mentioned (and which will appear in [14] and [15])
to appreciate the great obstacles which lie in the way of any such theorem
for the present framework. Further, there is good reason 13.0 suppose
from applications that the three concepts concerned are mll dlstlpct. A]l
this provides yet further evidence that the game-theoretic notions are
the widest and most natural ones for investigating degree~theor§.r. We
believe, however, that the concept of (C, d)-priorcomeager set is the
true analogue for the present framework of the concept of (C, d)-corfle—
ager set discussed in [14] and [15]. This is supported by the following
observations. If C is a perfect tree system (we did not formulate a concept
of comeager set for more general systems and indeed can 1not see how one
¢ould) then: o

(i) every (C, d)-comeager set is (C, d)-priorcomeager,

(ii) every (C, d)-priorcomeager set is (C, d™)- comeager.

§ 6. The set of minimal degrees which do not attain‘ their lgast possible
jump. The concepts studied in the earlier sections of this paper .ha.ve been
introduced as much for their intrinsic interest as for obtaining results
in degree-theory. Nevertheless, the framework which has been deYeloped
does make it possible to isolate open problems an(_i new rgsults in such
a way as to focus attention on the particular difficulty with Whlch. we
are faced, instead of having to view it in the context f)f‘construcmoni
which are already known. We shall give an example of this in the p.re-senl
section. It has recently been proved by Sasso [7] t?m.t thgre is & mmm(;a
degree b which does not attain its least possible jump: in other words,
b is such that b U 0W < p®. The basic argument prf)mdes a degree
b< 0%, but it was observed by Sasso (in company with 8. B. %(;ogﬁz
and R. Epstein) that the technique involved can be blended wi o
construction of a minimal degree below 0%. In our framework this is
absolutely transparent.

The task which we face is to classify the set

(B: B is minimal & BU 0¥ < B%}.
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This breaks up into two separate problems, namely classifying

M = {B: if ¢ <, B then either ¢ is recursive or B <p 0},
I ={B: BY £ BuU (W},

Notice that I C R, the set of nonrecursive functions. The set M of
functions of minimal degree is M’ ~ R and if we merely wish to classify 9
then it is enough to show that both 9’ and R are (c, 0‘1>)-priorcomeager
for some C; in fact, R is (C, 0%)-priorcomeager for any C. Thege Tesults
were first obtained some time ago in [13], which was, however, never
published. For this reason, we repeat the classification of R here for
the particular case C'= I, defined below. We then show that 5 is weakly
{L;, 0M)-priorcomeager, whence the desired set It ~ ¥ is weakly (I,, 0)-
priorcomeager through eclosure under finite intersections. The clasgifi-
cation of J isolates the essence of Sasso’s argument, and of course the
classification of ' ~ I yields his theorem through the main results
of § 3 and § 5.

6.1. DEFINITION. I, is the system which consists of all the images
of partial recursive maps F: S8 satisfying:

(i) I one of F(0x0), F(o+1) is defined then so is the other and so

also is F{o); in addition F(@) is always defined.

(ii) F(0x0), F(o+1) are incompatible if they are defined.

Moreover, x(L,) is defined to be the set of ranges of maps ¥ such that
F (o) is undefined for some ¢ of length <?2.

This is not an unfamiliar system apart from its %. For, the system I,
in which length <2 is replaced by length <1 has been used many times
(implicitly) for the construction of minimal degrees (for example, in [12]
and [137]).

Let T e (L) be im (F). We define 8(T) to be some F (o), with length
o<1, such that F(ox0), (0+1) are undefined but F(o) is defined.

6.2. THROREM IR’ is (I, 0%)- priorcomeager.

Proof. It can be seen that 90 — [ M. where

M. = {B: F;(B) is undefined, recursive or — r B}

We claim that Q is a (I, 0™) -prioric probe for (M), where

Q(6; T) = 8peTApo(T)) ,
(e T ooy T = T*n8(R0e; T, ..., T AulT™),
it Q(e; T ooy T AR(T™ € (L) but T
ation for forming an F.-splitting subtree of 3 given tree (such as in [12]
for example). Tt ig clear that 2 is a remedial (L, 0‘1’)-stmtegy.

Suppose now that e ig arbitrary and 7"
sequence. Then 1% = Q(¢; T1) — Sp

Au(T) ¢ (L). Here, Sp, is an oper-

y I% ..., is & Q, e-priorie
T Auo(T)). To prove 5.2 (a) we claim
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that 2(e; T -, T) 18 defined at most once for # > 1. For let p be the
! .
h n if there is one.
leaStTSIll:n 52(0; Tl, s Tp) = T2 and 17+ = Tll\,u(Tﬂ'l'l).AIf n>p bub
Q(e; T .., IT™) is undefined for p < m < n then TP = Q(e; T, ..., T
and’ T”',H/\IJ(T") = T*Au(T"), which ¢ x (L) by 5.1 (c). Hence
(e T4, ..., T
i fined. . . .
§ unt(ni:: 11>]'1:0ve 5.2 (b) we have to show that either R(I7+") C M. if p emsf*f,
r N(T2) C M. otherwise. In the former case, we must have T®Au (TP
Or*(I ) and hence OT%A w(TP*) is defined. But T2'= Spe(TlA ‘uu('.T]))
; d :o 8(T2Au (TP is mot Fe-split by any pair of strings in T*. Since
ngﬂc T* (because T, T% ..., is £, e-prioric) it follows t'.rom thilusua.l
oIl known splitting-lemma that R(IP**) C M, because if u(T") < B
:,;en F*(B) is either undefined or recursive, for all Be N(T"). In the
econd eca.se, it B e MN(T?) then Be S)I(Spg(Tl)) a.qd so by a.nothero standard
irgument it follows that B =, F;(B); hence again we have N(I?) C .. n
Before moving on the second theorem, recall that if B, D e 2%
(B@D)(26) = B(e), (B®D)(26+1)=D(e).
The operation o @ v for strings o, 7 of the same length is defined similarly.
As is well known, the degree of B®D is Bu D.
6.3. THEOREM. 3 is weakly (I, 0%)-priorcomeager.
Proof. First, notice that I= (I, where

.= {B: B # F;(B®D)}

and D is a fixed element of degree 0©. Our aim then will be to provide

a weak (I, 0%)-prioric probe for (3, but first we n?f%’ a EE:SIm
function. For each T ¢ I, define (1) to be an & such that is D
recursive S-map behind T then .
2 w if ('\H:'L‘)(F(T*O*O)<B),
By = {(p otherwise . .
i i tan
Clearly, #(T) can be computed from an index of T or F. The impor
property of this function is:
BOz(T)) = 0a(T) REp(Hr)(F (v %0 % 0) < B).
Now we turn to the definition of !2 .
Tirst we define 2(¢; T) to be in (&) where:
G(p)=T(0),
Gt #4) = F (g 1%1) it  Gr)=F(n) -

For n >1 there are two cases.


Artur


234 C.E.M. Yates

s

Case A. Tf (Fe(u(T“)@DEIM(T”)I])M(TI)) =1 then we set:
Qe; T ooy T = T"AF (7 % 0 % 0),

where im (F) = T* and p(T") = F'(v), as long as we have not already done
this for T, ..., T™ with m <. '
Case B. If 2(e; T ..., TV Ap(T™) € % (L) but T*Apu(T™) ¢ *(L) then
we set
Q(e; T oy T = T*AS(R(6; T, ...y TYAp(T™) .

Otherwise, 2 is undefined. It is easy to see that £ is a remedial (I, 0®)-
strategy.

Now suppose that e iy arbitrary and I, T2 ..., is & 2, e-prioric se-
quence. First, it is clear from the definition of Q that Q(e; T%, ..., T is
defined at most once for n >1 through Case A. We claim next that
Q(e; T ..., T™) can never be defined through Case B. For, suppose that
is such that Q(e; T%, ..., T™) has not been defined through case B for
any m<< n. If Q(e; TlA, ..y T™) hag also not been defined through Case A
for any m< o then Q(e; T%, ..., T") = T = Q(e; I7). Hence, 2(¢; THA
Ap(T™) e %(L). But it Q(e; T, ..,7T") iz defined through Case B
then It = T'A8(Q(¢; T")Au(T™) and so T'ASR(e; T')Au(T™) = T'A
Ap(T¥H) ¢ *(L). Tt can then be seen, because of the way in which § is
defined, that Q(e; T")Au(T™) ¢ x(I,): contradiction. If on the other hand
.!?(a; T, ..., T™) has been defined through Case A for some m << n then
Q(e; T, ..., T") = T™" = T"Ao for some o= w(T™). But then

Qe T .., TYAR(T™) = T*Ap(T™) ¢ x(F) ,

and so 2(e; T, ..., T™) is not defined through Oase B. This proves 5.2 (a).
The proof of 5.2 (b)” divides into two cases, depending on whether
or not 2(e; T, ..., T") is ever defined through Case A.

. If Case A does indeed oceur, at stage N say, then it is clear that
F;BOD)x(TY)=1 it defined. Also, if B=lim(u(Z™) then B
e R(Q(e; T ..., ) for all # >N so that if F(r) = u(TV), where F* is
the S-map behind T", then F(v x 0 % 0)<< B and hence BY(z(T%)=0.

If, on the other hand, Case A does not occur then B belongs to
RN(Q(e; T%)), and it is easy to see that if F'(o) < B then o is either 0 or
of the form v 1 x4: theorefore ¢ is certainly not of the form 7 0x 0
and hence B2 (TY) = 1. Tt can also be seen that F}(B@® D)(w(T") is
either undefined or = 0; for, if F}(B@ D)(s(T") =1 then

(Fu (T @ DU (1)) fo( ) = 1

for ioti .
- ;;);ne large enough. n, contradicting our assumption that Case A never
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All this shows that B €S, and hence completes the proof of the
theorem. B
We can first deduce the result of Sasso announced in [77]:

6.4. COROLLARY. There is a minimal degree b<< 0% such that §® > 0©,

Proof. It follows from Theorems 6.2 and 6.3, along with closure
under finite intersections, that M' ~J is weakly (I,, 0%)-priorcomeager.
Hence M’ ~ I is (L, 0™y -priorabundant by 5.5 and contains an element
of degree <0W by 3.4. Clearly, the degree of such an element satisfies
this corollary.

This answers a question which we raised in [12] after proving that
there is & minimal degree with jump 0.

Another question, which we asked in [13], is whether 2°—3 is
(C, 0®)-abundant for all C, since it can be shown to be (¥, 0W)- agbundant
(this was first pointed out to the author by Carl Jockusch, and is es-
sentially a companion result to Sacks’ theorem that 2°—J hag measure 1,
mentioned and used in Stillwell [10]). This question is answered negatively
by framing Sasso’s original result in [7] (that there is a minimal degree
<0® which does not attain its least possible jump) in the language of
(C, d)-comeager sets: J is (I,, 0%)-comeager, where I, is the perfect
tree-system consisting of the ranges of all recursive S-isomorphisms,
and so 2°—3 cannot be (I, d)-comeager for any d. :

Yet another related question raised in [13] was whether every
(C, 0®)-priorcomeager set contains an element with jump 0. We con-
jectured a negative answer and, at least for weakly (C, 0®) -priorcomeager
sets, this follows from 6.3: 3 certainly contains no element with jumyp 0.
We remain certain that our slightly stronger conjecture is true, but we
do not see, for example, how to prove that I is (L, 0W)-priorcomeager.

Finally, this last observation serves to explain another phenomenon.
One of the corollaries which we noted in [12] was that there is a minimal
degree whose jump is 0%; the proof of this involved recursive approxi-
mation but we wondered whether this was necessary. A proof by 0W-ap-
proximation would by analogy with other results of this kind, be virtually
certain to be convertible in our framework into a proof that every
(C, O -priorabundant set contains an element with jump 0®: hence
the necessity of the more complex argument. Tt is perhaps worth noting
that Cooper [1] has used recursive approximation to prove thab every
degree =0 is the jump of a minimal degree, and has also proved there
that 09 is mot the jump of a minimal degres < 0%. Jockusch has con-
jectured that (i) every minimal degree < 0% has double jump 0% (this
would strengthen Cooper’s second result) and (ii) every degree =09,
which is X0 and hag jump 0@, is the jump of a minimal degree < 0.
This plausible conjecture would (if verified) nicely characterise the jumps
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of the minimal degrees < 0. We note that 6.4 can be strengthened to
assert also that b® = 0, nsing an observation of Jockusch. In oupr
framework this is proved by showing that any (L, 0%)-priorabundant
set contains an element with double jump 0%

§ 7. Conclusion. There are a number of other applications of the
ideas in this paper, although they need slight additional complications
of format. For example, it is possible to prove that, for any d such that
0% < d < 09, the set {B: d<< B"} is ((Cs), 0%)-priorcomeager for certain
sequential systems (C,). We will not go into the details here, but thig
yields one of the original finite-injury arguments: Shoenfield’s proof [8]
that if 09 < d< 0® and 4 is 20 in' 0 then there is a degree b < OO
such that 5™ = d. (Shoenfield’s result was of conrse later strengthened
by Sacks [4, 5] who used an infinite-injury argument to show that b could
be made X7.) The point of the new proofis that it is easier to understand
with what other techniques the proof may be combined.

Other examples are Shoenfield’s proof [9] that if 0< a << 0% then
there is a minimal degree b << 0% such that b|a; one now simply proves
that D(£a) is (C, 0%)-priorabundant in a rather weaker sense than
used in this paper. In fact, in this latter result one may replace a by the
elements of a 0¥ -uniform sequence of degrees which lie between. 0 and 0%:
this yields our theorem [11] that there is a degree << 0™ which is in-
comparable with all the X0 degrees between 0 and 0%. In eombination
with the classification of MM’ obtain in 6.2 above, this move subtle classifi-
cation leads to Sasso’s strengthening [6] of the results just mentioned;
there is a minimal degree < 0" which is incomparable with all the X°
degrees between 0 and 0. These classifications were first obtained in [13],
and in conjunetion with the present paper they show that the entire
extant theory, of 0%-approximating priority-arguments which yield
results about D (<0%), can be developed in a framework only slightly
more complicated than the one which we have set up here. This entire
theory will appear in [15].
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