icm

Combinatory logic and the o-rule
by

Henk Barendregt (Utrecht)

Abstract. The w-rule for combinatory logic is: MZ = NZ for all closed Z =M
— N. The following results are proved: Combinatory logic together with the w-rule
is consistent. For a large class of terms, the non-universal generators, the w-rule
is valid, but the w-rule is not valil in general. :

Introduction. The type free theory of combinators is axiomatized
by & set of universal axioms. Hence for models of this theory, the interior,
i.e. in the language of universal algebra the set of algebraical constants,
is again a model.

Adding the axiom of extensionality,

Ve My= Ne—M=DN,

changes the situation. The interior of an extensional model ig not & priori
extensional. The situation is the following:

_i) There existy an extensional model with a non extensional in-
terior [8].

ii) There exists & model with an extensional interior [2].

jii) The free extensional model (free in the category of extensional
modely with surjective homomorphisms as morphisms) has a non ex-
tensional interior [10].

These results will be presented in a proof theoretic context. Exten-
sionality of the interior can be expressed (in an infinitary language) as

(*) M MZ=NZ—-M=1V.

Zolosed term

_ The corresponding rule

() MZ = NZ, for all closed Z = M=1X,
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is called the w-rule. (As it is the case with the w-rule for arithmetie,

a universal conclusion (Vo Mz = N2) is drawn from all instances Wlth

closed terms). We have
It will be shown that
1. Combinatory logic with the w-rule is consistent (§ 1), [2], § 2.2.
2. For a large class of combinators, the non universal generators,
the w-rule is valid in the extensional theory (§ 2), [2], § 2.5 (%).
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3. The w-rule is not generally valid in the extensional theory '

{§ 8), [10].
6 )By taking termmodels 1 implies ii) and 3 implies iii) and i). Result
2 shows why the construction for 3 had to-be complicated.

Remarks. The main part of this paper, § 1 and § 2, is a published
“version of [2]. We thank Dr. Plotkin for permission to present (in § 3)
hig interesting result [10]. In [11] a different proof of the consistency of
the w-rule is given. There it is proved that Scott’s latitice theoretic models
satisty (x).

‘We thank professor Myhill for an improvement in the proof of 2.18.

Notations. FV (M) is the set of free variables of M.

Terms that are equal up to a change of bound variables are identified.
= denotes syntactic equality. [#/N]M denotes the result of substituting
N for the free occurrences of » in M. In this case we assume that the
bound variables of M differ from the frée ones in N to prevent confu-
sion of variables.

‘We agsume familiarity with combinatory logic (CL) and the A- caleulus
ag axiomatized e. g. in [4]. By the standard translations between OL and
the A-caleulus the results can be proved in either of the systems. So

the most appropriate one is chosen. For result 1, this is CL. Results 2 and
3 are proved in the A-calculus.

§ 1. The consistency of the w-rule. Let OLw denote the theory CL
together with the w-rule. By an ordinal analysis the consistency of CLw
will be proved. The main step is that if OLw F M = I, then OL + MI...I
= I, where I ... I is some finite string of I’s. From this, information about
‘OL+ extensionality can be obtained, since this theory is contained in
CLow. For example it follows immediately that solvability in CL is the
same a8 in CL+ext (or OLw) and there fore in the A-calculus (cf. [3],
1.5).

The results about OLw are proved by introducing a conservative

extension CLe’ in which it is possible to formalize the ordmal length
of a proof in CLw.

(*) Added in proof: However Parikh’s w-rule [9] is valid in general for this
theory (see 2.27).
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11. DerinITIoN. CLo’ has the following language:
Alphabetey, = Alphabety, v {~,|a countable} u {~,

u{=,la countable}.

The terms are those of CL.
Formulas. If M, N are terms, then M >N, =N, M ~_ N,

M~ N and M=, N are formulas.

OLe’ is deflned by the following axiomschemes and rules:

1. IM = , -
KEMN=> M,
. SMNL > ML(NL).

M= M,
M=>=N, Nz2I=>M=L,
M=M=>ZM=2ZM', MZ> M'Z.

M= M=M ~, M,

M, M=M~, M,

M~ M=>M=,M,

M=, M=M=MN.

M=,M, M x, M, M~, M,

M= N=>N=,M, M v, N>N =, ¥, Y~ N=>N~ M,

M=DN, N=1L=M=1L,

M=M=ZM=ZM', MZ = M'Z,

M~ M=ZM~,ZM', MZ ~ ,M'Z,
b M-— M, a<ﬁ=>M-_ﬂM’

V. VZ closed U< a MZ = NZ= M ~,N.

In the above M, M’, N, L and Z denote arbitrary terms, and a, B
arbitrary countable ordmmls

The intuitive interpretation of

M =, N is: M = N is provable using the w- -rule at most « t1mes

M ~, N is: M =, N is provable without use of transitivity.

M=, Nis: M=, N follows directly form the o-rule (or is provable
inOLincasea*O)

The following properties follow inductively from the d(?fmmons.

1.2. LEMMA.

i) CL+M>NeCLotM>NeClo't M= N.
i) OLo’ k M = N< HaCLo' F M =, N.
ili) CLow b M = N< Lo’ F M = N.
iv) OL+ M = N CLo’' F M =, N.
v) OLe' b M =, N« @N,... Ny "B, .. lliTk]
Lo’ F M ~, N. Ny =
vi) E}Lw’ FM zﬁv, P ;ﬁzoévg"z closed W< a OLo' + MZ =, NZ.

|a countable} u

II.

III.

1v.
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1.3. LEMMA.
CLo' t M ~, N, M, N closed=
HP,Q, Z cdlosed [CLo' F ZP =, M, CLo' } ZQ =, N and CLa' - P ~,0].

Proof. ~, is the monotone closure of =,. 8o if M ~, N, then for
a certain context C[ ] and certain P,Q M = CG[P], N = C[Q] and P ~,0.
Then take Z = Az C[#] and use 1.2 iv). @

1.4 Mamwy Lmwwma. Suppose a =+ 0 and M, N and Z are closed, then
[CLo' F ZM > IACLo' F M ~, N]= Hf < a[COLe’ + ZNI =,1].

The proof of this fact occupies 1.5-1.12. An auxiliary theory CL,
which is'a conservative extension of CL, will be introduced. OL examines
the behaviour of a subterm and its “residuals” by underlining them,
Attention is paid to see if in the reduction of ZM the occurrences of If
become “active” (in a context (MA)) or “passive” (in a context (4M)).

1.5. DeFmNiioN. OL has the following language.

Alphabete, = Alphabetor, v {=;, 1.

Simple terms of CL are the terms of CL.

Terms are defined inductively by

1) Any simple term is a term.

2) It M is a simple term, then I/ is a term.

3) If M, N are terms, then (MN) is a term.

Formulas. It M, N are terms, then M >, N, M = N and M =N
are formulas.

For a OL term, we define | M| to be M itself without any underlining.
If M, N are CL terms, then we define M ~ N <> | M| = |¥|. CL is defined
by the following axiomschemes and rules: o

L1 IM> M,
. KMN >, M,
. SMNL >, ML(NL).
M= M,
M M=>ZM > ZM', MZ =, M7,
M2 M M M,
Mz M=M= M.
Mz>N, N>L= M>>I,
Mz=N=M=N.
M=N=>N=M,
M=N, N=I=M=1T.
V. MN >, MN.
v In the above M, M’, ¥, L and Z denote arbitrary terms except in
I1. 3 and V where M, M’ denote simple terms.

II.

ITT.

Iv.

RO O RO WO
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The following properties follow inductively from the definitions.
1.6. LEMMA.

HOL+M>M <8N, . Ny OLF M =Ny =3, Ny = M,

i) OLFM =M <CLkF M= M for simple terms M, M.
iil) CL F M > M’'<OL + M = M’ for simple terms M, M'.
iv) [OL F M =, M’ and N'sub M']= EN[Nsub M and CL F ¥ =, N'].
1.7. LemumA. Let Z be simple, then

[CLFZM = M and Nsub M']=C0LtFM>N.

Proof. By 1.6 i) and iv). @
1.8. Lemma. Let M, M’ be simple terms, then (see fig, 1)

[OL M = M and M~N]=HON'[CLt+N >N and M'=~N".
Proof. By induction on the length of proof of M > M'. m

Pig. 1

1.9. DEFINITION. Let 4 be a OL term. ¢4 is them apping CL—CL

defined as follows:

pale) = ¢ if ¢ is a constant or variable,
P4(MN) = pa(M)pa(N), pa(M) = A. ,
1.10. Levma. If OL—{V} + M =, M, then CL I on(M) = (M) for

simple terms N.

Proof. Immediate. @
1.11. LmvvA. Let Z, M and M’ be dlosed CL terms such that Z and M

are simple. Then
[OL FZM > M’ and OLo’ + M ~, N]= 0B < a OLo’ Fon(ZM) =; pn(H).

Proof. Suppose CL FZM = M’ and CLo' F M ~,N. Then
ON, .. Ny OL F ZM = Ny 25 = Np = M.

By induction on the length of proof of N, =, Ny, we show that

(%)

Whs < a OLo’ Fon(Ne) =4 on(N i) -
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If N, >, N, is an instance of an axiomscheme not being V, (x) follows
from 1,10 and 1.2 iv) by taking f; = 0. I N; =, N, , is an instance of axiom
V,say MM, >, M,M,, then we have to show that

) Wp < a OLo' + Nox(M,) = Mon(IM)

beeause M, is simple and hence gy(M,) = M,. Since CL + ZM = M N,
it follows from 1.7 that CL kM > M,. Hence since OLow' M ~, ¥ it
follows from 1.2 vi) and 1.2 iv) that

U <-a CLo' F Non(M,) =g Mon(My) =o Myon(M,) .

This implies (wx). o
In the other cases (x) follows easily from the induection hypothesis,
Now we have established (x). Let f= Max{f,,..., Sz} then f< a and

CLo' Foy(ZM) =5 Pn(N) =4 .. =p ‘PN(%%) =son(M'). B

1.12. Proof of 1.4. Let OLo' FZM >1I, OLw' F M ~, N, a0
where M, N, Z are cloged.

By 1.2 i) CL F ZM > I, hence by 1.6 ii) OL F ZM > I and therefore
by 1.8 CLFZM > 1" with I' =T or I' = 1.

Casel. I' = I. By 1.11 it follows that Hf < o CLw’ F ZN =;I, hence
a fortiori Hf < a[CLo’ F ZNI =, II =, I].
Case 2. I' = I. Then CL F ZM > I, hence by 1.7,

(1) _ CL+M>1,
and by 111 #f< a CLo' F ZN =, N. Therefore
2) HB< aCLw'FZNI =, NI .
Since CLow’ - M ~, N, it follows from 1.2 vi) that
(3) Hp' < a CLow' F NI =, MI.
From (2), (3) and (1) we have

8p,p < aOLo' b ZNI =, NI =, MI=,II.
Hence for p” = max {8, f} A

CLo’ I-ZNI=5,I and f'<oa.m

1.13. NoTATION. M, sta,nds for MT .. I Note that I, is not a term,

n times

because MI ... I stands for ( MI) )
1.14, LemwmA. Let M be closed. Then

(%) CLo' F M =,1 = necowCLFMI,>1T
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Proof. Induction on a. Because we will make use of a double in-
duction the induction hypotheses with respect to this induetion is called
the a-ind. hyp.

Oase 1. a=0. Then OLo't M =, I implies that OL + ¥ = I by
1.2 iv), hence CL + M = I by the well known Church-Rosser CR property
for CL. )

Case 2. a>0. From 2.2.7 it follows that

OLew' t M=, I<8M, .. Mz 8, ..., fe< a,
(%) ' OLo' bt M ~g My~ My ~p Myp>1T.
We can suppose that the My, 4=1,..,% are all closed. We show by
induction on % that (sx)=> ().

The induetion hypothesis w.r.t. this induction is called the k-ind.hyp.
If k& = 0 then there is nothing to prove, so suppose that % > 0.

Subease 2.1. fr< a. Then CLw 't M, ,~, M, >1 with f=pi
therefore CLo’ F M,_, —-ﬂI Hence by the a-ind.hyp. HnewCL
b M, I, = I, because we assumed that M, ; is closed. Thus

Hn e w OLw' b MI, ~g MyI, ~ o~y My (I, 21,
hence by the k-ind.hyp.
Hn,n ewCLFMIL I, >1,

which is
Hn,n ewCL F My =1 .

Subecase 2.2. fx = a. Then OLe’ + M,_; ~, M}, > I. By 1.3 it follows
that there are Mj_,, My, Z such that

OLo' b ZMj_y = My_,, CLo’ FZIM =, M, ’
and ) )
CLo' F M;_, ~, My, .

Hence by 1.2. iv) and th.e CR property it follows that CLe’ I-ZM;c =1,
By 1.4 it follows that S < a[CLe’ b ZM) oI =4 I], thus

B << a[O0Lw' F My I=51].
Hence by the a-ind.hyp. ‘

WnewOL kM, I, =1,
thus '

Wn e o OLo’ b MIL, ~p MyIL,~ oo ~py My I =1

Therefore by the %-ind.hyp. we have
Hn,n ¢wOLF MIL, L, >1
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ie.
Hn,n ¢ w CL F Mlpyipyy=1. ®

1.15. THEORFM. Let M Dbe closed. Then OLo F M = I= Ty g QL
FAMI, =1I.

Proof. Immediate from 1.2 i) and 1.14. @

1.16. CoroLLARY. CLw 4s comnsistent.

Proof. Let 2, = (Az-ow)(Aw 2x). If COL,FQ,=TI, then by 115
CL FQ,I,= I for some n.

By the Church~Rosser property for OL it follows that CL FQI>1T
which is absurd. @

Let Aw be the 1-calculus together with the «-rule. By the standard
translations between CL and the A-caleculus we have

1.17. CoROLLARY. i) Let M be closed. Then

AotM=I=>WUnewltMl,=1I.

i) Aw 48 consistent.

§ 2. The validity of the w-rule for non-universal generators. In this section
it is proved that for a large class of terms the w-rule is valid. The details

are carried out in the A-caleculus because there extensionality can be
axiomatized by so called #-reduction

{n) lo-Mwz= M, where w¢FV(M):

if Mo= Na, ©¢FV(MN), then M = iz Mo = Jz- Ng = N.

The J-calculus extended with u-reduction will be denoted by .

2.1. DEFINITION i) The SJamily & (M) of a term M is the following
set of terms F(M)= {N| UM'iy+ M > M’ and NsubN'}.

i) A term M is an wniversal generator (w.g.) if F (M) congists of all
closed terms.

We will show that if M and ¥ are no u.g.’s, then iy MZ = NZ
for all closed Z= iyt M = N. By the same method it can be proved
that A+ MZ = NZ for all closed Z= A F My — Nz, for all », with the
same restrietions on M and .

The idea is to use a closed term of order zero like Q, = (Jo- o) (An- 20):
If MZ = NZ for all closed Z, then also MQ, = NQ,. Because £2, behaves
almost like a variable we would like to substitute for Q, & new variable %,
obtaining Mz = Nz and hence by extensionality M = . However there
is a difference between a varisble and Q,: in a reduction a new variable
can never be generated, whereas £, can, Therefore we should use a dif-
ferent term of order zero ©, which will not be generated by M or N.
If M or N is a w.g. there is no such Q. Therefore with this method, the
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Ldity ‘of the w-rule can be proved only for non universal generators.
;‘?rst it will be shown that u.g’s do exist. This fact facilates the proof
of the main theorem.

9.9. LummA. There exists a universal generator.

Proof. (Modification by D. Scotit of our original .eonsm_metion .
Let 0,1,2,... be the numerals in the A-calculus as defined in [5]. Then
there exists o term B such that VZ closed Hn A FEn = Z, see [T], p. 254.
Txamining a proof of this fact one can actually show that HE VZ closed

ee [1].
" }L gyﬁ%jﬁidspoix[m%heorem one can define a B su.ch that Ba? = Brt(Br),
Az-wt represents the successor function. Then BO is a 1.g. since

B0 > B1(H0) > B2(EL)(B0) > ... m

9.3. DEFINITION. A A-term Z is of order 0 if there is no term P such
that A+ Z = Az P. |
0.4, ExAMPLES. Any variable is of order 0. £, = (Av-2w)(ls-zw) is
of order 0.
9.5, Levma. Let Z be of order 0, then:
i) Bor mo term P we have Ay FZ = M- P.
i) If g+ Z = 2', then Z' is of order 0. , .
iii; 1; Z:]? FZM = }\T , then there exist terms Z', M such that N = Z'M’,
MtZ=2 and gt M= M .
iv) For oll terms M, ZM is of order 0. o .
Proof. For thig proof let us call & term of the firgt kind if it is & vari-
able, of the second kind if it ig of the form (M) and of the third kind
if it is of the form (Aw- M).
i) Suppose Ay + Z = - P for some P. By [6], Ch. 4D, Theo;elzm 2d,
p. 182 it follows that there exists a term Z’ suc}% that AFZ > MamN
A~ v+ Z' = (Aw-P) (where Ay~ is Ay without the axiom gcheme (M.- t,)
> [a/N1 M (ﬂ-'reduction)). Because Z is of orfier 0, Z 1’s of th; ﬁgngi
of the second kind. Z' cannot be a variable since mtZ' = Za; P : ez o
7' ig of the second kind. By induction on the length of pr‘oo 11]11 nN o
a reduction M = N we can show that it M is of the §econd kind, t. znkjnd
of the second kind. This would imply that Wv-P) is of the secon )
contradiction.
ii) ITmmediate, using i). L
iii) By inductiim on the length of proof of ZM = N using ii). .
iv) By iil) it follows that if An F ZM > N, then N is of the se
kind. Hence ZM iy of order 0. W 3
Ag in the previous section we need an auxiliary theo
a conservative extension of in.

-
2 — Fundamenta Mathematicae T. LXXXIT

ry which is


Artur


H. Barendregt

9.6. DEFINITION. Ay is a theory formulated in the following language

Alphabet;, = Alphabet, v {>;, _}.

Simple terms of the theory iy are exactly the terms of the - caleulus,

Terms are defined induectively by

i) Any simple term is a term.

i) If M is a simple term and FV (M) = @, then M is a term.

ili) If M, ¥ are terms, then (MN) is a term.

iv) If M is a term, then (iz- M) is a term (x is an arbitrary variable),

Formulas. If M, N are terms, then M = N, M > N, and M= ¥
are formulas.

A term of the theory Ay is called A-term. .

The operation BV, FV and [#/N] can be extended to A-terms in the
obvious way.

(Note that: BV(I) = BV (M), FV (M) = @ and [#/N] M = I1.)

2.7. DerINITION. i) The relation “... is a subterm of...” is-deﬁned
in such & way that only M is a subterm of M. To be explicit:

Sub(z) = {#} for any variable »,
Sub(MN) = Sub(M) v Sub (N) v {MN},
Sub (Ax- M) = Sub (M) © {Iz- M},
Sub (M) = {M},
Nsub M <N «Sub(M).
ii) M~ N is defined as in 1.5.
2.8. DEFINITION. Ay is defined by the following axioms and rules
L 1. (laM)N =, [2/N] M,
2. Mv-Mz >, M, it » ¢ FV (M),
II. Same as in 1.5, together with M = M= M=, Jn M.
IIT. Same as in 1.5.
IV. Same ag in 1.5.

2.9. Levma i) I b M > M'< N,
=M.

11) It M>Meint M= M, for simple terms M, M'.

i) g M > M i + M > M, for simple terms M, M'.

N"i"?I-MENJ,;'I...}lNk

) [n b M >, M and N'sub M= EN[Nsub M and Jn - N > N')
Proof. By induction on the length of proof. For iv) use

Nsub[z/Q]P = NsubP or NsubQ . m
2.10. Levwma [ b MA > M and A'sub M']= kA=A
Proof. By 2.9 i) and iv). m

2.11. Levua. Suppose I, 7 R
Thon i b MZ > Lo PP y Z and L are A-terms and Z is of order 0.

ULt MZ > 1, L~ I and Z'subL/ = dn + Z > Z'].

icm
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Proof. A A-term P is called proper if ZsubP= Z ig of order 0.
Show that
[t M>=N, M M’ and M’ proper]
=>HUNTMmFM =N, N~N and N’ proper],
by induction on the length of proof of M = N. Then the theorem follows
by 2.10. m

2.12. DerFiNrrioN. Let @ be any variable. A mapping g.: 1-terms
_s)-terms is defined as follows:

oY) =Y,
o MN) = o M) @a(N) ,
pa(My- M) = 2y 9o( M) ,
QM) = .

2.13. Levmma. If ip bt M = N and if @ is a variable not occurring in
this proof, then An b @a(M) = ().

Proof. Induction on the length of proof of M = N, using the follow-
ing sublemma. If 2 % ¥, then ¢ ([y/N]M)= [y/@o( N)]po(M). The proof of
the sublemma proceeds by induction on the structure of M. m

2.14. LevvA. Let M, N be simple and o ¢ FV(M). If int Mz >N,
then WM’ simple [z ¢ BV (M), Iyt M= M and dnt M'e > N1

Proof. Because Ay F Mz > N we have by 2.9 ii) and i) that

UN, ... No b Mo =N, > .2, Ne= V.

If all Ni, i<k are of the form Pz with & ¢FV(P), then we are done,
Otherwise let N,,, be the first term not of the form Pz with ¢ FV(P).
Then N; is of the form (i2- N})z. By a change of bound variable this is
(Mz-[2jz] N)o = (Aw-N,,,)o. Hence

M b Mo > (Ao-Nyy)e > (- N)o > N.

So we can take M’ = iz-N. m
2.15. LeMMA. Suppose M is a A-term, then

[in+ MA =TI, ZsubL and Z simple]= 2 « 5 (M) .

Proof. Without loss of generality we may assume that if .é’ subL,
then A’ = A. Let & not ocour in the proof of MA > L. By 2.13 it follows
that Ay F Mw > @5(L). Hence by 2.14 there exists a A-term M’ such that
MM =M and in b M's =, g(L). Hence iy M'A >, [m/fl_;zpz(L) =L.
By distinguishing the different possibilities for the proof of M'A >, L we
can conclude that Zsub M’, hence Z e F(M). W

2‘
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2.16. DEFINITION.
i) A term M is called an Q,-term if M is of the form QM.
ii) A subterm occurrence Z of M is called non-Q, in I it Z hag
no R, subterm and Z is not a subterm of an £, subterm of 7.
iii) A term U is called a hereditarily non -8, universal generator it T ig
a closed u.g. and for U’ with Ay F U = U’, there is a subterm oceurrence 7
of U’ which is a n.g. and which occurs non-0, in T".
Examere. Only the second occurrence of Z in the term w(Q2(MZ))Z
is non-0, (if Z does not have an £, subterm). ‘
2.17. Levva. If U is @ hereditarily non-9Q, w.g. and ¢f In b U > T,
then U’ is a u.g. which is not an Q,-term.
Proof. Tmmediate. m

2.18. LeMMA. There ewists a closed hereditarily
generator.

Proof. Let B be as in 2.2. Define F = @l I (wII)2, where B’ ig
a normal form sueh that A+ BT > B (see [4], 2.12). Then F is in normal
form and 2+ [/n]F > Hin, since A'FnlIl > 1. Let 7+ be the normal form
of o, i.e. ibe-b(wbe). Define L

B

A = 7bw- bb0 (bbFT) F

non-0, universa]

and - B = A4
Then
At Bn > BO(Bn+1)(Hn) .

Hence, as in 2.2, B0 is a universal generator. We claim that

- it is heredi-
tarily non-Q,. Define

P;kQéﬂNl...Nkin FP=N> ..., N=Q.

Suppose now An FBO > U. Then for some k, BO > U. Since 4 is in normal
form, U is of the form BO, (iz-U'PQ)0: or U'PQ, where B0>,U' for
some 7 < %. - h

Hence it follows by induction on % that U has
2 u.g. and non-Q, in U. n
2.19. ‘DEFmITIOZ.N. A closed term Z is called variable like if 5 = 2T,
‘where U is a hereditarily non-£, universal generator.
. 132,.20. DEMITION., Let L,L" be A-terms such that I ig simple and
2I7’. Then I and I are equal except for the underlining and we can
give the following informa] definitions:
. 1} If 7' is a subterm occurrence of I', then there iy a unique sub-
erm, II(:ceu.ITenee Z of I which corresponds to Z', such that Z ~ 7'
stead of giving a formal definition we ; i i
) illustrate this concept with
an example: Let [ = S(ES)(8KEK) and I’ = S(ES)(SKK), then L~I',

8 corres .
(8EK). ponds to 8, KS eorresponds to K8 and (SEK) corresponds to

a subtierm which ig

)
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ii) Let L' be another A-term with I ~L”. Then we say that L'
TLas more ime than L', notation L' CL", if for all subterm oceurrences Z
of I’ there is a subterm occurrence Z'* of I" such that Z’ sub Z’ where Z',
7' are the subterm occurrences of I corresponding to Z'y 7" respectively,

For example, let L = S(KS)(SKK) then I/ C L' where I’ is ag in
the above example.

ili) Let Z be a subterm occurrence of L. Z is exactly underlined in I
it Z is a subterm occurrence of L’ and Z corresponds to Z.

ﬁiv) Let Z be a subterm occurrence of L. Z is underlined i L it Z is
g subterm of Z; (sub.L) which is exactly underlined in I/.

For instance the first occurrence of K in I of the above example
is underlined in L.

v) Let Z be a subterm occurrence of L. Z has some line in I’ if Z is
nnderlined in L’ or if there is a subterm occurrence Z, of Z which is exactly
underlined. in I'.

For instance SKK sub.L has some line in I’ in the above example.

2.21. LemmA. Let L, L', L" be A-terms such that L 4s simple and
L'~L~L". ‘

) If I/ CL" and L'"CL', then L' = L".

ii) If for all subterm occurrences Z of L', the corresponding subterm
oceurrence Z of L is underlined in L', then I' CL".

iii) If Z is a subterm ocourrence of I such that the corresponding sub-
term ocourrence %' of I’ is mot simple, then Z has some line in I,

Proof. Immediate. m

2.22. LmwmA. Let L, L’ be A-terms such that L is simpie and L ~ L.
Let 5 be a variable like A-term.

Suppose that

i) If Z is a subterm occurrence of L which is exactly underlined in I,
then Z is am ,-term.

i) If Z is a subterm occurrence of L which is a w.g., then Z has some
line in L.

Suppose further that An v 2 = 5 and 5 is a subterm occurrence of L.
Then E' is underlined in L'.

Proof. Z is variable like, hence 5 = 2,U, where U is heredita,r_i}.y
non-£2, universal generator. Since 2, is of order 0 it follows from 2.5 iii)
that 5’ = Q,U’, where Ay F U > U’. Since U is a hereditarily non-2,
u.g. there is a subterm occurrence Z of U’ which is a u.g. and a non-0,
subterm occurrence of U’ (see Fig. 2). By our assumption ii), Z has some
line in I'. The possibility that some subterm occurrence Z; of Z is exactly
underlined in I’ is excluded, since by i) then Z; would be an £,-term
where as Z is a non-£, subterm occurrence of L. Therefore Z is underlined
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in I’ i.e. there is a subterm occurrence Z, of L which corresponds to
Z,subZ’ and such that ZsubZ,. We claim that 2,7 subZ, (see TFig. 2).

Uy —

| |
L: e (2 ZL))
g,

Fig. 2

First note that, since Z,subL', it follows from i) that Z, is an
0, term. Hence since Z is a non-£, subterm occurrence of U, Z, is not
a subterm of U'. Therefore U’ is a proper subterm of Z,, since subterms
are either disjoint or comparable with vespect to the relation sub.

Hence indeed £2,U'sub Z,. Therefore 5’ = 2,U’ ig underlined in I, g

2.23. TheorEM. Let M, N be A-terms which are not universal gener-
ators and let 5 be o variable like A-term. If An + ME = NE, then

MmtMy=Ng for xz¢FV(MN).

Prqof, It follows from the Church-Rosser theorem for Ay and the
assumption An b ME = NZ, that there exists a term I such that

MFME>=T and MENE=TL.

Since F = .QEU it follows from 2.4 and 2.5 iv) that & is of order 0. Hence
from 2.11 it follows that there are terms I/, L such that m+FME>T,
MtNE>L" and I’ ~L~T" (see Fig. 3) - B

ME NE
= Z < =
ME "
NLONS
LI LH
TFig. 3

g::)vvvv 1:}? El;m?: ;;hat L' =I". In order to prove this, it is sufficient to
at L' CL", since by symmetry argument t "cr
honmo et 1,_/ nce | v . ent then algo L' CI' and
. dVYe VV’l;]l show thai:: for every subterm occurrence Z/ of I, Z' is under-
The in L, where Z' ig th.(.s subterm occurrence of L—éorresponding to Z'.
T ;3) tlt follows by 2.21 ii) that L' C L, Suppose therefore that Z' is
erm. occurrence of L', By 2.10 it follows that mFE=2.
We Hverlf_y the conditions i) and ii) of 2.22 for L,L".
1) I Z is a subterm oceurrence of I which is exactly underlined

in L”, then Z sub I”, h i .
an .Q;-term,_ » hence it follows by 2.10 that Ay F 5 > Z, hence 7Z is
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ii) If Z is a subterm occurrence of I which is a n.g. then Z ¢ F(I)
(otherwise N would be a u.g.). Hence by 2.15 Z is not the corresponding
gubterm occurrence of 2 simple subterm of L. Therefore Z has some
line in L', by 2.21 iii).

Now it follows from 2.22 that Z’ is underlined in L”. Hence indeed
=1

Let » be & variable not occurring in the reductions represented in Fig. 3.
Then it follows from 2.13 that

Jg b Mo = gao(M) = po(L') and IintNz= 92(N) > o L") .

Hence in b Mz = Nz, since gu(L') = (L"), &
By the same method we have

9.24. COROLLARY. Let M, N be A-terms which are not u.g.’s and let
£ be a variable like A-term. Let © ¢ BV (MN), then

AFME=NE = At Mex=DNz.

2.25. TEEOREM. Let M, N be A-terms which are not universal gener-
ators. Then the w-rule for M and N is derivable in the A-caloulus with es-
tenstonality (*). )

Proof. If Iyt MZ = NZ for all closed Z, then Ayt ME= NE for
variable like terms =. Therefore by 2.23 and extensionality in F M = N. &

2.26. DrriNITION. Let Ay by M = N mean that M = N is provable
in Az in less then & steps.

Parikh’s w-rule is (cf. [9]):

If Gk e oVZ closed An by MZ = NZ, then Int M =N.

2.27. COROLLARY. Parikh’s w-rule is derivable for arbitrary terms.

Proof. Let VZ closed Ay 'ty MZ = NZ. Take in the proof of 2.23
E = Q,U such that if 2,U ¢ F (M) or 2,U e (N), the necessary reduction
takes more then % steps.

§ 3. The w-rule is not generally valid. Tn. this section a counter example
to the w-rule due to Plotkin will be given. Two terms 5 and € will be
defined such that in k5% = @Z for all closed Z, but not iy k5= 6.
It follows by the result of § 2, that the terms Z and @ have to be com-
plicated.

3.1. Lemma (Double fixed pointtheorem). VA, B P, Qi F APQ= P
and A+ BPQ = Q.

1) Added in proof. In correspondence Mr, Plotkin pointed out, using two
variable like terms, that the w-rule is valid for M and N assuming only that at
least one of them is mnot a universal generator.
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"Proof. Let FP be the fixed point operator, ie. VIMAF W (TP
= FPM. Define

P, =FP(IP-APQ), - Qo
Then

= FP(1Q-BPyQ) and P,=pP

Qo*

AFAPQy=P, and iFBPyQy=0Q,.

Alternative proof. Let Awy-[#,y] be a pair function with inverses
[z, ¥])o = o and ([, 4], =¥, [4], 2.8. Define

X = TP [A(@)y(2), B@)(@)]) .

Then we can get P = (X), and @ = (X),. m

3.2. Lemma. There exist terms T and G such that
3.2.1. 4+ Fovw = Fu|F (a") (G (27))wo|(Bz) and
3.2.2. A+ Go=F(a")\G(s"))}{B(s7)) (),

where B and Jz-xt are as in 2.2. ‘
Proof. Define

A = Afgwow ;fx[f(a:““)(g(m*))wv] (B)
and .

© B = ifgof(at)g(a)) (B (") (g2) -
Then apply 3.1. m 7 ‘
3.3. DEFINITION. £ = F0(60), 6 = Az 5(H0).
3.4. Leava, VmVn A FFn(Gn) (Bn) = Fn(Gn) (Bn--m)
Proof. Induction on m. If m = 0, we are done. Now we show the
result for m+1: - :
Ak Fn(Gn)(Bn) = Fa[Fn+1(Gn+1)(Bn+1)(6)](Bn) by 3.2.2. ,
= Fp[Fn+1(Gn+1)(Bn41-+ m)(Gn)](En) by the induc-
tion hypothesis
=Tn(Gn)(Bn+m-1) by 3.2.1. m
3.5. COROLLARY. Vo 4k E(H0) = £ (Hn).
8.6. Tamorem (Plotkin). The w-rule is not valid for 5 and O.
Proof. Let Z be a closed term. Then for
therefore 1+ 57 = 5(&n) = E(H0) = OZ. Hence 1. 57 — 0Z for all
closed Z. Tt is not difficult to show that My~ B = @. The idea is that in

a 1:aduction Zw cannot get rid of the free variable w, whereas iy Ow
= Z(E0). See for details [10]. m

some n, A+ Z = Hn and
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