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Stable sets, a characterization of g,-models
of full second order arithmetic and some related facts*

by
W. Marek (Warszawa)

Abstract. We study here stable sets i.e. transitive sets with %, - reflection property.
As a result we get the following characterization of f,-models of A,: M is a f5-model
for A, iff there is stable transitive model ¥ of ZFC- such that M = N A ). We
get a generalization of both theorems of Kripke and Platek on stability of T, and
Lévy on stability of HC.

Zbierski (in [16]) gives the following characterization of §-models
for full second order arithmetic 4, (i.e. arithmetic with the scheme of
choice):

M is a f-model of Ay iff M = N np(w) for some transitive model N
of ZFC~.

We give similar characterization of f,-models of 4,. The characteriz-
ation is especially mnice in case of f§,-models. Namely we prove:

M is a fy-model of A, iff M = N @ (w) for some transitive model N
of ZFC™ such that N <, V.

The proof of these and related facts (for instance we prove that the
sets Thp(w)) and Th(HC) are recursively isomorphic) takes first two
paragraphs of the paper.

In the third paragraph we prove theorem of Kripke and Platek
about stability of 6,. We generalize this theorem getting result generalizing
both aforenamed theorem and theorem of Lévy.

Paragraph four is devoted to the study of levels of constructible
hierarchy from the point of definability. As shown in [10] pointwise
definability of levels is related with gaps, one of important means while
studying fine structure of constructible universe. 'We show that wide
class of stable ordinals gives pointwise definable levels. We finally prove
a result complementary to the one of Friedman, Jensen and Saks on
characterization of countable admissible ordinals as wil for A C .

* Part of the results was obtained in the summer of 1972 when the author worked
at S.UN.Y. at Buffalo. We express our gratitude for the Department of Mathematics
of that University.
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Mogt of the paper is devoted to study of the properties of X, -for-
mulas. We find this fivst non-constructive but yet fairly regular clags
of formulas interesting and think that studies of their properties are
important. .

We wish o express our gratitude to professor Mostowski and Pawet
Zbierski whose efforts in explaining us the method of trees led us to these
results. The comments by Marian Srebrny and Krzysztof Apt helped ug
to smooth some details. ) .

0. Preliminaries. Throughout the paper we accept standard set-
theoretic notation. V =L denotes the Godel’s axiom of constructibility,
and by analytical form of the axiom of constructibility we mean a I7}
formula which can be found in Addison [1]. V = HC denotes the state-
ment “everything is countable”.

An ordinal « is called 4% if there is a A% 5 et of natural numbers 4,
such that {(w, y>: 2°(2y+1) e A} = a.

8, is the first ordinal which is not 47,.

ZRC~ is a theory formulated in the language of set theory containing

all the axioms of ZF with the exception of the power set axiom but with

the following seheme of choice — replacement added:
(@)u(B2) D (2, 2)-> (Bf) (Func(f) & Df = y & (@ Po, f(2))) -

A, denotes full second order arithmetic with the scheme of choice,
i.e. second order arithmetic with the scheme

(@) (BY)®(z, Y)—EY)(@)®(z, Y),
D= {sCw: xis 4}.

If M is a transitive set then M is said to have the X -reflection property
iff for every JX,-formula &(x,p), where p is a sequence of parameters
from M,

(Ba)® (@, p)—M F (Ba)P[p],

HC = {#: TC(2) < w}.

An ordinal « is called stable iff I, has the X-reflection property.

Tf M, N are transitive sets, then M <, N means that M CN and
for every X,-formula @ of the language of set theory and every sequence
of parameters p from M, M E O[ple N ED[p].

- I X, Y are two subfamilies of p(w), then X <, ¥ if for every X% -for-
mula @ of the language of second order arithmetic and every sequence
of parameters p from X, X ¢ &[ple Y & O[p).

If X is a model of full second order arithmetic and X <} p(o),
then X is called a By-model.
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§ 1. Some results to be used in further parts.

The results of this paper are strongly based on the methods of
Zbierski [16] and Marek [9], and also Leeds and Putnam [7], and Marek
and Srebrny [10].

A) Results of Zbierski [16]. A tree is a function A C o X o such thab

(@) (TYCDA&GT £0= T { 4x7), )

(b) (Ba)(@)p4(Bn) (4 o ... o A(2) = a),

(¢) 4 has no automorphisms.

. Since “being a tree” is a IT}-formula it is (by the results of Mostow-
ski [12]) absolute with respect to S-models. One can define relations
Eps and Eq between trees in such a way that Eps is a well-founded re-
lation and Eq is a congruence relation with respect to Eps. If we consider
the family of trees of a f-model M, divide it by Eq and collapse it (this
is possible because the axiom of extensionality is true among trees), we
get a transitive model N of ZFC™+V = HC such that M = N ~ p(w).
The relations Hq and Eps are both XI.

The relation between a tree and the set it codes is definable as fol-
lows. Let X be a tree, ¢ e DX. Then |ax = {|b]x: X (b) = a} and ||X||
= |MAXx|x, where MAX ¥ is the maximal element of X (whose existence
is guaranted by (b) above). We describe the fact | X[ = # as Code(X, z).
One can prove that this relation is absolute with respect to transitive
models of ZFC™. ’

Let us denote by M a model of ZFC™+V = HC arising from M by
the procedure described above. As we noted, M = M ~ @ (). The ana-
lytical form of the axiom of construetibility is true in M iff V=1 is
true in M.

B) Results of Leeds and Putnam [7] and Marek and Srebrny [10]. o is
called a gap ordinal iff (L,p,—L,) N p(w) =O.

a i called the beginning of a gap iff o is a gap ordinal but

(B)alLa ™ (@) # Ly~ pa)) -

Putnam and Leeds prove that if a is a gap ordinal then I, » p(w) is
a f-model of 4,.

Marek and Srebrny prove that « is the beginning of a gap iff I, is
a model of ZFC™ 4V = HC.

They also prove that in this case I, = L, n p(w)-

C) Result of Shoenfield [13]. Tf A C w, then A eDj iff there is a 4;
ordinal « such that 4 eI, =L

D) Result of Lévy [8]. HC has the property of X -reflection (which
(informally) may be written as HC <, V).

6*
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§ 2. Translation procedure, p,-models. It is clear that (w)= HC,
we now deseribe a uniform procedure that allows us to translate set-
theoretic formulas into analytical ones.

We use the following lemma from Marek [9].

TEvmA 2.1, Let X, Y be the trees. Then
IX]| e | X« XEps ¥,
Xl =Tl XBqY,

i.e. Code(X, #) & Code(Y, y)~>[(XBpsY)w zey) & (XBqY o 2 =y)].

Now let @ be a 4, (i.e. bounded) formula of the language of set theory
with free variables V,— V. We will construct two formulas of the language
of second order arithmetic, @ and ®F, such that:

(a) &F is 23,

(b) ®f is I,

(c) Ayt ¢¥'*‘*¢§’

. (Q) if @y, ..., ave elements of HC, & = || Xy, ..., @s = [ Xy then
HC E By, ..oy 2] (@) F B[ X, oy Xi] -

The construction: For atomic formulas the construction is clear
since both Eps and Eq are Z! hence X} and II3.

For boolean connectives the construction is clear. For restricted
quantifiers the construction of &f and &7 proceeds as follows. Let &
= (Bx),¥ and ¥T and YT be given.

The formulas ®F and & are produced from them by eliminating ¥,

" from the formula: ‘

(Ba)(Y (a) = MAXy & ¥7(Ya, Yy, ...))

(where Y, is the tree arising from ¥ by taking a as a maximal element
and “cutting out” all elements bigger or incomparable with a in the
smallest transitive relation containing Y).

The fact that the interpretation of A,-formulas of set theory leads
to provably — 4:-formulas of second order arithmetic matches two facts:
provably — 43 -formulas are absolute with respect to the A-models of
A, (1), and AZFC_formulas are absolute with respect to transitive models
of ZFC~.

Since 4,-formulas are interpretable ag X formulag therefore also
2, -formulas are interpretable this way.

Let &% be appropriate interpretation. Since it is X} it is absolute
with respect to f,-models.

(*) Added in proof. Using the fact that both Eps and Eq are not only Z} but
alto IT7 we may find ¢4} (for ¢ ¢ 4,). This however does not improve of for ¢ e X
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Levma T. Let M be a f-model of Ay, @ a formula of set theory, T the
interpretation of @ as described above. Assume I k Code[X,, z,], ...
woey M E Code[ X, mx]. Then

k0T Xy, oo, Xl I & Bl ..., o] -

Proof. Direct from the construction.

THEOREM 2.2. Assume M is a fy-model. Then M has the property of
Z, -reflection.

Proof. Assume (E2)®(w,a, .., @), where & is X, formula and
@y, ey Gn € M. Then in particular ay, ..., ay ¢ HC. By Levy’s result (cf. 1.D),
HCE (Bz)P(2y @y ooy ta). Lot - ap = [l 4], ..., an = lall, Agy., dne M.

Then (o) F (BX)PT[X, Ay, ..., 4,], and since &7 is 3! and M is
a fy-model, X can be found in M. So # = || X|| ¢ M, and byd Lemma T,
Mk (BE) (T, Gy vy On).

The same reasoning to the following theorem.

THEOREM 2.3. If a is the beginning of a gap and L, 0 p(w) is a By-model,
then a is stable.

LeMMA 2.4. Let @ be a IT; - formula. Tet O be the usual interpretation
of the formula of second order arithmetic in set theory. Then there is a A,-for-
mula @, such that ZFC™ F Ot &, .

Proof. Mostowski [10] shows how to transform a formula & into
apother formula ¥ equivalent to it, but of the form “something is a well-
ordering”. But the last formula is A4%7C,

Ag a corollary we get:

LevmA F. Let @ be a Zj-formula. Then there is a Zi-formula @ :
such that

ZFC™ + 9t o 0, .

THEOREM 2.5. Assume M is a transitive model of ZEC™ with the Z,-re-
flection property. Then M ~ p(w) is a fy-model.

Proof. Assume @ () F ®[4;, ..., An], where D is a Zﬁ—f.ormula. Then
HOE O [A,, ..., Ay), where @, is the translation of @ from Lemma F.
Thus @[y, ..., 4n], and so M F &[4y, .., 4x]. Therefore M
EOT[Ay, ..., An], and 50 M ~ p(0) F P[4y, ...y An].

THROREM 2.6. If a is stable and the beginning of a gap, then L, n P (o)
8 a By-model.

COROLLARY 2.7. Let M be a f-model. Then M is a fBy-model iff IT has
the property of 2 -reflection. , _

COROLLARY 2.8. Let « be the beginning of a gap. Then o is stable iff
L, plw) is a py-model.
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The assumption in Corollary 2.8 that a is the beginning of a gap i
necessary since non-gap ordinals may be stable (but do not give a model
of ZFC~ then). :

For instance, §, is stable (as we will show later) but is not a gap
ordinal (since L, ~ p(w)= D; is not a model of A, as shown by Mo-
stowski [12]).

COROLIARY 2.9. There is a stable gap ordinal below .

Proof. Enderton and Friedman [3] prove that there is a ;- model I
with height below &,. Its constructible sets IM also form a f,-model,
The height of L is less than or equal to the height of M, so is also less
than &, and by Corollary 2.8 it is stable gap ordinal. :

We give generalization which are proved exactly along the lines
of the proofs above.

THEEOREM 2.10. Let n be o natural number =1. Then M is a Brn-model
of Ay iff M <, ,HC& M = ZFC". :

THEOREM 2.11. M < p(w) iff M < HC.

As the result of our construction we get the following theorems:

TrroREM 2.12. If n > 1 then the set of Zn.-sentences true in M is
recursively isomorphic to the set of X, -sentences true in M.

THEOREM 2.13. The set of sentences true in M is recursively isomorphic
to the set of sentences true in M. ‘

Proof. We had shown that each of them is 1-1 reducible fo the
another, and then we wuse Myhill recursive isomorphism theorem
(A<, B&B<; A—~A ~ B).

rec

COROLLARY 2.14. If n =1 then the set of Xy sentences true in HC is
recursively isomorphic to the set of X, sentences true in p(w).

COROLLARY 2.15. The set of sentences true in HOC 4s recursively iso-
morphic to the set of sentences true in o (w).

§ 3. A proof of the theorem of Kripke and Platek.
TrarorEM (Kripke-Platek) 3.1. 8, ¢s the least stable ordinal.
Lemma L. weL, iff o=|4] for some A eDj.

Proof. < Assume # = ||4]| for some A e D;. By the Addison-Kondo
basis theorem, there is a set' B « D} such that B is a code for a countable
family M Cp(w), M is a f-model of second order arithmetic with the
axiom of constructibility, and 4 ¢ M. Clearly all elements of M belong
to Di. The height of M, i.e. the first ordinal not represented in M, is A%
and so is a Aj-ordinal. Since M is a f-model, M is a transitive model
of ZFC™+V = L. 8o M = I, where « is the height of M. Clearly o e ;.
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We show now tha:t 0, is a limit of gap ordinals. Assume it is false.
‘Then, since d, is a limit number, there is & ¢ 8, such that there is no gap
ordinal between & and §,. By the definition

‘ (Lsy—Lg) np(w) =D .

Let C e (Ls,—Lg) np(w). Then CeDj (by Shoenfield’s result), and
by the above reasoning we can find a 4} set D such that D codes a B-
model ¥ of second order arithmetic and the axiom of comstructibility
and such that (e N. N =1L, for some g €d,, and since N ~ p(w) =N,
0 ¢L,. But since L, is a model of ZFC™+V = HC, o is the beginning
of a gap, which contradicts the choice of &.

Since &, is a limit of gap ordinals, therefore if A eI, there is the
beginning of a gap £ e §, such that 4 ¢ L,. But then by (1.B) I, is a model
of ZFC™, so Lk (By)Code(y, X)[4], and thus {4]|eL,. But L,C I,
which finishes half of the proetf.

— Agsume & ¢ Ly, Since §, is a limit of gap ordinals, e L, for some o
which is the beginning of a gap. But by (0.B) L, ZFC™+V = HC.

Now ZFC™ + (V= HO« (2)(EY)Code(z, ¥)), so there is a tree
in I, coding (in IL,) . Since this last relation is absolute we conclude
that there is a tree in L, » p(w) coding a.

Since I, n p(w) C Ly, ~ p(w) = D}, we get the proof of —.

Proof of the Kripke-Platek Theorem (3.1). Assume

(B)D (%, @y <oy O), WheTe Gy, .,y @y €Ly, .
Then by Lévy’s result (1.D) HC k (Ba)P[ay, ..., au]. So there is a tree X
and trees A, .., As such that p(w)k ®T[X, Ay, ..., 4a], OF is Z;. By
Lemma L we can choose Ay, .., 4, in D}. By the Novikoff-Addison-
Kondo basic theorem there is X e Di4t-+4n guch that
@ () F OUTX, Ay, oy Al

Since A, ..., A, are elements of D, so is X. Applying our lemma once
more (in the opposite direction) we find @ e L,, such that @ (z, a, ..., an).
But this clearly is enough.

In order to prove that &, is the least stable ordinal we show the
following. :

Lemya 3.2. If o 4s stable ordinal then all ZL sets belong to Ly, .

Proof. Let 4 C w be Zi. Let @ be a X7 definition of A. Let OF be
natural set-theoretical version of @ (X, as shown above). We have:

n e Aep(o) F B0l HO F 0 [n]o L, F $Hn] .

Thus 4 eL,.,. Now, since Iy, np(w)= D;, the first complete X; set
oceurs in Ly, 80 &, is the least stable ordinal. Tt may be shown (as noted
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by Krzysztoprt) that the definition of the complete set needs exactly

two unbounded quantifiers.
The proof of the theorem of Kripke and Platek relativizes, in fact,

using the same reasoning we get.

TarorEM 3.1. If A ep(w) nL then 04 is a stable ordinal.

It is obvious that the enumeration of consecutive stable ordinaly
is continuous (by contrast with the consecutive enumeration of admis-
sible ordinals).

THEOREM 3.3 (Srebrny). (a) “Newt” stable ordinal a<< oF is of the
form 62 for some A ep(w) n L, A may be found a-finite.

(b) If a is limit in the consecutive enumeration of stable ordimals then
a is mot of the form oF for A ep(w)n L.

The proof of 3.3 may be found in [10] and [15].

By contrast H. Friedman [4] had shown that under suitable con-
ditions (w, inaccessible in L) every countable stable ordinal is of form §#
for some A ¢ p(w). Let us mention that he conjectured, that all stable
ordinals are of the form 82 for some 4 ¢ p (o) is equivalent to o (w)—L # @.

Let us mention some facts concerning notion of stability.

Fact 3.4. The notion of stability is not absolute for transitive models
for KP (or other “reasonable” set theory (Like ZY¥~, ZF ete.) though the
notion of admissibility is. :

Fact 3.5. (a) If p(w) C L then for every n >1, 4 € p(w) 52 is stable,
non gap ordinal:

(b) Let 624 De first ordinal not 454 in L. Then &7 is stable, non
gap ordinal.

(¢) If p(w)CL then = {J& is stable gap.

. - new
(d) 6F = | 6L is stable gap.

new

Fact 3.6. If p(w) CL then Lemma L holds with d, and D} changed
for 8, and D), for n >1.

We had shown that I, =L, ~p(w). This sort of property
(4 = A~ p{w) holds for wide class of transitive struetures.

Propetty “To be a tree” is JI* in second order arithmetic and
similarly J7X®. Yet this property is not absolute with respect to transitive
admissible sets. In particular melx has elements 4 with this property
(w$™ is recursive w,); using Gandy’s recursive ordering without hyper-
arithmetic descending sequence (but not being wellordering) it is easy
to construct set of natural numbers satisfying inside of L,cx formula
“T'o be a tree” but not being a tree. Yet, using settheoretical — and not
arithmetical definition of the tree we can define trees ingide of admis-
sible set. Let us change in the definition of the tree condition (a) (well-
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foundness) for the following. There is a norm into an ordinal (i.e. a function
f: DX—>a 8t X(y) = 2~f(y)  f(2). The latter condition is IEP.
Levya 3.7. If @ is transitive admissible sel, On ng=a, Xew is
o tree then there is a norm for X in .
Proof. It is enough to prove that rank function for X, #k.{-) is in X.
Define
p(n) = {n e DX U RX: (m)x_, 4y (BF),(m € p(B))) -

Since X is a tree (i.e. is wellfounded) therefore there must be § such that
Ug)=DX v RX.
§<p
We show feoa. Assume aC 8. Then there must be ¢ ¢ DX U RX
such that rkx(a)=a (ie. ae@(a)— {Jg(f)). Bub then
g

€n

(0)x-1 (BB (b € 9 (B)) -

By Z-collection we have y < o such that (b)ga.ulb € @(¥)). L.e. a € p(y+1).
But ¢ is limit therefore y+41 << o which contradicts our assumption.
Notice that this proof resembles analogous proofs like: If (w,<<) is
a wellordering belonging to # then (X,<»ea and similarity function
is in . ’
Using Lemma 3.7 we get:

Lemma 3.8. If o F KP+V = HC, x transitive, X e % is o iree, then

X € 2.

Proof. Using rank functions on X ‘we define inductively [jn|x
= {mllx: X (m) = n}.
THEOREM 3.9. If 2 is countable transitive admissible sei,

ek V=HC, then os=0np(w)

Proof. Lemma 3.7 shows & ©(w) C . Now let y e z. Then TC(y) e,

#FTC(y) = ». Thus we get a copy of TO(y) on w. The transformation
of this copy into a tree is obvious.

Theorem 3.9 generalizes for admissible sets in which strong forms
of the axiom of choice holds; namely in which every set is equipollent
with some ordinal, only the definition of the tree must be changed to
allow D(X)C On. : 4

We may use Theorem 3.9 as alternative of lemma in. the proof of
the theorem of Kripke and Platek. However this would need additional
lemma showing absoluteness of the notion of tree with respect to L.

Let us introduce the following abbreviations; if class o sabisties
(@, ey <, KV, e> then @ is called stable. If (z,ex < <L, e) then @ is
called strongly stable. In this way Levy’s theorem ([8], Thm 36) states
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that H, (i.e. set of all © such that TC(x) < %) is stable. Lévy-Shoenfield
theorem ([8], Thm 43) states that Lz is both stable and strongly stable,

Ag pointed to us by G. Sacks stability of L implies V = L. Indeed
assume that there is nonconstruetible set 2. We may assume 2 C I, for
some «. Then the statement (Ez) (#C L, & Nwely,) is true X state-
ment which is false in L.

Lieata 3.10. (a) Assume #CL 5, ® transitive. Then x is strongly
stable iff x is stable. ! :

() If % is stable set, o CHO then (», e <y HGC, e and so {(m,e)
V= HC.

Proof. (a) follows from Lévy-Shoenfield theorem.

(b) is obvious from general model-theoretic reasons.

Levma 3.11. (a) If AC then T a;l[A] 48 countable transitive stable set.

(b) If @ is countable, tramsitive, stable set and A C w, A ew, then
L,44]Ca.

Proof. (a) Using Shoenfield’s lemma, relativized form, we get D4
=1 .sf[A]' By 3.10 (a) me[ 4 < HC. Relativized version of Kripke-Platek
theorem gives I 5;4[A] <3 me[ AL

(b) All 434 ordinals are X definable with parameter 4 and so they.

-are in z. Since # F KP so L[4]C a.
2
THEEOREM 3.12. If @ is countable stable transitive set then

o= |J Lu4A].
AexnP@)
Proof. Clearly, in view of 3.11 (b) RC L. Let y ¢ z. Then TC(y) e
and is countable in 2 (using 3.10. (b)). From the enumeration of TC(y)
we get A ex such thabt [A]| = y. But ||A] e L a[A] which shows LCR.

THEOREM 3.13. (Basis property for hereditarily countable sets). Let
D(z,y) be X, formula, y ¢ HO and let A be any tree such that y = |4}, If
(Ba)D (2, y) then (Em)Ld:lM]@(w, -

Proof. Assume (Bz)®(s,y). Then HC k (Bz)P(#, §), by translation
lemma p(w) k (BX)97(X, 4). By basis theorem there iy X ¢ Dy satis-
fying @. Thus || X|| L azA[.A.].

Since &2 is limit it is clear that ||X|| from the proof of 3.13 belongs
to some L,[A] for some £ € 824, Uniform evaluation of such a & is possible.
We give here only sketch of the proof, since the details are beyond of
the limits of this paper. Let @ be X, formula, 4 « HC, 4 = jl4].

Consider ¢7. We may write 7 as (BX)¥(X, A) with ¥ being If
formula. Let o be height of the sieve connected with ¥ and A (cf. [14],
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pp. 180 and 188). Let a' be first limit of admissibles bigger then « (this '
is to ensure that there are admissibles between a and o! and that o has
B-property i.e. preserves wellfoundness). Then a tree X being a witness
for ¥ may be found in L,[A]. Using 3.8 we get ||X| in L[4]. (This idea
comes from conversation with D. Guaspari). Let us note that the Theo-
rem 3.13 may be expressed as follows: Every stable countable transitive
get is d termined by its continuum. Moreover the continuum of it is
pasis feor 2y formulas with the parameters from it.

§ 4. Pointwise definability of L, for stable a.

DeriNiTioN 4.1. (a) Let o C . The set # is pointwise definable ‘from @
iff Def®s = o i.e. every element of & is (implicitely) definable in (z, ¢»
using parameters from a.

(b) Let aC . The set & is Z}-pointwise definable iff every element
of z is implicitely definable by X, formula with parameters from a.

(¢) In case a= @ we say pointwise definable and X, pointwise definable.

Lemma 4.2, L, is Z,-pointwise definable, and consequently it is
pointwise definable.

Proof. Using ZX;-uniformization of Jemsen [6] we find that the
set B of all X, implicitely definable elements forms 1-elementary sub-
gystem of Ly, Since Ly, k 'V = HC, the set B is transitive (see Marek and
Srebrny [11]). Thus B is L, for some & < d,. But then & is stable. Since
5, is least stable we get £ = d,. Since however B is X, -pointwise de-
finable we get the desired result.

We informally use V in our further considerations.

Lemma 4.3 (Barwise). L, consists exactly of all Xy -implicitely definable
elements of V. -

Proof. Clearly X, implicitely definable elements of V are constructibly
hereditarily countable and so, by stability of d, they are in L,,. This shows
inclusion from the right hand side to the left hand side. If ¢ is a 2, -defi-
nition in L, then it is also %, - definition in V. For assume g(a}, p(d),
a5 b. Then (Ba)(Hy)(w  y & () &¢(y)) is frue and Z;. Thus it holds
in I, contradicting the fact that ¢ is a definition. Now conclusion follows
from 4.2.

Let o, be consecutive enumeration of stable ordinals. Using the
same reasoning as in 4.3 we got.

TEEoREM 4.4. (Barwise). (a) L, 18 Zfaa“{f'oa’~pointwise definable.

(b)Y Ly, consists exactly of seis Zf"’au{L”a} definable in V.

LmMms. 4.5. Among constructible levels, L, is biggest Z;-pointwise
definable. :

Proof. Assume I, is X -pointwise definable, « > 0,. Bvery X,-defi-
nition in I, is a definition in V and so we use reasoning of £.3.
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TEMMA 4.6 (*). Let O(-) be 2y formula such that D(6,) is true ang
@ (5)—O0rd (z). Then 8= {a: aedy &D(a)}. -

Proof. Let 8 ¢8,. Then (Ba)(f e & P(x)) is true. Hence it is true
in Ty, Thus there is o such that e aed, and P(a).

CoROLLARY 4.7. 8, is a supremum of ordinals o such that L, is X -poing-
wise definable.

Proof. Check that (Ez)(z=L,&x is \lepointwise definable) is
2, -property.

Let us consider now problem of pointwise definability of I, for

stable a.
THEOREM 4.8. L, is pointwise definable for every o e wf.

Proof. By Srebrny’s result 3.2 o,,, is of the form & for some g, e
finite A. Therefore it is not a gap ordinal and so, by results of [10] L, is
pointwise definable.

Yet much wider class of stable ordinals given. pointwise definable
congtructible levels.

Levma 4.9. If L, < Ly and a < then L, is o model of ZEC™.

Proof. Tt is clear that it is enough to prove replacement in L,. But
the image of zeL, under L, definable function belongs to I, ., CIL,.
So it must belong to L,.

Note close analogy of 4.9 and the following theorem of Montague
and Vaught: If B, < B; and acf then FE, is a model of ZF.

Levnea 4.10. If a 4s stable but less then first stable gap then I, is point-
wise definable.

Proof. If L, is not pointwise definable then Def.L, < I, and DefI,
#L,. But o is stable and so L FV = HC. By [11] DefL, is transitive
and so there is §C a such that Def L, = L,. Since I, is not pointwise
definable but Def L, is, we have £ ¢ a. But then both ¢ and o must be
gaps which contradicts assumption.

We could get the theorem simpler because « is not gap and so by [10]
L, is pointwise definable but we gave it because the same reagoning shows
that also first stable gap gives pointwise definable level. We will get
more general

Levwa 4.11. If a s stable ordinal, B« a then L,k # is stable iff § is
stable.

Proof. Assume (BE2)p(w, y) where y « L,. By stability of L, we have
an example in I,. Since § is stable in « therefore we get an example in L.
Other direction follows from, absoluteness of satisfaction.

(*) As'noted by M. Srebrny it is enough to assume @ (a) for some a = J,.

icm®

Stable sets, a characterization of Py-models of full second order arithmetic 187

Fact 4.12. Assumption that a is stable (in 4.11) can not be omitted.

CoROLLARY 4.13. If o is stable, f e a then L,k f is stable gap «—f s
stable gap.

TEMMA 4.14. If o is stable gap then a = o,.

proof. By Lemma 4.11 (&) = o is definable over L, and absoluie
for L,. Since a is a beginning of the gap therefore it is regular with respect
to @ and so o must be o,.

Leb 7, be an enumeration of stable gap ordinals.

TamoreM 4.15. If aew, then L, is pointwise definable.

Proof. If « e, then using 4.13 we find that « is definable in I, .
I I, is not pointwise definable then DefL, is L, for some £e7, (As
in the proof of 4.10). Clearly a ¢ & Thus all 7, for § € « belong to &. But
since L, < L, £ is stable gap. Since &>, for all fea, & is 7, for some
5> a. Contradiction. ‘ o .

Let y, be least u such that L, < wa;. Clearly L, is pointwise defin-
able and y, is stable gap. We do not know if there are non pointwise
definable stable gaps below y,(%). Yet there are non pointwise definable

" stable ordinals below . Tor instance y,, least ordinal u such that y, € x

and I, <LmL1. Reasoning of 4.2, and 4.3 leads to the following.
THEOREM 4.16. Let n = 2. (a) I’«sf <1 Lmr;,
(b) 6% is least ordinal with this property,
(e) I’af is X,_,-pointwise definable,
(d) Laf consists ewactly of X _.-definable elements of Lw,r;
(6L is 6n in sense of constructible wniverse).
(We doubt if the analogon of 4.5 holds for n > 2 (3). _ ‘
The reasoning of the Lemma 3.6 allows us to get more information
on admissible ordinals. Sacks, Friedman and Jensen [13] proved that
all countable admissible ordinals are of the form w? for some A < gg(w).
One mayy ask when 4 eanbe found in L,i.e. when a= w4 for some o-finite 4.
Let « be admissible and o™ be next admissible ordinal.
LEMMA 4.17. The following conditions are equivalent.
() ot 4s of the form wf for some A eLy,
(®) (Lg—TL,) ~ p (o) # B,
(€) Ly F V= HC.
Wln proof. As noted by M. Srebrmy there are non-pointwisc; ‘definable
stable gaps below y,. As we noted later they may be even found T)eloviv 63.; -
) Added in proof. We recently proved that there ave arbitrarily bl% ‘adn&se
sibles o less then cuf such that Ly, is X, -pointwise definable. The proof follows from

fact that “a is stable” is IT, and 4.13. Similarly there are arbitrarily big admissibles a
less then ¥ such that L, is Z; but not X, pointwise definable.
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Proof. (a)= (o) Since o* is next admissible ordinal there can be
no beginning of the gap between a and o, Thus either there is < o+
such that in every step between f and o™ there is a real constructed or
in none. Second case is impossible because then L, n p(w) = L., ~ p(a)
and so if ot = o4 for some A ¢ L, ~ p (o) then in particular 4 is in I,
but then w? is < (here we use reasoning of 3.6). Thus there is alwa.yg
a real constructed and so a® is a limit of nongaps. Thus (using results
of [10]) L. F 'V = HC.

(¢)=(b) If L, FV=HC then p(w)nL, is countable in I,
Diagonal procedure implies existence of new real in L.

(b) = (a) Since (Lu—L,) n p(w») 7 @ there must be an arithmetieal
copy A of I, in L, (see [2]). For this particular A clearly o9 > o. But
ot <ot 80 0t =o', '

TrrorEM 4.18. Let o be admissible. Then o is of the form w2 for some
a-finite A iff

(a) L,k V=HC,

(b) a.is not recursively inaccessible. -

Proof., < If (b) holds then o= A% for some fea (not necessarily
admissible). Combining reasoning (a)=- (¢) and (b)=-(¢) of 4.17 we get
appriopriate real. ‘

= If o is recursively inaccessible then in particular it is a limit of
admissibles and so ean not be w? for any A e L, Other part follows from
reagoning of (a)=-(¢) of 4.17.
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