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Thus, R s the projection of the set
{{F,m,y>: (F is a continuum) (F # X) (wel) (y e )}

parallel to the C(X)-amis on the product space X X X.

Since the spaces C(X) and the space of all subcontinus of X are
compacet, the projected set is an F -set (in C(X)X X' X X) :m(]: so iy B
(in Xx X) (comp. [5], vol. IT, p. 14).

Moreover, R is a boundary set, since in every neighbourhood of
two given points @, and y, of X, there are two points # and 4 which lie in
different composants of X (i.e. that znon-Ey).

It follows from Corollary 1 of § 6 that there ewists a Cantor set ¥ C X
such that no two of ils points belong to the same composant of X (Theorem
of Mazurkiewicz [6], see also [1]). In fact, almost every compact subset
of X i3 a Cantor set with the above property.
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Model-completeness for sheaves of structures
, by

Angus Macintyre (Aberdeen)

Abstract. By combining some sheaf-theoretic ideas of Comer, with ideas from the
Lipshitz-Saracino proof that the theory of commutative rings has a model-companion,
we prove a general theorem enabling one to extend metamathematical results on
fields o the corvesponding results for certain regular rings. As an application, the
model-completeness of veal-closed fields yields a model-completeness result for
a natural clags of lattice-ordered rings,

0. Introduction. In » recent paper [15], Lipshitz and Saracino found
the model-companion of the theory of commutative rings without nil-
potent elements. In the present paper we will give an abstract version
of their proof, apparvently suitable for finding the model-companion for
various other theories of rings. In particular, we will find the model-
companion for the theory of commutative f-rings with identity and no
non-zero nilpotent elements. »

The representation of rings by sections of sheaves is now well-
established [4, 5, 11, 13]. In [3], Comer generalized the Feferman-Vaught
results [8] to cover certain structures of sections of sheaves over Boolean
spaces, and thereby proved deecidability results for various classes of
rings. It should be noted that for constant sheaves Comer’s results are
essentially contained in some publications of the Wroclaw group [23, 24,
25, 267 in 196869,

Our main result gives o salficient condition that, for a sheaf of models
of & model-complote theory, the theory of the structure of sections should
be model-complete, ‘

Before treating the main vesult, we give a rapid discusgion, in
Secetion 1, of model-completeness properties of reduced products.

Wa are very grateful to Professors Comer, Lipshitz and Saracino
for maling preprints of [3] and [15] available to us. It will be seen that.
this paper ix hased on a gynthesis of their ideas.

1. Model-cdmp]eteness and reduced products.
LI It is well-known that theorems of Feferman-Vaught type can

be used to give an algebraic structure to the space of complete theories
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in a given logic L. For example [8, 24], if T, = Th;) zmq Ty == Th(4,)
then we can unambiguously define T X T, as Th(s X 4,). M.m’p generally,
if #; (i € I) is a family of L-structures and T¢ = Th(), and if O is o filter
on I, then we can unambiguously define ].[ Ty as Th [ [ D).

12. A number of useful preservation theorems are known. For
-example, the properties of being decidable, my-categorical, and totally
transcendental are preserved under the product operation [8, 10, 16, 24].

However, the property of being model-complete is not preserved
under products.

TxaMPLE. Let 2 be the two element Boolean algebra and let B he
an atomless Boolean algebra. Then Th(2) and Th(B) are model-complete,
but Th(2 x B) is not model-complete. This follows from Theorem 1 below.

TaroREM 1. Let M be an infinite Boolean algebra with at least one
atom. Then Th(M) is not model-complete.

Proof. Assuine we have proved

If M, and M, ave infinite Boolean algebras, then M, and M, s tisty
the same universal sentences.

(1)

Suppose M, is an infinite Boolean algebra, with Th(M,) model-
complete. By (1), Th(A,) is a model-companion of the theory of Boolean
algebras. But model-companions are unique [207] and the theory of atom-
less Boolean algebras in the model companion. The theorem follows.

To prove (1), we first use the facts that every Boolean algebra is
embeddable in an atomless Boolean algebra, and that the theory of atom-
less Boolean algebras is complete. Thus to prove (1) we need only show
that for any infinite M; Th(M,) has a model with an atomless subalgebra.
This iy easy by the compactness theorem.

1.3. From Theorem 1, it follows that the map 7'+ THe  eannot
preserve model-completeness unless 2779 is either finite or atomless.

If 27D is finite then 27/Dax 2" for some 2 e @, and so by [7, 23]
T = T™.

Suppose 27[D is atomless. Let /M be the Fréchet filter on o, Thew 2918
= 27/D, since both are atomless Boolean algebras, Then, by |7, 23],
TID = T/F. :

This raises the problem:

ProsLEM. a) Do the maps 71+ T (newm) proserve model-com-
pleteness? ,

b) Does the map T-T[F preserve model-completencess?

We conjecture that the answer to both a and b is negative in general,
but we have been unable to congtruct counterexamples.

icm®
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The main result of this paper implies that the answer-to b is positive
s positive,

if we restrict attention to theories T in & certain clags,

1.4. We shall explain briefly the connection between reduced powers
and the papers of Comer and Lipshitz-Saracino. '

We refer to [1d4, 23, 24, 25, 26] for the basic information on limit
powers MY|F, where F is u filter on J2. Let ¢ be Cantor space and let MY
be the structure of continuous funections from ¢ to M (where M has the
diserete topology). (See [23, 24].) Then M is in fact a limit power MY|F
where J and T are independent of M [23]. Moreover, there is an index7
set T and a filter O on I such that for all M M® = M'|5 = myp.

By taking M as the Boolean algebra $, and using [7], we see that
we can take I ag o and 9 as the Fréchet filter F.

Now, MY ig u structure of sections over a constant sheaf on the
Boolean space (/, s0 we make contact with Comer’s [3]. On the other
hand, the paper of Lipshitz-Suracino is essentially concerned with rings
of sections of sheaves whose stalks ave algebraically closed fields. Indeed
in their proof of their Theorem 1, Lipshitz and Saracino explicitly consider
products of rings M” where M is an algebraically closed field.

2. Sheaves of L-structures.

2.1. Let L be a fixed first-order logic. We will be considering sheaves
whose stnlks are L-structures. :

It will be convenient to make the usual abuse of notation that uses
the same symbol for wu relation-symbol (or operation-symbol) and its
interpretntion in o particular model.

DEFINITION. § i8 a sheaf of L-structures over X if § is a quadruple
8,7, X, u> where

i) 8 and & are topological spaces;

il) = is a continuous onto map from § to X;

ili) each point in & hay an open neighbourhood which is mapped
homeomorphically outo an open et in X under m;

iv) u is & map with domain X;

v) for each are X, u(w) is an L-structure with underlying set 7~ (w);

vi) for each (i-F1)-ary operation-symbol = of L, the map (8, ..., &)
= T8y ey dp) Trom | u(0)"*! to 8 is continuous, where the domain is

e N
given the topology inducod as w subset of 87+

vii) for ench individual constant ¢ of L, the map X-»8, that assigns
to w the denotation of a4 in u(e), is continuous;

viili) for ench (n--1)-ary relation-gymbol B of L, the map (8, ..., $a)
= Kaloy ey #) from ) (@)t to @ is continuous, where @ has the

diserete topology, the domain has the topology of (vi), and g, is the

characteristic funetion of R
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Exampre. Let M be an L-structure, and X a topological space.
Give M the discrete topology. Let § = X X M, and let « be the projection
map §-X. Let u(x)= M for each . Then <8, X, m, u> is u sheaf, the
constant M -sheaf over X.

Remark. Comer [3] appears to exclude relation-symbols from I.
We have not seen [6], but presumably the definition of sheaf used there
ig close to that used above.

2.2. Sections. Tet (8, X,m,uy be a sheaf of L-structures. Let U
he a subset of X, with the induced topology. A section over U7 18 & conbinu-
ous o: U8 such that o ¢ is the identity on U. Let I'(U, 8) be the set
of sections over U.

We note that I'(U, 8) C [] u(@), so I'(U, 8) inherits the relational

zel

€ .
structure of the product. On the other hand, conditions (vi) and (vii)
readily imply that I'(U, §) is closed under the operations of the preduct.
Therefore I'(U, S) is a substructure of the L-strueture [] [ w(w). By the

xell
wsnal abuse of notation, let I'(U, §) be the above L-structure.

The most basic point about sections is

LeMMA 1. Let f, g e (U, 8). Then {w e U: f(a) == g{@)} is open.

Proof. The proof is identical to that in [21, page 25].

CorOLLARY. If § is Hausdorff, {xe Us f(w) == g(@)} s clopen.

Proof. Since f and g are continuous maps into 8, {x e U: Flm) == g(x)}
is closed.

DEFINITION. (8, X, o, up is Ty if § is Hausdortf.

LemMA 2. QSuppose X is Boolean and for all f,gel'(X,8)
{w e X: f(z) = g(x)} is clopen. Then 8 4s Hausdorff.

Proot. Let s;1¢8, s # t. If m(s) # m(?), ¢ and ¢ have disjoint open
neighbourhoods by condition (i) and the fact thab X iy Hausdorff.
Suppose next m(s)== m(f) = x,. Then Dby [17, pages 13-14] there ave
f,gel'(X,8) such that f(ue) = 8, g(a) == 1. Tet W= {we X: Tl # g}
Then W is open. But sections arve open maps (17, 217, so f(W) and o (W)
are disjoint open neighbourhoods of ¢, ¢ rexpectively, Thus & is Tlausdorff.

Remark. It is not ditficult to construet examplos where X iy Boolenn
and § is not Hausdorff. Indeed, one can take L as pure Togic with =,
and <8, X, 0, u> a sheaf of infinite setw. This contradicts the remark
of Comer [3], following his introduction of condition (). For, by Temma 2,

if Comer’s remark were correct, any sheaf of models of a model-complete

theory over a Boolean space would have § Hausdorff. But the theory
of infinite sets is model-complete.

This observation does not atfect any of Comer’s applications, for the

im Modgl-compleleness for sheaves of structures 7
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gheafs there are T),. In the next subsection we will give a natural con-
dition which implies Comer’s condition (C). k

2.3. Henceforward it will be convenient to write “8" for w(mz)

LumMa 3. Let D(vy, ..., va) be & quantifier-free L-formula, and f, f

- ‘ k i} 01«05 Jn

e X, 8). .

n) If @ is positive, {w € X: Sy |= ®(fy(@), ..., fal@))} is open.

b) If 8 s Hausdorff, {w e X: Sy |= O(fy(@), ..., fal@)]} is clopen.

Proot. We shall just prove b. A trivial modification gives a.

It suffices to prove the result for atomic @. So, assume § is Hausdortt
and @ is atomie. @ is of one of two possible types:

@) Ti(Pgy ey Du) == Tylyy ooy ¥u) Where v, and z, arve terms;

B) B(%yy .oy Tm) Where 7, ..., wp are terms and R is an (m-+1)-ary
relation-gymhol.

“Tor «, the regult follows from vi and vii and the corollary to Lemma 1.

For g, we use vi, vil and viii. Let yz be the characteristic function
of RB. Then ygp: ()87 @ is continuous, by vii.

Q-L ‘
By vi and vii, the map X~ () §#™ given by mﬁ(zo(fﬂ(m), ey Ful@)),
@

sy Tl o) 5 ...,f,,,(w))) is continuous.

The result follows by composing these two maps.

COROLLARY.

a) Suppose X is Boolean, @ (vg, ..., ¥a) 1S @ Positive existential L - for-
mala, and fyy ooy fu e (X, 8). Then {m € X: g |= O(fo(@), ..., fal))} is open.

b) Suppose S is Housdorff, ©(vy, ..., va) 48 an emistential L-formula
and fo, oo, fu € (X, 8). Then {o e X: 8z |= B(fy(w), ..., fa(x))} is open.

Proof. We just prove a. b is similar.

By a basic extension theorem for sections over Boolean spaces [17,
pages 13=14], we see that, for an L-formula ¥(wy, ..., Wn; Doy vy Vn

{w e X0 Sy |= (M) ... (G[wm)‘lf(wo, veey Wiy o), ...,fn(m))}
= U {weX: Syl= V(o) ) gn(@), (), . (@)}

Iy ey (1 € I(NS)
With ¥ positive and quantifier-free, the result now follows by the theorem.
Remark. Bven for § ITausdortf, X Boolean, and & existential,
{@eX: Bole= Ofy(@), ..., fal®))} meed not be closed. In ring theory,
a counterexample is provided by Arens-Kaplansky [1, page 477], with & as
the sentence (Hw,)[w) # w): ‘
Comer’s paper [3] deals with sheaves over Boolean spaces, satbis-
fying (0): Tor every L-forraula @ (vy, ..., va), a0d eVery fo, -, fa € Irx,as),
(@ e X: 8y = Bfy(@), ..., fu(@)} is clopen.
As remarked before, we dispute Comer's claim that (C) holds if X is
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Boolean and Th({Ss: © e X}) is model-complete. To make an appropriate
modifieation, we introduce

DEFINITION. A theory T is positively model-complete if. T' is model-
complete and, relative to T, every existential formula is equivalent fio
a positive existential formula. i

Then we have:

LemMA 4. If X ds Boolean and Th({Sz: e X}) is positively model-
complete, then (C) holds.

Proof. This is immediate from Corollary a to Lemma 3.

3, The main proof.

3.1. For this section, let (8, X, m, u> be a sheat of L-structures.
‘We define the stalk theory of this sheaf as Th({8s: # e X}). We define the
section theory as Th(I'(X, 8)).

Our objective is a theorem of the form: ‘

Tf the stalk theory is model-complete, and..., then the section theory
is model-complete. ‘ :

3.2. Consider the following conditions:

(A) X is Boolean and has no isolated points;

(B) The stalk theory is positively model-complete;

(0) L includes the language for ring theory, with the usual -, -, 0,13

(D) The stalk theory includes the axioms for non-trivial rings with 1,
and the axiom that 0 and 1 are the only idempotents.

Our main effort goes into proving

THEOREM 2. If the stall theory is‘complew, and (A), (B), (O), (D) hold,
then the section theory is model-complete.

Remark. The assumption of completeness of the stalk theory is
a nuisance, but we do not see how to remove it in the general case. Because
of this assumption, Theorem 2 does not cover the Lipshitz-Saracino result.
However, we also prove : )

TunoreM 3. Suppose L is the language of ring theory. If (A), (B)
and (D) hold, then the section theory s model-complete.

The proofs of the two theorems differ at only one point, so we will
prove Theorem 2 and indicate the moditication needed to get Theorem 3.
We will divide the proof into sections, so as to show the part played by
each assumption.

NorATION. Let (v, ..., vs) be an L-formula. Let '1’.1 oy eer Ind
where each f; e I'(X, 8). We define

Kf) = fo e X: 5 (= (@), -y Fal)]} -

iw Model-compleleness for sheaves of structures 79

3.3. .lﬁfl‘ oof of Theorem 2. Assume that the stalk theory is complete
and (A), (B), (¢), (D) hold. To prove that the section theory is model-
complete, it suffices to prove that if ¥ is a primitive formula then —1 ¥ is
equivalent to an existential formula relative to the section ‘

Thus, let ¥ be | o

Wawy) oo (Heo DUy ary Wy Vgy eeey O
(L o) y h)y‘(,\m ;( 0y s Whoy Yoy 51%)/\ l/(i\k—loL(1l70, cony Wiy Vyy ...,@n)]

where each @y and 0; is atomic,
Let w, v be the KCQUENCes Wy, ..., Wy and vy, ..., v, Tespectively. We use.
the customary notations such as ¥W(), @b, 7).
For [ < Ik, define ¥, as (B[ A Dylib, 5)A 71044, ).
Jeum

Part 1. We claim that, for fi, .., fae (X, 8),
lﬁ('Xa AS') [ W(.fﬂ; 7f71)

if and only if the sets Jy,(f) (I < m) are non-empty and cover X.

Necessity ix clear.

Qoo Y it o o Code A e W ATF i o /]

Sufficieney. Ltfl. Ay = Ky (f)y for << m, and suppose the sets 4;
cover X and are each non-empty.

Since the stalk theory is positively model-complete and X is Boolean,
each /; is clopen. We want to obtain non-empty clopen sets C, ..., 0
such that :

a) ) O, =X, o COg=s O il 7 # 85

1

e) (V) (Hr) [0 C Ay »

~To ggi; these, let B be the Boolean algebra of clopen subsets of X,
and let Oy, ..., 0, be the atoms of the (necessarily finite) subalgebra.
generated by Ay, o, dy.

Now we use the assumption that X has no isolated points. This
means that B is atomless. 16 follows easily that for each r <t there are
non-empty clopen Cp (1< m) such that Cp== 1) Cw, and Cu, ~ O, = @
o 1
it 1y 1y,

Tt follows that we can define & map o from {Cu: r <t, < m} to
{4z [<Zm} such that

d) o(Op) == Ay it Op C Ay;

Nf)w, gince the O form o clopen partition of X, a standard argu-
ment [17] gives that

X, 8) = [T7(0, 8) .
i

We now prove that
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01 C Ap= I'(Cpiy 8) |= Wolhol Oty wees JalCrt) -

From a—e and the above isomorphism it follows easily that I'(X, 8)

This will complete the proof of sufficiency.

So, suppose

O CAdp={weX: Syl= Pl folie) s wovs Jalw))} -

At each point y in Cy we seleeh &(y), o &(y) in Sy such that

Sy [= N P& 5 -y &) 5 Fol¥) coey Jalg))A

f<m :
A m]()i?(&)(?/)7 ey ER) 5 Jo )5 ey Juld)) -

By [17, pages 13-14] there exXist Goyy «oos ry I L(Ory 8) sueh that g,,(y)
= £(y) for y < h. .
Thus by Lemma 2, the sets

{we O Bul= A (pj(gm!(m); vy Gu(@), Joluw), ~--,fib(’("))/\
; j<m _
AT Op(goy(m): vees gryl@), fol@), ---:.fn(fl’))}
for y € Cry; form a clopen cover of Cy,. As before, this cover ean be refined

o a finite elopen partition of C,,. From the Iatter we can patently obtain
oy +oey gn i I'(Cpg, §) such that for all z in On

8z |= /\ @1(90(5‘7); wey gu(®) s Jol@), maf"»(m))/\

AT Gp(go(-“"'): ceey @) 5 fol®) ~-7fnr(7”)) .
‘Thus
I'(Cn, 8) |= Yol fol Oriy ---:fnwrl) g
This concludes Part 1. Note that we have used only (A) and the
model-completeness of the stalle theory.
Part 2. By Part 1,

T(X, 8) [= TV (foy ooes Ju)
if and only if either some A;=@ or X # A
i
Let ¥~ (g, - %) e A T1¥i0g, -y Vn).
1

<m
Thus I'(X, 8) |= T1¥(fo, ..., fa) if and ouly it either

«) for some ! IC.,,(]") =@, or

B) K () # 0.
. By (B), it follows that there exists an integer ¢ and positive primitive
formulas Xy, (U -, ¥n), for 1<k and s< g, such that relative to the
stalk theory ¥ is equivalent to \/ Zi. -

a<q
Thus « i8 equivalent to

©
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o) for some I, X = (K ().
8<q
Essentially the same argument gives positive primiti
. : ) 2 positive primitive £,
for w < U, such that p is equivalent to s ey )y
) for some u << U, Kgu(f) # 0. ,
Now, using (B) and the Corollary a Lemma 3 once more, we get o'
and B below, equivalent respectively to o’ and B’. ’
o) There ave clopen. sets Dis (I<m,s< q) such that fo |
) 4 r each 7
D, C Ky, (F), and, for some I, X = | ]_)“7, o
8<q B
B"") There are clopen sets &, (u < U) such thatfor each u B, C K, (F)
and, for some u, B, # O. : =T
This coneludes Part 2. Note that (C) and (D) are still wunused.
Part 3. We now know that

(X, 8) [= ¥ (fos . fa)

if and only if'either o' or P’ holds. It is important to note that fhe
positive primitive formulas used in o and B are independent of f, though
of course dependent on W. ,

Suppose Y is clopen, and X(v,, ..., vs) i8 positive primitive. Then
cleaxly

Y CEAF) = I(Y,8) |= Z(fIT, ., ful 1) .

The reason for having () and (D) in our conditions is to enable us

to express in the theory of I'(X, 8) such statements as

(X)X clopenAI(X, 8) |= Z(fHl X, ..., ful X)] .
Of course, the key idea is to code up clopen sets by idempotents.
Assume (0) and (D).
For ¢ ¢ X, lot 0, and 1z be respectively the zero and unit elements
of 8. Let O be a clopen subset of X. Define gy by
X(J(m) = 1&? if ve 0 3
xa(m) e Ox 'if n ¢ O .

Then obviously yyeI'(X, §), and go is an idempotent.
Convorsely, let ¢ be an idempotent in I'(X, §). Then by (D),

e(w) == 05 or 1z, for all weX.

Let 0= {weX: e(w) == 15} Then clearly O is clopen and yq= e.

Thus we have o bijection 01> yo from clopen subsets of X to
idempotents of I'(X, 8), under which @ goes to 0, X to 1.

From this viewpoint we get o' and p"/ below, respectively equi-
valent to o'/ and B

& — Fundamenta Mathematicae, T. XXX
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/") There are idempotents dis (I<m,s<< q) guch that for cach I, s

dis vanishes outside Ky, (f), and, for some I, 1= ]<'](1~~ ).
a<q

@’’’} There are idempotents e, (u < U) such that for ench u e, vanishes
outside K,,u(f), and, for some u, €, # 0.
Tt is now clear that the theorem will be proved as Boon as we have
established (*) below.
(#¥) TFor each positive primitive X(vy, ..., %) there in an  existential
Z#(Dgy ey Uy Vppy)  SUCh  that  for all  go, ey Guga € (X, 8)
(X, 8)= Z*(goy -y Ins Jrpr) < fupa 18 a1 idempotent and

{#eX: gora(®) = 144 C Es(gos oevs On) -

Obviously, once we have (x) we know that « and $” are equivalent
to existential L-formulas relative to the section theory, and so ™1V ig
equivalent to an existential L-formula. ‘

Part 4. Proof of (). Let X (g, ..., va) be positive primitive. Then
Z(g, ..., ) i3 of the form (Hib)M (b, B), where M is a conjunction of
atomic formulas.

Now assume the stalk theory is complete.

Let 2Z#(0g, vy Vs Upey) bO

Dppy # 0> [0d 1 = vy 1A (H0ppg) oo (mz“""")[“;é\ (Vs Pt 5% Opy) A
n

A Z(Vpigy o) '”m[-z)]l .

We claim that Z* hag the properties required for (*). X* is cortainly
existential. It is obvious that I'(X, 8) [= Z*(goy «+ey Ons Pnar) = Fnopy 18 41
idempotent and )

{@eX: gpp(®) = 13 C Kulflos ooy P) -

Suppose conversely that g,., is an idempotent and g,., vanishes
outside Kx(gy, ..., #,). If gyyy = 0, then clearly

r(x7 ) 1= Z*(gos vy Pns Ga) »

Suppose guq # 0. Let 0= {weX: g(@) == T} Thon O,
Select ¢ X. Then 8y |= Z(go(), ..., gu(w)). Therelore

Sz = (Hwg) oo (Bn) 2 (Vyy cony On)
Since the stall theory is complete,
Sy = (Evg) .. (How) X (09, ooy va), for all ye X .
0 is clopen. By a now familiar avgument, since

Sy |= (i) (Ewy) .. (Hvy) M (%, 0y, oy va)  for cach y in X,

©
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wo gob Gog vy e € (XN, 8) wueh (hat
NG, N) s 3ggy ey gl

Tor 4 =% iy 1eb ¢y be the unique element of I'(X, 8) such that (4}
= g ol oy N 2 gy Then ’ fusard

orwrs Poors = o oo P& 8) == Xfpiny veey Gongs) -

Thus (X, 8) |5 X"y very s Yuin) This coneludes the proof.

3.3. Proof of Mheorem 3, Wo have only to alter Part 4 of the
precoding proof, replucing the amumption of completeness of the stalk
theory by the new ussamplion that I is the language of ring theory.
(Note that (O) follows from this assumption).

We have to prove (). With our new assumption, (%) is of the form

(8130) A (py(ib, B) = gs(db, B))
Jem
where each py, gy I8 4 polynomial,
Now iti iy trivial that we ean tale X% (v, ..., vy, 0,4.) a8

7 2 s ’w /w et o
Opoger, 5% ??n.].il\((?r.lﬁ)f/\ (Z’y(w: 53)"17n.|..1 == Q:l(w7 0) '”n+1) .
1
This proves Theorem 3.
Remark. One can genernlize Theorem 3. Drop the assumption
that L ig the langunge of ring theory. Replace it by (C), and (B) below.
(1) Tor cuch abomic (v, .., 2) in which 1 does not oceur, the
sentence @ (0, ..., 0) is in the stalk theory.

We wso the proof of Theorem 2, this time using (I) to get (). We
omit the details,

4. The main theorems.

4.1, From the point of view of applications, Theorems 2 and 3 are
not too useful. The problem is that both theorems say that a certain
complete theory iy modol-complotio, nnd lewve ug the problem of identifying
the complots Gheory by means of intelligihle axioms. .

owaever, there i o unitormity in the proofs of Theovems 2 and 3,
which londs (o more useful theorems,

Lot us look baek wh the proot of Theorem 2. What we in fact proved
was thaty provided the hypotheses are satistied, for any universal U(%)
theve is i exintontinl W (%) wueh that U(3) is equivalent to B(%) relative
to Th(I'(X, 8)), and H dupends only on U and the stalk theory. (Such
& unitormity ean be seen in n more general setting in Comer’s
Theorem 1.1 [3)).

Wo immedindely dedueo:

Trnorum 4. Supposre 1 includes the language for ving theory. Let T' be
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a complete positively model-complete L-theory. Suppose T contains the igolated points. By Dauns-Hofmann [5], B, is isomorphic to aring I'(X, 8)
H

axioms fo.r the theory of mon-trivial vings and the axiom that 0 and 1 are i where X == 1]”[ Oy and cach 8, is ‘imrrnoxgphic to some Fy,, This enables
the only idempotents. 1 I(E, 8), wl | us to apply Theorem 5.
Let C be the class of a X, 8), where . Annlication 1. Tt
i Application 1. Liet 7, be the theory of o N .
) 8 is a sheaf of L-strudures ovor X; | wifhm'fi:}"non-yuro nil]u:w{nf 00*11:”11:11:::’:.11%1yl 0-[ of)mmubadwe Tings with 1,
i) X is Boolean with no isolated points; ‘ Lipshitz-Saracino theorom m!’ that 7 ﬁ m"““ “1‘1;0“1’4130 the proof of the
. =1 prhitz-Sarac ihe Aol thati Ty hag a model-companion
iii) for each ?ex; By |= 1T » | Let 1" be the theory of algebraically eloged tields. L, 1? e 4T1'
Then Th(C) is model-complete. | Tefinod in T} Y pnahad - Liet C be the clags
\ . . ‘ defined in Theorem 5. Since 7' iy model-complete (19,227, Th(E) i
Remarks 1. Because of the existence of (Mlﬂ‘l]gmi‘. gheaves, © is i complote. Now, by taking oach Thor 2 ‘b]ﬁl'(il';?}bicihll ;1 ,d 0.(C) is model-
never empty. If 0 is Cantor space, zmcluM [ Ty MY €€, . ’ that cach model of Ty is emboddable in 2‘1‘ I‘n.odc‘sl g; Tﬁﬂ% &SOVG, we see
3. From the completeness of T, and ii, it follows that Th(C) is com- ; hand, it i clear that each model of T (@) is & model Of(.T)' TI]IQ the other
[ . g . N v ! - . L Ol Lh o y i\ n
plete. This is easily deduced from Comer’s Theorem. | Th(C) ave mutually model-consistent, so 7, has & model-(()z - s .-l’o and
4.2. Analogous considerations of uniformity easily give an improve- f namely Th(€). ’ banion T,
ment of Theorem 3. ! Lipshitz and Baracino oxhibit axioms for Ty. This can be done
THEOREM 5. Let L be the language of ring theory. Let 1' be o positively g naturally in our approach, too. Tirstly, it is clear that T, includes the
model-complete L-theory. Suppose T containg the awioms for the theory of ! axioms for non-trivial commutative regular rings Wi'l:h 1. Stacondly “sinee
non-trivial rings and the amiom that 0 and 1 are the only idempotents. ‘. the base spaces have no isolatod points, Ty includes the axiom tha,i'j there
Let C be the class of all I'(X, §) where : ; are no minimal idempotents, Tinally, since 7 includes the axioms sayin,
i) 8 is a sheaf of L-structures over X; that each monic polynomial has u root, the usual lifting argument fof
il) X is Boolean with no isolated poinis; Boolean spaces implies that Ty also includes these axioms
iii) for each weX, Sy |= T. Oomemly, it M satisties these agioms just found, we apply the
Then Th(C) is model-complete. Dauns-Iofmann approach to show that Misine, so M |= T,.For M must
COROLLARY. -If T includes the awioms of field theory, and is model- be, by regularity, of the form (X, 8) with X Boolean and § a sheaf

of fields. Sinee there are no rinima) idempotents, X' hag no isolated points

Finally, the third group of axioms impl‘vn'l'lmT the st l ically
oroup of axiom ply that the stalks are al

closed. Thus M is in C. echmically

complete, then Th(C) is model-complete.
Proof. We just use the remark of [22] that in field theory every
existential formula is equivalent to a positive exigtentinl formula.

R.ema}*k. We can also use the unifo‘rmity to improve the remark 6. Application 2. Lattice-ordered rings.
following Theorem 3. We omit the details, 6.3. This papoer wus ingpired by the quostion: What happens if we
5. The Lipshitz-Saracino Theorem. Wo now indicate how the ahove rephyg(a algebraically elosod fiolds by real closed fields in [15]7
ideas can be applied to theories of commutative rings with 1, without :1/1". tms out that wo ean obtain un analogue of Application 1. Thig
non-zero nilpotent elements. applien 1o a certnin natuenl el of 1ﬂdrm‘(‘m—drrlcamd rings, namely the
Suppose R is a non-trivial commutative ring with 1, without non-zero elags of non-trivial commutadive f-rings [%] with L and with no non-zero
nilpotent elements. Then [12] R is semi-gsimple and ig cmbeddable us nilpotont; eloments, - '
2 subring of l{,] R/M, where M ranges over all maximal ideals of R. o gljj";);?] the Dbawie faets about labtico-ovdered rings, one ghould consult
Bach B/M is a field. To illustrate the general idea to bo used helow, solech A , e et e i \ . . ,
for each M a field Fy with RB/M C Iy Select also for each M a copy Oy and ;;{_3(;.‘({:1]-}:,;:,;: [],:;jf,uo(;:?m:: mm 1;'% ”Hm{l iogl.e for zing theory with L
of Cantor space, and let 7$¥ be the usual structure of continuous funetions. An l~rii1r"wi't'11 '1H 31/‘ 1-1%')(?m‘ y “m.ﬂ ym -),0 ’ /\ and v. s
We have the embedding R— [J PS¥ = R,, say. o e i 8 ViS4, tn a ,‘memfdm,ed ring, is an L-gtrueﬁ.ure whlch_ is
g 1 ) a g with 1, and o lubtico under A and vV, such that if < is the lattice

Now each I3 is regular and so R, is regular, The maximal ideal partial ordering then

space of E, is naturally homeomorphic to || Car and so is Boolean without (1)
: oy O 5 Yo @00 72 -k Yy,
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(2) 220 and ¥y > 0=>ay:=0.

An example is the ring of real-valued continuous functions on [0, 1],
with v and A ag the usual vector-lattice operations [2].

It is well-known [2] that in an [-ring v is definable from the other
operations. However, we won’t utilize this fact.

DEFINITION. An f-ring (function ring) is an f-ring in which ¢Ab =
and ¢ = 0= carb = acAb=0.

In [2] it is shown that an I-ring with no non-zero nilpotient elements
is ap f-ring if and only if it satisfies the neati condition

aAb= 0= ab=10.

Let T, be the theory of commutative f-rings with 1, with no non-zero
nilpotent elements. We are going to outline a proof that T, has & model-
companion 7.

Tet T Dbe the theory of 7-rings with 1 which are linearly ordered
by < and are real closed fields. The usual proofs of model-completeness
for real closed fields [19,22] show that 7' is & model-complete L-theory.
Indeed, T is obviously complete and positively model-complete. Thus,
we prepare to apply Theorem 4.

Suppose R is a commutative f-ring with 1, with no non-zexo nilpotent
elements. Then by a theorem of Pierce [18] R is embeddable in a product
of linearly ordered domains. Thus R is embeddable in a product of ordered
fields, and so in a product of real closed ordered fields. By the same idea
ag in Section 5 we get an embedding R[] R§¥ where each Ry is real

M

clogsed and each Oy is a Cantor space. In this case we can go further.
Because of the joint-embedding property for real closed fields, we geb
an embedding R->8% where § is real closed and ¢ is u Cantor space.

Let C be the clags defined in Theorem 4. Then Th(C) i complete
and model-complete, since 7' is complete and positively model-complete.
Now 89 ¢ C. On the other hand, C |== T,. Let T = Th(C). We have proved
that T, and T are mutually model-congistent, and 7', iy model-complete.
Thus T, has a model-companion, namely 7T7,.

6.2. Axioms for T%. From the completeness of 7, it is clear that
T, = Th(R®), where R® is the I-ring of real-valued continuous funetions
on Cantor space C.

Firstly it is clear that R% is a regular commutative ring with 1, with

no minimal idempotents. Secondly, RY is an f-ring. Thirdly, the usual

lifting argument for Boolean spaces, applied to & bagic property of R,
implies that if ¢ is a monic polynemial in one variable over R®, of odd
degree, then g has a root in' RC,
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Finally, smotlhor litting wrgﬁ.rn‘(:“nt gives the following property of RC:
If #A0 =0 then there exists a y such that Yt = g,

Let 257 be the axiomy for the theory of I-structures M such that

1) M is o commutative non-trivial regular ring with 1;

2) M has no minimal idempotionts; ’

3) M is an f-ring;

4) all monie polynominls of odd degreo over M have roots in M;
B) if A0 == 0, then there exists ¥ sueh that Y=, S
Trworsm 6. 17 48 a set of wwioms Sor 1,

Proof. Clewely 70 C T,
Jonversely, wsuppose M [ 10 We want to apply o vesult of

Keimel [13]. o
Suppose a ¢ M and 0 =5 @ =% da, where A, # ¢ M. By regularity, la = ue

where ¢ is an idempotent in the ideal generated by . l/—-e‘z’ (L—e)?

50 1—¢ 7 0, since M iy an f-ring, Weo have | ’

@z ge-l-a(l-e), w0 0 tetn(l—e) < Le ,
g0, multiplying by 1.,

Ow(lee)10, M w(l-e)=20, 80 5=pge.

This proves that in M the principal {-ideal gencrated by @ is precisely
the principal ring ideal generated by . This implies tlm't‘M i a quasz:-
regular f-ring in the sense of Keimel [18], and ‘wo will be able $o apply
Keimel’s Theorem 7.4 once we cheek some facts about irreducible
I-ideals in M.

Tirgt note thaty by vegulavity, i 1 is an [-ideal and o* e I then o « I,
This implies that in any homomorphic image of M there are no non-zero
elements ¢ with % 0.

Suppose T s an frveducible -ideal in M. Then M/I is o totally ordered
I-ring, By the preceding pavagraph, M has no non-zero elements ¢ with
@” =0, 06 Follown by o very triviel argument that M/ is an integral
domain, "Thus T is o primo vingeidond, Sinee M iy rogular, I is a maximal
ving=ideal, so M/T in o feld, Thus ML i an ordeved field.

Lt follows from the whove that Keimels spacs Spee M of irreducible
I-idends is Booloan in this ense, Also, sines M has no minimal idempotents,
Spee M has no isolated points, We apply Keimel’s Third Special Re-
presentation Theorem 18] By this, and the above, M is isomorphic to
TI'(Spec M, §) Tor o sheal & of ordered Tields,

‘ We have only to show thab the stalls & are real closed fields. From
Axtom (4) it i clowr thad Sy has no algebrade oxtengions of odd degree.
. Suppose @ e Ny and « - 0, Then «A 0 = 0. Since Spec(M) is Boolean,
there oxists e I'(Npee a1, ) wieh that f(w) == . Oonsider the sections

o
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fA0 and 0. These agree at @, and so agree in a clopen neighbourhood of
It follows that there is am idempotent e # 0 such that ¢fA0 == 0, and
e(w) = 1. By Axiom (5) for M, and the isomorphism M o I'(Spec M, §),
there exists a section g such that ¢*==¢f. Then ¢Pc==fe. Thus @)
= f(x) = q, 50 a is a square. We have proved that non-negative clements
of S, are squares. »

It follows that each stalk iy veal closed. We conclude that M cC,
80 M |= T,. This proves the thoorem.,

CoroLLARY. Ty 48 decidable.,

Proof. T, is complete and recursively wxiomatizable.

To summarize:

The theory of commutative f-rings, with 1 and no non-zero nilpotent
elements, has a decidable model-companion, which iy complete. The
model-companion is the theory of the I-ring R of continuous real-valued
funetions on Cantor space.

Remark. The theory of commutative f-rings with 1 and no non-zero
nilpotents has no model-completion, since it does not have the amalga-
mation property. This can in fact be geen from the example used by
Lipshitz-Saracino in their paper for commutative rings with no non-zero
nilpotent elements.

In contrast, we do not know if the theory of commutative regular
f-rings with 1 has the amalgamation property.

7. Concluding remarks, We hope the above method will be usefu-
elsewhere. It appears to provide a powerful way of extending meta
mathematical work on fields to regular rings. There may be some in-
teresting algebra involved in doing the analogue of Section 6 for
p-adic fields.

We would like to see the above method extended to non-commu-
tative biregular rings. This seems plausible in view of [5]. Weo have had
some sueccess with sheaf-theoretic ideas in connection with w,- eategorical
theories of rings [27].

Added in proof.

a) Comer now hag an improved vorsion of |13],

b) Professor Andrew B. Carson of Howbblo haw indepondenily  obbained the
Lipshitz-Saracino vesult, in o papor to Do published fn the Journal of Algolbu.

¢) Dr. Volker Woisspfenuing of Yale hos shown thali the theory of commubative
regular f-rings with 1 has the wmulgnmation proporty.

d) Dr Dan Saracino of Yale pointed oul an exumple of a model-completo 7' guch
that T is not model-complote. 7' ix he theory of an equivalenco volation with
. & constant a. Tach equivalenco class s, oxactly two olements, exeopt the class of a
which s a singleton. Theve aro infinifely many classes. Tt i casily soon that 2’ has
the required propertics.

e) Problem b of 1.3 has a negative answor. Tuke 7' ay the theory of the abelina
group Z, X Z,.
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