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A problem on series of ordinals
by

J. L. Hickman (Canberra)

Abstract. Since ordinal addition is not commutative, the sum of a series of ordinals
will in general depend upon the order of the terms. Thus the question arises, how many
different sums can we obtain from a given sequence simply by permuting the terms?
This seems to be a most difficult question to answer in detail, and in this paper we
concentrate on formulating conditions under which the number of different sums is
finite. One of the principal techniques for obtaining results of this kind seems to be
the temporary “elimination” of terms that seem likely to cause frouble: we prove
a general result validating this method.

It is of course well-known that the sum of a series of ordinals is in
general dependent upon the order of the terms. Thus the following
problem presents itself: given a certain series of ordinals, how many
different sums can we obtain by rearranging the terms?% In order to make
this precise, we introduce the following terminology and notation.

DEFINITION 1. Let § = (85);c, be an a-sequence of ordinals, where
« i8 a given ordinal, and let ¢ = (f,),., be another u-sequence of ordinals.
We gay that ¢ iy an arrangement of s if there exists a permutation p of a
such that i, = sy for &< a. Clearly p, if it exists, is unique, and in this
case we shall denote ¢ by “p[s]”. For any a-sequence s == (s;) of ordinals,
we denote by “X(s)” the sum of the associated series: X(s) = 235‘

Finally, given an a-sequence s, we define the ordinal set S(s) by S (s)
= {X(p[s]); p is a permutation of a}.

Jouched in this terminology, the preceding problem becomes: “Given
an a-gsequence s of ordinals, what is the cardinality of §(s)¥”.

Now Sierpinski in [1] showed that if s is any w-sequence, then S(s)
iy finite. It can be shown, in a relatively straightforward manner, that
this result of Sierpingki’s characterizes w amongst the transfinite ordinals:
for any a > w, there exists an «-sequence s for which 8(s) is infinite.
This result still holds even if we demand that the s-terms be positive
and paivwise distinet; indeed, it would be.somewhat surprising if this
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were not the case. It can also be shown that if e is countable then for
any a-sequence s, S(s) is countable: the proof of this last result is nog
quite so straightforward.

Can we formulate conditions on the a-sequence s that will enable
us to say whether S(s) is finite or not? In the general case, this seems to
be a rather complex question, and this paper isx devoted to an exami-
nation of some. of the simpler cases that arise. We adopt the following
conventions. The small letters “r”, “s”, “t”, ..., possibly with superseripts,
will denote sequences of positive ordinals, a general term of which will
be denoted by the same symbol with an ordinal subseript. Ordinals in
" general will be denoted by small Greek letters, possibly with subseripts,
and finite ordinals will be denoted by “i”, “j”?, “k”, “m”, “n”. The cardi-
nality of a set or ordinal will be denoted by “| |”. Finally, german letters
“p?, “q”, “x”, will denote permutations of. ordinals.

We note that we are concerned only with sequences of positive
ordinals: if the “interested reader” so desires, he can generalize our results
by permitting the appearance of zeroes: nothing startling cmerges.

The following ordinal-valued function appears with monotonous
regularity throughout this paper.

DurINITION 2. For any ordinal o # 0, we define lg(«) to be the
unique £ such that of < o< o, and we call lg(a) the primary ea-
ponent of a.

We start with a simple result, a special case of which will he ve-
quired later.

TurOREM 1. Let s be an o-sequence, where o is transfinite and limil,
and where 1g(s;) =y, < a. Then X(s) = w’a, and so |S(s)] = 1.

Proot. This is an easy induction on a. The result is obvious for a== w.
Suppose the result true for oy = wf, and let ¢ = w(¢--1). Then we have

2(8) = w’ap+ 0w = @’a. Now suppose that a==lim B,, where each g, i
a limit ordinal for which the result holds. Then X(s) == lim w?f, == w’a.
Since both y and g are independent of the arrangement of s, the equality
{8(s)] = 1 follows immediately.

COROLLARY. Let a be a transfinite limit ordinal, and let & be an o-so-
quence of positive integers. Then Z(s) = a.

Proof. In this case we have y ==

A common method of proving S(s) tinite for some given & is the
following one. We delete from s a finite number of terms that seem likely
to “malke trouble”; let the resulting sequence be s°. It may now be possible
to prove by some direct' method (usually by “slogging”) that S(s°) iy
finite. If we had a theorem saying that the insertion of n finite number
of terms in s° only altered |§(s°)| by a finite amount, we could then go
back and conclude that §(s) is finite.

b}
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This is the motivation for Theorem 2 the preof of which requires
a lemma.

LeMMA 1. Let a # 0 be any ordinal with smallest positive remainder o,
and suppose that o << a. Then for any ordinals B, y such that f+o= a
=y 0, we have 1g(f) = lg(y). L

Proof. Suppose that lg(8) < lg(y); then << y and y— f = y. However,
it f+e=y+e and f<y, then (y—p)+o=p¢. Thus g=yp+o=a,
a contradiction. Hence lg(g) =1g(y), and by symmetry, lg(y) = 1g(B)-
Thus 1g(8) = 1g().

THEOREM 2. Let § be an a-sequence, and let  be a given ordinal. For
any. &< a, define the sequence s* as follows.

() For {<& or E4+o<li<a, put sf= s

(2) For &= £, put si= p;

(3) For { = &+n+1, put si=s,,.
Then & is either an a-sequence or an (a-1)-sequence, and the set T(s)
= {Z(s%); &< a} is finite.

Proof. Since the first assertion is obvious, we turn immediately to
the second. Suppose this assertion to be false, and choose s so that T'(s)
is infinite and X(s) = y is minimal. Let ¢ be the smallest positive re-
mainder of y; from the assumption that T'(s) is infinite, we shall show
that o < y. Suppose that p = y. Now if 1g(B) < lg(p), then for any final
segment 7 of &, we have f-42(r) = f+p= p, from which it follows
that 2(s*) = Z(s). Since &< a is arbitrary, this contradicts the as-
sumption that T'(s) is infinite; hence we must have 1g(8) = lg(o). However,
if t iy any proper initial segment of s, it follows easily from ¢ = » that
1g(Z(1) < 1g(o): thus if 1g(8) = 1g(e), we have X(s¥)= f--7, where 7 is
some remainder of y. But the number of remainders. of y is finite, and
50 once again we have contradicted our assumption that 7'(s) is infinite.
Thus we must have p << y. Now, however, we can apply Lemma 1 and
assert the existence of an ordinal § with 4 ¢ = p and lg(d) maximal.
It is easily seen that there is no loss of generality in assuming that there
is an initial segment ¢ of s with X(f) = 4. We now consider two cases.

(1) 1g(pB) = 1g(d). Choose any & << « such that the initial segment #(B)

of s determined by A contains #. Then we have either X(s*) = 4+t in
the case lg(f) >1g(d), or else X(s*) = ®n-+-F-+7 in the case Ig(B)
= 1g(8), where Z(#(B)) = w*Pn+ o with lg(s) < 1g(d): in each case 7 is
a remainder of y that depends only upon & However, since y has only
a finite number of remainders, it follows that the set {Z(s*); () con-
taing ¢} is finite. As T'(s) is assumed infinite, it must be the case ‘rhat T(t) is
infinite. However, X(t) = 6 < y, contradicting the minimality, of ».

(2) 1g(B) < 1g(d). Now if lg(p) = 1g(é), then for any remainder = of y,
we have f--v =7, whence XZ(s¥)= X(s) for each £< a. Thus the as-
g5
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sumption that 7'(s) is infinite forces us to conclude that lg(e) << lg(4).
Let 7%(8) be the final segment of s* determined by 8. It fellows that there
is a smallest £ such that lg'(Z(vf(/i’))) < lg(6). Now if

{ < & then, as we have just seen in the proof of lg(p) < 1{.{(6), wo
must  have . X(sf) = Z(s). Thus TL(r(f)) must De infinite. But
Ig(Z(VE(ﬂ))) <lg(d) <lgly), and so X(r’(f) <y, again contradicting
the minimality of y. This proves Theorem 2.

Reverting to our main problem, we consider o case in which 8(s) is
infinite.

THEOREM 3. Let s be an «-sequence whereé a is a successor ordinal,
If the set T = {s;: £ < a} of distinet s-terms is infinite, then S(s) is infinite.

Proof. Clearly « is transfinite. For each ordinal 8, let H(8) be the
set {s, e T'; 1g(s;) = 6}. Since T iy infinite, either H(8) # ¢ for an infinite
number of 4, or E(d) is infinite for at least one §. Consider the first case,
and let &y, &, ..., be those §, arranged by magnitude, for which H(8) # 0.
Let s be initially arranged so that the following conditions ure satistied,
where f is defined by « = g--1.

(1) sz is minimal in magnitude.

(2) For each & with {4+ w <@, if s;e B(5) and 6 is nol maximal
amongst d, 0y, ..., then for some ¢ > £ and some y > 4, we have $r € H(y).

Obviously these conditions are possible. Let $° be the f-sequence
obtained from s by omitting s,, and let u be the largest limit ordinal < w.
Now let X be the ordinal set {£< u; lg(sg) is not maximal}; from the
agsumption that E(J) # @ for an infinite number of §, we deduce that
X is infinite. For each & « X, let p, be the transposition B & congidered
as a permutation of o, and let p,[s]° be the B-sequence obtained from pds]
by omitting p,[s],. Then from (1) and (2) it is easy to see that X'(pgs]°)
= X(s°) for each £¢X, and that for each such & 2(s%) >, Thus as
2(pels]) = Z(ps[s1°)+s,, it follows from the fact that B (6) # @ for an
infinite number. of 4, that the set {2 (pel8]); €€ X} is an infinite subset
of 8(s). Thus in this case, S(s) is infinite.

Suppose now that F(d) is infinite for at least one 4, and let Y Dbe
the set {§<C a; s; ¢ T(6) and for some ¢ > &, 5, ¢ H(5)}. Hor £ e ¥, vongider
the permutation p, defined as above: then it is eaxily seon that X(pgs]”)
= X(s°) > s,, and so, since the sg for £ ¢ ¥ are pairwise distinet, it follows
that the set {X(p.[s]); £ e ¥} is an infinite subset of & (8). Hence in thiy
case also §(s) is infinite. (We are assuming, in this second anse, that the
initial arrangement of s satisfies condition (1) above.) This proves our
theorem.

We note in passing that by Theorem 1, the hypothesis in Theorem 3

icm
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that a be a successor ordinal is an essential one. Conditions analogous
to those given by Theorem 3 in the case where q is a limit ordinal appear
not to be known.

Our next result shows that in the case where the set T (defined ag
in Theorem 3) is finite, then we need not worry about whether « is suc-
cessor or limit.

TaBoREM 4. Let s be an a-sequence such that the set T = {85 E< a}
is finite. Let B be the largest limit ordinal <a, and for any a-sequence t,
let 1° be the initial segment of t of type p. Then 8(s)is finite if and only if
8{p[s]°) is finite for every permutation p of a.

Proof. The result is trivial if § = o; thus we suppose that a = p+n,
n # 0, and we put m = |T]. For each arrangement ¢ of s, we therefore
have X(¢) = Z(t°)+ o, where ¢ is an ordinal selected from an ordinal
set of at most m™ elements. Thus if §(1°) is finite for each arrangement ¢
of s, then §(s) must be finite.

Now suppose that S(s) is finite, but that §(1°) is infinite for some
(benceforth fixed) arrangement ¢ of s. This means that there exist an
infinite number of permutations p; of § such that Z(pdt°]) # Z(pgt°])
for 7 # j. However, Z(p[i°])+ o= X(q[s]) for some permutation g of q,
where as before there are at most m™ choices for o. Since §(s) is finite,
it follows that for one such o, there are an infinite number of permu-
tations p amongst the ps for which Z(p[t°])--¢ = o; as we are only con-
cerned with having an infinite number of these permutations, we can
assume that every p; satisfies this equality.

Thus for each p; we must have lg(Z(pi[t°]))< lg(o). But since
0= Syt oo A8y, Tor some s-terms s, it follows that for each s, and i
each °-term ., the inequality lg(s,,) >1g(t,) holds. Lebt 2;, i <<m, be
the first m terms of ¢, and consider the permutation v of o induced by
the interchanges t;<—ssz, ¢<m. Since clearly lg(Z(1°) = lg(t:), i < m,
& moment’s reflection shows that §(r[f]°) must be infinite, from which
we immediately deduce, via the above inequalities lg(Z(t°) = 1g(ts)
< lg(sg,), that S(r[¢]) is infinite. Since of course §(x[t]) = S(s), we have
reached a contradiction and so have proved the theorem.

Instead of demamdiﬁg that the set of distinet s-terms be finite, we
can congider the more general case in which the set of distinet primary
exponents is finite. Under this condition, we have the following result.

TusoreM 5. Let s be an a-sequence, a transfinite and limit, and suppose
that the set of primary emponents of the s-terms is finite; let these emponents
be Oy, 61y .oy Ox. For each i<k, define the set D(i) by D(E) = {< a;
lg(se) = i} Let o be the smallest positive remainder of a, and suppose that
Jor each i < k, if Sio 3 1g(p), then D(4) is finite. Then S(s) s finite.
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Proof. The idea of the proof is as follows. We let s have any initial
arrangement, delete all those s, for which 1g (s¢) w = 1g(e) — by agsumption,
there are only & finite number of these — and show that for the resulting
sequence s°, we have §(s°) finite. We then apply Theorem 2 a finite number
of times and conclude that S§(s) is finite.

Thus we may as well assume that d;0 << 1g(e) for each ¢ = k; under
this assumption we shall in fact show that for any arrangement ¢ of s,
Z(t) = a. Therefore we let s have an arbitrary but fixed arrangement.
Let & be the maximum of the d;; then de < 1g(p). st of all we congider
a particular case, namely the case where lg(p) is finite. Thus 6 == 0,
ie. s is an a-sequence of positive integers, and xo we have X(s) == « by
the Corollary to Theorem 1.

" Tt now suffices to consider the case of 1g(p) heing infinite; in this
case, since dw < lg(p), we have 5-+1+lg(e) = lg(e). Now ¢, being the
smallest positive remainder of a, is a prime component, #nd s0 g == '®?,
Thus a = w4 ... + o, where f; = 1g(e) for each ¢ << n. Thus the following
inequalities and equalities hold: Lo

Z(s) < o= @Rt ot Pt e

However, each §-term being posmve we obviougly have 2(s) = . Thus
in each case we have = () = a, and so, by & finite number of a.pp]wud;imzm.
Of Theorem 2, we obtain the full version of Theorem 5.
o, OOROLLARY.‘ Let's be an a-sequence, « being arbitrary, with smallest
positive remainder o. Suppose thai the set of distinct s-lerms is finite,
and that the set {{< a lg,( 8 ) @ /1g( o)} s also f?lm'te, Then S(s) i
Sinite.

Ploof If  is finite, the result is olmous If « is transfinite, use
Theorem 5 and, possibly, Theorem 4. .
.. For the remainder of this paper we consider «-sequences § in which
the set of distinet primary exponents of the s- terms. is flmbo, and where
a is initial, ¢ > w. As in Theorem 5, we 1u, Byy «oey O be the primary ex-

ponents, and define the sets D (i) by == {E < ay 1g(8,) == &4} Tor ab.
least one 1 we must have |.D(i)| = |a|; we lei, ¢ be the maximum of those 8,
for which |D(¢)| = |al. . ! ‘

TuEEOREM 6. Suppose that for some 1 with |w| = |D3)| < |a], there
exists an ordinal f such that |f| = |D(2)| and di-+1g(f) == 8- a. Then S(s) is
'mf@mte

“Proof. Let y be any fixed d; satistying the above hypulh(wm with
the. ordmal B being defined as above. Let . Dbe any fixed positive integer,
and conmder any a-sequence s" satisfying the Iollowmg conditions.

(1) Liet D Dbe the union of all those D(4) for which &; # 'y, and D (3) [

< |a{, and let x4 be the initial ordinal for which |u| = [D|; then < a.

ot
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Let the initial segment ¢* of s™, of type u, contain precisely those s-terms s &
(in an arbitrary but fixed order) for which £ e D. Sinee a is initial, the
final segment #* of s" corresponding to #* has type a.

(2) Let the initial segment u™ of 7™, of type fn, contain precisely
those s-terms s, for which lg(s,) == y: this is possible because |fn| = |D(4)]
with ¢ defined by d;= y. Let these terms have an arbitrary but fixed
order. Since « is initial, the final segment »" of #" corresponding to "
has type «.

(8) Let o™ contain, in an arbitrary but fixed order, those s-terms s,
such that for some 4, 1g(s;) = 6; and [D(i)| = |a].

It is easily seen that s is an arrangement of s, Now XZ'(s") = X (")
+ Z(u™) -+ X ("), and ("), Z(v") are clearly independent of n: we let
Z(t") = ¢, and a simple caleulation shows that X(v*) = "% Sidce we
can always choose § to be a limit ordinal, another easy caleulation shows
that X(u™) = «’fn. Thus Z(s") = o+ o’fn-+ o’ However, lg(w’t®)
= 6+ a < p+1g(f) = lg(w?’pn), from which it follows easily that X(s™)
# XZ(s™) for » # m. Thus S(s) is infinite.

Before proceeding with the alternative cases, we give a simple lemma,
which will be required in the proof of our next result.

Levma 2. Let x, o, g, v be ordinals, with = initial and ¢ < . If p+o
> v+, then uzv+4x.

Proof. If u+o = v+ x, then 1g(p + o) = 1g(v+ x), and clearly 1g(u + o)
= max {lg(u), 1g(0)}. Since » is initial and ¢ < » we have lg(o) <1g(x)
< lg(v+ %), whence it follows that 1g(u) > 1g(»+x). Clearly then, H > %,
and so lg(e) << lg(w). From this it is clear that u = v+ =.

THEOREM 7. Suppose that for each i with 1D( ) << |al, if there exists
an ordinal B such that |B| = |D(9)| and d;+1g(f) = 0+ a, then D () is finite.
Then S(s) is finite. ‘

Proof. We use the same method that we used in the proof of Theo-
rem 5, namely we delete from s all terms s, for which lg(s,) = 6; and
and D(7) is finite. If we can show of the resulting sequence s° that §(s°)
is finite, we can then apply Theorem 2 o finite number of times and con-
clude that S(s) is finite. Thus we may as well assume that for no ¢ with
|D(4)| < la| is there an ordinal B such that [f] = |D(é)| and d:+1g(B)
> 8-+a. Let s have any arrangement, and let ¢ be the smallest initial
segment of s that contains each s, for which lg(s;) = 6; and [D(3)| < |al.
Let p be the type of t; then § < a. Now let y be the maximum of those &,
for which |.D{4)| < |a|, since we must have |y| = |D(¢)| for some such <,
it follows from Lemma 2 that y--1g(f) < 6+ a. Now put o = max{y, 6};
then o-+1g(p) <d+a But X(t) < "5, and so, since clearly X(r)
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= ’™® where r is the final segment of s unlcspondmg to t, we see that
either Z(s) = ®™® or X(s) = (w*™)2.

Thus under the assumption made above, we have proved fh(htr 8(s) is
finite; and we can now obtain the full result in the usnal manner.
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Properties of the gimel function
and a classification of singular cardinals

by

Thomas J. Jech (*) (Princeton, N. J.)

Abstract. The paper gives a list of properties of the function 3 () = xtt=,

1. The continuum problem and computation of cardinal exponentiation from

the function 3. The subject of our investigation is the cardinal function

1 (%) = . The gimel function is instrumental in cardinal arithmetic;

Bukovsky [1] proved that both the continuum function 2* and the

exponential function s

of 2% and

* are computable from the gimel function.

The book of Vopénka and Héjek [7] gives inductive definitions
* in terms of ) and lists a few obvious properties of the

function 1. In the present article we give a list of seven properties of the
gimel fupction. The author believes that these properties describe the
function 1 completely, in the sense that no other laws about 3 can be
proved in set theory alone (without the assumption of large cardinals).
This conjecture is based on the expectations (shared by others) that the
singular cardinal problem (discussed later) will be solved in the generality
analogous to Iaston’s result [2].

The situation is different if the existence of large cardinals is as-

sumed. A recent result of Solovay [5] indicates that the presence of large
cardinals has o strong influence on the behaviour of the gimel function
at singular cardinaly. These questions are discussed in the last section.

Throughout the paper, we use Greek letters =, 4, ... to denote infinite

cardinals (alephs) which are identified with initial ordinals. Ordinals are
generally denoted by the letters a, 8, ... The cofinality of a limit ordinal «,
denoted cfa, is the least ordinal cofinal with a in the nafmml ordering
of ordinals; cfa iy always a regular cardinal. The cardinal »* is the cardi-
nality of the set *» of all functions from A to x; if A< x then also «*

(A)| where ¢.(4) is the set of all subsets X of 1 such that |X| <<~
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