Almost every function is independent
by
Jan Mycielski (Boulder, Col.)

Abstract. The main result of this paper is a theorem analogous to the theorem of
Menger and Nébeling which says that if X is a d-dimensional compact metric space
then the set of continuous functions f: X —R+. which are one-to-one is residual. This
means that almost all f’s have the property that {(f(z), f(¥)): (=, y) e X, 22 y} N D=9,
where D= {{(u,?): w,ve¥,u=12} and ¥ = R*. In our theorem D becomes an
arbitrary n-ary relation in ¥ which is of the first category (i.e., meagre) ¥ is an arbitrary
complete metric space but X is only the Cantor set. We give some applications of our
theorem in algebra. The problem of finding a common generalization of the theorem
of Menger-Nébeling and ours ig still open. A refinement and other applications of our
theorem were recently obtained by Professor K. Kuratowski.

Main theorems. In this paper I prove a refinement of the main theo-
rem of [12]. Corresponding refinements of all the applications given
in [12] follow immediately (and will not be stated here).

Let <M, R,>,, D& a relational structure, i.e., M 'is a non-empty
set and R, C M™™, where 1< r(n)< o for all 2 < w.

For every set X and every function f: X—>M f will be called inde-
pendent in { M, By>pe, if for every n < w and every sequence (1, ..., Gy
of distinet elements of X the sequence ( Fly)y eey f(mr(n))) does not belong
to Ry.

Let now M be a complete metric space with distance function o(-, )
and (! be the Cantor discontinuum {0, 1}*. We denote by M the space
of ull continuous maps f: C-M with the distance

Thus MY iy o complete metric space. (meagre = of the first category;
residual = complement of meagre in the appropriate gpace).

Our main theorem is the following (it was announced in [14]).

Tunorum 1. If each Ry is meagre in M™™ ihen the set of all fe Me
which are independent in (M, B>, ., is residual.

Remark. Tf M is dense in itself then the relation = is meagre in M2
Hence, in this case, the set of f5 which are one-to-one is residual.
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Proof. For every a{0,1}" we put

={we U (y, ivy Bpyy) == a} .

Let & be an open dense subset of M” (1 < r << w) and V' be an open non-
empty subset of MC Then for every k< o there exists an m(k) < o
and open non-empty sets V(a) in M for all ae {0, 1}"® such that

(1) m(k) =k,
(2) If feM® and f[C(a)]C V(a) for all ae{0,1}"® then feV,

(8) TV(a)x .. XV(a,)C G for every sequence a,,...,a. of distinet
elements of {0,1}™®,

The construction of m (k) and of the sets V(a) is the following. Pirst

we find m (k) and W (a)’s satisfying (1) and (2). Then sivee (3) constitutes
m(k)

finitely many, namely 7! (2 , ), additional conditions we can satisty
them one by one taking appropriate subsets of the W(a)s. And so the
V(a)’s are produced.

Let Uk, @, V) be the set of all f’s satisfying the-assumption of (2).
Clearly U(k, &, V) is open in MY and included in V. Let now

Uk, G)= U{U(k, G, V): & #VC MO,V open} .

Hence U(k, &) is open and dense in MY and for every fe U(k, G there
exigts an m(f) > k such that

(4)  fiC(a)1x ... Xf[C(a,)]C @ for EVeTY SeqUence Gy, ..., @, of distinet
elements of {0,130,

Let now

UG = {Uk, @): k< w}.
Hence
(5) U(6) is residual in MY,

and by (4) for every fe U(G) and every sequence a,...,m, of distinct
elements of ¢ we have

(6) (f 7f7"r)€(}-

By the supposition of the theorem each R, is meagre in M, Hence
the complement of R, includes an intersection (7| {G, ; i< w}, whera
each @, ; is open and dense in M"™. By (6) each f ¢ ﬁ {U(G,, ) nyi< w}

is mdependent in (M, R,>,<, and by (5) this last intersection is residual
in M° QEB.D. - .
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Our next theorem is an easy refinement of Theorem 1. Let (M%)* be
the direct product of w copies of MC with the usnal product topology.
Thus (M)* is still metrisable and an absolute @,. The points of (MC)®
can be interpreted as maps of € X o into M. Thus it makes sense to say
that an fe (MC)° is or is not independent in (M, R, %, o

THEOREM 2. If each Ry is meagre in M™™ then the set of all fe (MC)®
which are independent in {M, R >,., is residual in (M)®.

Proof. Let 8 for k< o be the set of all f e (M) such that f re-
stricted to Cx{0,1,.., &k} is independent in \JI Byneo It follows
from Theorem 1 17heht. Sk i residual in (MC)®. Tt is clear that the set of
all f e (M%)® which are independent in (M, B>, ., equals [ {Sk: k< w}.
Hence Theorem 2 follows.

Remarks. It is easy to check that if M has a countable basis of
open sets then the set of all f ¢ (MC)® such that the range of f is everywhere
dense.in M is rvesidual in (M%)*. And again, if M has no isolated points,
then the set of all fe (M%) which are one-fo-oné is residual.

AN OPEN PROBLEM. Let us consider the simplest application of
Theorem 1: If B C [0, 1] is meagre then the set of all continuous functions
f: 0~—[0,1] such that

(7 (f@),fy) ¢ B for every @,y C with @ # y

is residual. Now replace the supposition that B is meagre by the suppo-
gition that R is of 2-dimensional Lebesgue measure 0. It follows from
the theorem of [13] that there are one-to-one continuous f’s satisfying (7).
Can one male precise a statement that almost all f’s satisfy (7)% (A partial
solution of this problem is given in [6].)

An application to topological groups. Let G be a topological group
and put .
D = {(a, f) e G* aand B genemte a subgroup everywhere dense in G},
Fp={(c4y ., an) € G" 0y, ..., an are free generators of a free subgroup
of G of rank n} .

Schreier and Ulam proved [19] that if @ is a metric connected compact
group then D is residual in G* By the theorems of [10] and [11] (see also
{4]) if @ is a connected locally compact non-golvable group then F, is
residual in G*. It follows that if & is a non-abelian conpected conipact
metric group then D and all Fy are res1dua1 Thus Theorem 2 and Remarks
yield the following corollary.

CoROLLARY 1. Let G be a non-abelian connected compact metric group
and 8 be the set of all fe(GY)° satisfying the following. conditions

(i) f 4s one-to-one,
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(ii)‘ for any a,be Cx w, with a # b, the subgroup of G generated by
f(a) and f(b) is dense in @,

(ili) the range of f is a set of free generators of a free subgroup of @
and is everywhere dense in G.

Then 8 is residual in (G%).

PROBLEMS. Can onb prove the same for all non-solvable connected
locally compact metric groups? (M. Kuranighi has proved ([10], Lemma 3)
that if @ is a perfect (i.e., the commutator of ¢ equaly ¢) connected Lie
group then D is open in G*.) ,

It would be interesting to refine clause (ii) of Corollary 1 in the
following way ‘

(ii*) every non-abelian subgroup of the group generated by the range
of f is everywhere dense in @.

But I do not know how to prove this except in the special case when
@ is the group of rotations of R® around the origin (since in this case every
free non-abelian subgroup of G is everywhere dense in @),

Let Hy, n=1,2, .. be the group of orientation preserving homeo-
morphisms of the sphere 87 = {(wy,...., @) ¢ R**': 2§+ ... @ == 1} with
the metric

d(hy, hy) = max (@) — hy(@)] 4 [ @) — b (@)]): @ e 8™} .

Clearly Hy, is a complete metric group (it was recently proved [8], [9]
that H, is arcwise connected for all n except possibly 4, and locally
connected for all n [3].)

‘We can easily prove that if w is a non-trivial group word in the
variables @, ..., , then the relation {z ¢ H: w(x) = ¢} is meagre in H!
(in fact it is closed and its complement is dense, see [5], proof of Lemma 9).

CoroLLARY 2. Corollary 1 with clause (ii) deleted is wvalid for all the
groups Hy.

(Schreier and Ulam. [20] found a subgroup of H, dense in F, and
generated by 5 elements. But I do not know it full Corollary 1 (or perhaps
with 2 in clause (ii) replaced by 5 is valid for H,.)

An application in gemeral algebra. Let 8, &,,.. be discrote spaces
such that for every k< o there is an m << w with m 2 k and card (Sp) = k.
Let M = P{8Sm: m < w) be the direct product of those spaces. Thuy M
hag a comiplete metrisation. We put for every n < w

Ry = {{#y, ..., #n) € M™: card{m(m), ..., #a(m)} << n for every m < w}.

It is easy to see that all R, are closed and nowhere denge in M“; Hence
by Theorem 1 we get the following proposition.

icm
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PRroPOSITION. The set of all fe M such that for every distinct elements
@yy ooy @ € O there emists an m << w such that card {f(z,)(m), ..., f(za) (m)}
= n is residual.

Let now #,, Fy, ... be free algebras in a variety (i.e., equational
class) V such that Sp is the set of free generators of F,, and let there be
for every k<< @ and m < o such that m > k and card (Sm) > k. Let again
M = P{8pn: m < wy cach Sy having a discrete topology. By Proposition
we get the following corollary.

JOROLLARY 3. The set cf all f e« M© such that the range of f is a set of
free generators of a subalgebra of P{Fn: m < w> free in V is residual.

Let 8 be the group of all order preserving permutations of the set.
of rational numbers. It is easy to see (see again [5], proof of Lemma 9)
that 8 has free subgroups of rank two. Such subgroups have free.
gsubgroups of rank &, Also the full direct power §“ is isomorphic
to a subgroup of S. Hence, by Corollary 3, S has free subgroups of
power 2% (1),

For other possibilities of applications see [12].

~ Bibliographical note. I wish to complete here the bibliography col-
lected in [12]. [12] and the present paper is a continuation of the work
which began with Hausdorff’s lemma ([7]) that the free product Z, * Z,,
where Z, is the n-element cyclic group, is imbeddable in the group of
rotations of R® around the origin (which he used in his proof of the non-
existence of finitely additive universal invariant measures in R®), and
with the paper of von Neumann [15]. Later papers of related character
were [0], [1], [2], [4], [10], [12], [13], [16], [17], [18], [19], and [20] (see
also [21] and the bibliography collected there and in [12]). When we
wrote [2] we were not aware of the existence of [16] and the overlap is.
considerable. )
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A problem on series of ordinals
by

J. L. Hickman (Canberra)

Abstract. Since ordinal addition is not commutative, the sum of a series of ordinals
will in general depend upon the order of the terms. Thus the question arises, how many
different sums can we obtain from a given sequence simply by permuting the terms?
This seems to be a most difficult question to answer in detail, and in this paper we
concentrate on formulating conditions under which the number of different sums is
finite. One of the principal techniques for obtaining results of this kind seems to be
the temporary “elimination” of terms that seem likely to cause frouble: we prove
a general result validating this method.

It is of course well-known that the sum of a series of ordinals is in
general dependent upon the order of the terms. Thus the following
problem presents itself: given a certain series of ordinals, how many
different sums can we obtain by rearranging the terms?% In order to make
this precise, we introduce the following terminology and notation.

DEFINITION 1. Let § = (85);c, be an a-sequence of ordinals, where
« i8 a given ordinal, and let ¢ = (f,),., be another u-sequence of ordinals.
We gay that ¢ iy an arrangement of s if there exists a permutation p of a
such that i, = sy for &< a. Clearly p, if it exists, is unique, and in this
case we shall denote ¢ by “p[s]”. For any a-sequence s == (s;) of ordinals,
we denote by “X(s)” the sum of the associated series: X(s) = 235‘

Finally, given an a-sequence s, we define the ordinal set S(s) by S (s)
= {X(p[s]); p is a permutation of a}.

Jouched in this terminology, the preceding problem becomes: “Given
an a-gsequence s of ordinals, what is the cardinality of §(s)¥”.

Now Sierpinski in [1] showed that if s is any w-sequence, then S(s)
iy finite. It can be shown, in a relatively straightforward manner, that
this result of Sierpingki’s characterizes w amongst the transfinite ordinals:
for any a > w, there exists an «-sequence s for which 8(s) is infinite.
This result still holds even if we demand that the s-terms be positive
and paivwise distinet; indeed, it would be.somewhat surprising if this
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