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Quasi-inverses of morphisms
by
Roman Sikorski (Warszawa)

Abstract. A morphism 4 is saidl to be quasi-invertible, if there exists a quasi-
inverse of .4, i.e. a morphism B such that ABA = A. A characteristic factorization
for quasi-invertible morphisms is proved. A. necessary and sufficient condition is
given for the composition B, B, of quasi-inverses B,, B, of morphisms A,, 4, to be
a quagi-inverse of the composition 4,4,. A characteristic factorization for A, A, is
formulated. A general theorem is proved on the existence of quasi-invertible mor-
phisms 4,, Ay such that 4,4, is not quasi-invertible.

The notion of quasi-inverse which is the subject of this paper is
a generalization of the notion of inverse, left-hand inverse and right-hand
inverse of morphisms. Theorem 2.5 (and its modification 3.1) gives a simple
characteristic factorization of quasi-invertible morphisms. Theorem 2.6
yields a simple necessary and sufficient condition for the composition
of quasi-inverses of morphisms to be a quasi-inverse of the composition
of the morphisms. If it is satisfied, then theorem 2.7 (and:its modifi-
cation 3.2) gives a characteristic factorization for the eomposition.

In many categories the composition of guasi-invertible morphisms
is not always quasi-invertible. Two examples of this kind, which were
communicated to me by A. Biatynicki-Birula (in the case of the category
of abelian groups) and.P. Wojtaszezyk (in the case of the category of
Banach gpaces), suggested me a general theorem 4.4 which produces
easily examples of this kind for many concrete categories. On. the other
hand, there arve also non-trivial concrete categories such that every mor-
phism is quasi-invertible. '

The notion of quasi-inverse is closely related to that of projection.
It is often supposed in this paper that every projection in the category
under congideration can be split in a way explained in the first section.

§ 1. Splits of projections. Let C be a fixed category. The letter O (with
indices) will always denote objects in C. For any objects 0y, 0p in C the
symbol Hom (0, 0,) will stand for the set of all morphisms from O,
into 0,. Tt A ¢ Hom(0,, 0,), we say that O; is the domain of 4, and O,
is the co-domain of A. The domain and the co-domain of a morphism 4
5 — Fundamenta Mathematicae, T. LEXXI '
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are uniquely determined by A4 and will be denoted by dd4 and ed4
respectively. If A eHom(0;,0,) and BeHom(0,,0,), then BA
e Hom(0,, 0,) is the composition of A and B. The composition BA. exists
if and only if cd4d = 4B and it iy associative, i.e. (0B)A = (O(BA) for
any A ¢ Hom (0, 0,), B e Hom(0,, 0;), 0 ¢ Hom(0,, 0,).

For every object O in C there exists exactly one wnit Lo in Hom (0, 0),
ie. such a morphism that AIo= A4 and IoB= B for any mm*phlqmq
A eHom (0, 0;) and B eHom(0,, 0). A morphism B e Hom(0,, 0,) is
said to be the dnverse of a morphism 4 ¢ Hom(0y, 0,) it BA = I, and
AB = Io,. The inverse B of 4, if it exists, iy unigue and iy denoted 1)yA 1,
A morphism 4 is said to be invertible, it A~ exigts.

A morphism P is said to be a projection if PP = P. Since the compo-
gition PP exists, we have necessarily dP = cdP.

Any pair P= (P7, P<) of morphisms is said to be a split of a mor-
phigm P if ‘
1) ’ PP~ =

P<P>=I|p],

where |P| is an object. This object is uniquely determined by the split P, viz.,
|P| = dP” = cdP<.
If a split of P exists, then P iy a projection since

P = (P”P<)(P”P<) = P>(P<P>)P< = P>Ip P< = P7P< =
Therefore, in what follows, we shall discuss only splits of projections.
The intuitive meaning of P>, P< and |P| will be explained in § 4 (for con-
crete categories). It follows from (1) that
AP< = dP = ¢dP = cdP>.

. We shall always apply the convention that if a symbol denotes
a split of a projection, then the same symbol with signg =, < denotoes
respectively the first and the second term of the split. As a rule, tho

letters P, @, R, S will stand for splits of projections P, @, R, B re-
spectively.

L1. If P is a split of a projection P, then

=P>, P<P=p<

Indeed,
PP) — (P>P<)P> e P>(P<P>) i P>Ill’[ o P> .

The proof of the second equation is analogous.
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The next theorem states that the split, if it exists, is not unique in
general. However it is unique up to isomorphisms.

1.2. If P is a split of a projection P, A is an invertible morphism and
dA = |P|, then the pair P, = (P, PY) where
(2) P7=P>47", P7F= A4P<

is also o split of P, and |Py| = cdd. Conversely, if P= (P>, P<) and
P, = (P7, P<) are splits of a projection P, then the morphism

3) A = PP~
18 invertidle,
(4) A= P<P7,

and equations (2) hold.
It follows directly from the definition that morphisms (2) satisfy
the equations analogous to (1)
PPPF=1P, PrPy=1I44

what proves that P, is a split of P and that |P;| = cd 4. Conversely, if P

and P, are splits of P, then (4) is an inverse of (3) since
(PEP>) (P<P]) = PS(PPP<)P] = PFPPT =

PP = Ipp,

by (1) and 1.1 (where P should be replaced by P,), and

(P<PT)(P7P7) = Ipp ,
by the same argument. Multiplying (3) by P=< from the right we get the
second of equations (2). Multiplying (4) by P> from the left, we get the
firgt of equations (2).

1.3. Let P be a split of a proyectwn P. If C s suoh a m(wph@sm that
P> = P, then 0 = P<. If Cis such a morphism that OP< = P, then € = P>,
If P>¢ =P, then (=P<P”0=P<P=P< by 1.1, what proves
the first part of 1.3. The proof of the second part is analogous.
Theorem 1.3 states that if (P> P<) is a split of a projection P,
then each of the morphisms P>, P< determines uniquely the remaining one.
" L4 IfPs @ sjolv?t of a projecion P, Q is a split of a projection @ and
a4Q == |P|, then the morphism ‘

R = P>QP~
is o projection, AR = dP, the pair R = (R”, R<) where
(5) R = P>Q>”, . < Q<P<,

is a split of R, and [R|=|0|.

bl
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are nniquely determined by A and will be denoted by dd and cdd.
respectively. If A eHom(0,,0,) and BeHom(0,, 0,), then BA
<« Hom(0,, 0;) is the composition of A and B. The composition BA existy
it and only if ed A = dB and it is associative, i.e. (OB)A = ¢ (BA) for
any 4 e Hom(0y, 0,), B e Hom(0,, 0,), 0 « Hom(0,, 0,).

For every object O in C there exists exactly one unit I in Hom (0, 0),
ie. such a morphism that AIo= A and IoB==B for any morphisms
A eHom(0, 0;) and BeHom(0,, 0). A morphism B e Hom(0,, 0,) is
said to be the inverse of a morphism .4 ¢ Hom (0, 0,) if B4 = T 0, andl
AB = Io,. The inverse B of 4, if it exists, is unique and is denoted by 4.1,
A morphism A4 iy said to be invertible, it A~ exiyts. )

A morphism P is said to be a projection it PP = P. Since the compo-
_sition PP exists, we have necessarily dP = cd.P.

Any pair P = (P>, P<) of morphisms is said to be a split of o mor-
phism P if i

1) ' PP<=P, PP =Ip,
where |P| is an object. This object is uniquely determined by the split P, viz.,
[P| = dP” = cdP=<.
Tt a split of P existy, then P is a projection since
PP = (P?P<)(P”P<) = P>(P<P*)P< = P2l p P<=P>P<=P.
Therefore, in What follows, we shall discuss only splits of projections.

The intuitive meaning of P>, P< and |P| will be explained in § 4 (for con-
crete categories). It follows from (1) that '

dP< =dP = c¢dP = cdP>.

. We shall always apply the convention that if o symbol denotes
a split of a projection, then the same symbol with signs >, < denotos
respectively the first and the second term of the split. As a rule, tho
letters P, 0, R, S will stand for splits of projections P, Q, R, S ro-
spectively.

1.1, If P is a split of a projection P, then

PP> = P>, PpP<p=p<,

Indeed,
. PP> = (P>P<)P> — P>(P<P>) — P>I|P| = P>,

The 'p'roof of the second equation is amalo@us.
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The next theorem states that the split, if it exists, is not unique in
general. However it is unique up to isomorphisms. .

1.2. If P is a split of a projection P, A is an invertible morphism and
d4 = |P|, then the pair P, = (P7, PF) where
(2) P7=P>4A7", PF= AP ‘
is also a split of P, and |P,|= cdA. Conversely, if P= (P>,P<) and
Py = (P7, PT) are splits of a projection P, then the morphism

(3) A = PP~
18 dnvertible,
(4) A = P<P?,

and equations (2) hold.

It follows directly from the definition that morphisms (2) satisty
the equations analogous to (1)

P1>P1<2P; P1<P1>:ch.4

what proves that P, is a split of P and that [Py = cdA. Conversely, if P
and P, are splits of P, then (4) is an inverse of (3) since

(PSP>)(P<P}) = PS(P"P<)P} = PSPP} = PPy = Iy,
by (1) and 1.1 (where P should be replaced by P;), and
(P<P])(PTP~) = Ipp, ,
by the same argument. Multiplying (3) by P< from the right we get the
seeond of equations (2). Multiplying (4) by P> from the left, we get the
first of equations (2). - - :
1.3. Let P be a split of a projection P. If O is such a morphism that
P>(C = P, then 0 = P<. If O is such a morphism that CP< = P, then ¢ = P~.
If P>C=DP, then (=P<P>C=P<P=P< by 1.1, what proves
the first part of 1.3. The proof of the second part is analogous.
Theorem 1.3 states that if (P>, P<) is a split of a projection P,
then each of the morphisms P”, P< determines uniquely the remaining one.
“1.4. IfPisa éplz‘t of & projection P, Q is a split of a projection @ and
AQ == |P|, then the morphism‘

R = P>QP<
is a projection, AR = AP, the pair R= (R”, R<) where
(5) ORT = P>Q>" RS = ~Q<P<,

is a split of R, and |R|=|Q|.
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We have
(P0*)(QP%) = PX(Q Q)P = P QP<= R,
(QP<)(P7Q%) = Q(P<P*)Q” = Q<1 ;p0” = 00> = Iy,
what proves theorem 1.4.
1.5. For any projections P,Q, R and for any split R of R,
(6) if PR=R, PR> = R”,
(7) if RQ=R, R<Q = R<.

In fact, PR> = P(RR”) = (PR)R” = RR> = R> by 1.1. The proof
of (7) ig similar.

In theorems 1.6 and 1.7 below we suppose that every projection in
the category C wunder consideration has a split. !

1.6. Let P, Q, R be splits of projections
PeHom(0,0), @eHom(0', 0"

then

then

and R eHom(0, 0)
respectively and let
4 « Hom(|P[, |Q|)

be an invertible morphism. If PR =R, then there ewist a projection
Qe Hom(0',0'), " a split @, of Q and an invertible morphism
Ay, e Hom((R], |Q,) such that

8) ' Q”AP<R> = Q7 4, .

More precisely, if PR = R, then the morphism
9 8= AP<RP”A™" <Honm(|Q|, |Q])
18 a projection and the morphism
(10) = 0”80~ « Hom (0", 0')

18 a projection. If S is a split of 8, then .Ql = (0>87, §<0<) is a split of @y,
|Qi| = |S|, and the morphism
(1) Ay = S<AP<R> ¢ Hom([R], |0,))
8 invertible, viz. |
(12) AT = R<P>A7'S> ¢ Hom(|Q), |R]) .

Moreover, equation (8) holds.
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Quasi-inverses of morphisms
We have
88 = AP<RP*A~'AP<RP>A~" = AP<RP*P<RP>A~!= AP<RPRP>A-'
= AP“RRP”A™' = AP<RP>A'=§
which proves that 8 is a projection. It follows from 1.4 that Q, is a pro-
jection, Q@ = (@*§7, $<Q<) is a split of @, and |Q;| = |§|. We verify that
(STAP<R”)(R“PZA™'S”) = S<(APRP> A1) S = §<88> = S<§> = L
and
(RSPZA™'S™)(S<AP“R*) = R<P>A"*SAP<R> -
= R“P>AYAP<RP>A Y AP<R>
= R<P"P<RP>P<R> = R<PRPR>
= R<EPR” = R“ER”> = R°R” = I
by (6) and by 1.1. This proves that (12) is the inverse of (11). To prove (8)
let us caleulate that ,
074, = (Q>S>)(S<AP<R>) = 0*S”S<AP<R> = Q>SAP<R>
= 0> AP<RP>A~*AP<R> = Q> AP<RP”P<R>
= Q7 AP<RPR”> = Q" AP<RR” = Q”AP<R~
by (6) and 1.1. )
1.7. Let P, Q, R be splits of projections

P e¢Hom(0,0), @eHom(0,0'), ReHom(0,0)
respectively, and let
A e Hom(|P|, [Q])

be an invertible morphism. If RQ = R, then there exist a pv.ojectz'on
Py e Hom (0, 0), a split Py of Py, and an invertible morphism A,
e om (|2, |R|) such that

(8" . R<Q”A4AP< = A,PT.

More precisely, if RQ = R, then the morphism
(9" 8§ = A7'Q<RQ”A ¢ Hom(|P|, |P|)
s @ projection, and the morphism

(10" P, = P>8P< ¢ Hom (0, 0)
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is  projection. If S is a split of §, then P, = (P>S>, S<P<) is a split of P, L
P = |S], and the morphism

(11" A; = R<Q~AS” e Hom(|P|, |R|)
8 inwertible, viz.

(12 A7 = STATQ<R> « Hom(|R|, |P,]) .

Moreover, equation (8') holds. ‘

Theorem 1.7 is dual to theorem 1.6. The proof of 1.7 iy dual to that
of 1.6.

§ 2. Quasi-inverses. Let

(1) A ¢Hom(0,,0,), BeHom(0,,0,)

be any morphisms in the category C. By hypothesis,

BA eHom(0y,0,), ABeHom(0,,0,).

We recall that B is said to be a lefi-hand inverse of A if BA = I,
Similarly B is said to be a right-hand inverse of A if AB = I 0, Thus B is
an inverse of 4 if B is simultaneously a left-hand inverse of 4 and a right-
hand inverse of A.

B is said to be a quasi-inverse of A if

(2) ABA = A .
B is said to be a reciprocal quasi-inverse of A if B is a quasi-inverse of A,
and 4 is a quasi-inverse of B, that is, if the following equations hold
(3) ABA=A, BAB=B.

2.1. If B is o quasi-inverse of A, then BAB is a reviprocal quasi-
inverse of A.

In fact,

A(BAB)A = AB(ABA) = ABA = A,
(BAB)A(BAB) = B(ABA)BAB = BABAR = BAR .

If 4 has a quasi-inverse (or, equivalently, if 4 hag a reciprocal quagi-
inverse), then A is said to be quasi-invertible.
2.2. If A « Hom(Oy, 0,) has a left-hand (right-hand) inwerse, then for
every B e Hom(0,, 0,) the following conditions are equivalent:
(i) B is a quasi-inverse of A,
(i) B is a lofi-hand (right-hand) inverse of A,
(iii) B is a reciprocal quasi-inverse of A.
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Consequently, if A is invertible, then A" is the only quasi-inverse of A
and the only reciprocal . quasi-inverse of A.

Suppose 4 has a left-hand inverse 0, i.e. 04 = Io,. If B is a quasi-
inverse of A4, i.e. if (2) holds, then multiplying (2) by ¢ from the left we
get BA = I,. Thus B iy a left-hand inverse of 4.

It B is w left-hand inverse of 4, ie. if BA = I, , then multiplying
the equation by A from the left, or by B from the right, we get equa-
tiong (3), Thus B iz a reciprocal quasi-inverse.

Since every reciprocal quasi-inverse is a quasi-inverse, this proves
the first part of 2.2 when a left-hand inverse of A exists. If a right-hand
inverse existy, the proef iy analogous. The second part of 2.2 directly
follows from the first part. '

In general, the notion of a quasi-inverse does not coincide with the
notion of a reciprocal quasi-inverse. For instant, every projection P
¢ Hom (0, 0) is quasi-invertible, viz. P is & reciprocal quasi-inverse of P.
The unit Ip is also a quasi-inverse of P, but it is not a reciproeal quasi-
inverse of P, except the case where P= Io. By § 1 (1) and 1.1, if P is
a gplit of a projection P, thep P> is a reciprocal quasi-inverse of P<, and
conversely.

2.3. If P and Q are splits of projections P eHom(0y, 0y). and
Q e Hom (0,, 0,) respectively, and A, e Hom(|P|, |Q]) is invertible, then the
morphism

(4) A = Q%A P< e Hom(0,, 0y)
is quasi-invertible, viz. the morphism
(5) - B = P>4;'Q0< ¢ Hom(0,, 0,)

is a reciprocal quasi-inverse of A. Moreover

(6) A, = Q°AP>, A;'=P<BQ>,
(7) P=BA, @Q=AB,
(8) o AP=A, QA=A4,
(9) PB=B, BQ=B.

Tquations (7), (8), (9) directly follow from § 1 (1) and 1.1°Tt follows
from (7) and (8) that ABA = AP = A. Similarly we infer from (7) ajnd (9)
that BAB == B. Thus B is a reciprocal quagi-inverse of 4. Multiplying (4)
by Q< from the left and by P> from the right, and using § 1 (1) again,
we get the first of equations (6). Similarly we deduce from (5) the segond
of equations (6).
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2.4. If BeHom(0,, 0;) i8 a quasi-inverse of A e Hom (0, O,), then ‘
the morphisms

P = BA ¢ Hom(0,, 0;), Q= ABeHom(0,, 0,)

are projections. If P and Q arve splits of P and Q respectively, then the
morphism

Ay = Q<AP> ¢ Hom(|P|, |Q])
is invertible, viz.
(10) At = P<BQ” « Hom(|Q|, |P]|) .
Moreover equations (4) and (8) hold, and

. P>A;'Q< = BAB.
If B is a reciprocal quasi-inverse of A, then also equations (B) and (9) hold.
Since (BA)(BA)= B(ABA)= BA, the morphism P i & projection.
Similaxly we verify that @ is a projection. Equationy (8) coincide with
ABA = A, and equations (9) coincide with BAB == B.
It follows from (8) and from § 1 (1) and 1.1 that

(P<BQ>)(Q<AP>) = P<B(Q>Q<)AP> = P<BQAP>
= P<BAP> = P<PP> = P<P* = I,,.

Similarly we prove that (3<4P>)(P<BQ*)= Io,. This proves (10).

- Multiplying the equation A,= Q<AP> by Q> from the left and
by P= from the right we get (4). Multiplying equation (10) by P> from
the left and by Q< from the right we get

P7AT'Q" = P*P<BQ>Q< = PBQ = BABAB == BAR .

Thus (5) holds if B is a reciprocal quasi-inverse.

Till the end of this section we shall suppose that every projection in
the category C‘ in question has a split.

2.5. 4 morphism 4 «Xom(0,, O,) is quasi-invertible if and only if
it is of the form (4), that is,

. A= Q74,P<

where P and Q are splits of projections P ¢ Hom (0y, 0,) and @ € ¥Lom (0,, 0y),
and Ay e Hom (|P|, |Q|) is invertible. ‘

This directly follows from 2.3 and 2.4.

The right-hand side of (4) is said to be a characteristic factorization
of 4. Oharacteristic tactorization (4) of A is not uniquely determined
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by 4. Tvery characteristic factorization (4) of a quasi-invertible
morphism 4 determines uniguely a reciprocal quasi-inverse B and
a characteristic factorization (8) of B. Characteristic factorization (5)
will Do called the factorization dual to factorization (4). Tt is easy to see
that the factorization dual to factorization (5) is again factorization (4).
The value B of the dual characterigtic factorization (5) is called the
quasi-inverse of A dual to characteristio factorization (4) of. A. Tt is always
a rociproeal quasi-inverse of A. However it is not uniquely determined
by A itself.

If characteristic factovization (4) of a morphism A is constructed
as in 2.4 by means of 4 given quasi-inverse B of A4, then the quasi-inverse
of A dual to the characterigtic factorization (4) iy equal to BAB. Con-
sequontly it coineides with B if and only if the quasi-inverse B is reci-
procal. .

If B, is o quasi-inverse of 4,, and B, is a quasi-inverse of 4, and
the composition 4,4, is feasible, then the composition B, B, is also feasible.
However it may happen that BB, is not a quasi-inverse of 4,4,, even
in the case where B,, B, ave reciprocal quasi-inverses. For instance, if
P, Qe Mom(0, 0) are projections, then P is a reciprocal quasi-inverse
of P, ¢ is & reciprocal quasi-inverse of @, but QP is a quasi-inverse of PQ
if and only it the composition PQ is a projection. In fact,

(PQ)(QP)(PQ) = (PQ)(PQ) -
Thuy the left-hund side of the equation is equal to P@ if and only if the
vight-hand side of the equation is equal to P@, ie. if P ig a projection.
Since the composition of two projections is not always a projection, we
see that the composition of quasi-inverses is not always a quasi-inverse
of the composition. A necessary and suificient condition for the compo-
sition of reciprocal quasi-inverses of morphisms to be a reciprocal
quasi-inverse of the composition of the morphisms is given in the follow-
ing theorem.

2.6. Lot
(1) . Ay e Hom(0y, 0y)
be quasi-invertible morphisms, and let
(12) Ay = Q1>Ao,1P1<: Ay = Q;AO,ZP;
are given characteristic factorizations of morphisms (11), that is, P,P,,
Q., Q, are splils of projections

P, ellom (0, 0,), Ppy@re Hom(0,, 0s) ,
respectively, and _

Aq, e Hom (1P|, (4l)

A.g € Hom(027 03)

Q, « Hom (Oy, 0)

Ao,z € Hom(lpﬂl! IQED
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are invertible morphisms. Let
(13), B, e Hom(0y, 0y), By e Hom(0,, 0y)

be the quasi-inverses of (11) dual to characteristic factorizations (12) re-

spectively, that is,
(14) . By = PPAGIQT,  By=PIAQF.

Then the morplhism BB, is a quasi-inverse of the morphism Ay A, if
and only if

(1B)  the morphism P,Q, is a projection.

, The morphism B, B, is a reciprocal guasi-inverse of the morphism A, 4,
if and only if '

(16)  the morphisms P,Q, and @, P, are projections.
B, B, is a quasi-inverse of 4,4, if and only if
(17) A, 4,B B, 4,4, = A, A, .

Since 4,B; =@, and B,4,= P, by (7), equation (17) is equivalent to
the equation

) EQl'PEAl A -Al H
i.e. to the equation

(18) Q;AO,ZP;Q1P2Q1>A0,1P1< = Q;Ao,zp‘f Qon,le

Multiplying (18) by Q5 from the left and by P from the right we get
the equation

(19) A0,2P2< Q1P2Q1>Ao 1= AO,EP;Q;)AO 1

Maltiplying (19) by Ag; from the left and by Agf from the right, we
get the equation

(20) - P;QII)ZQF == P;Q? )

Multiplying (20) by P; from the left and by @7 from the right we get
the equation |

(21) Py Py = Py,

i.e. the condition for P,@; to be a projection. Conversely, maltiplying (21)
by P; from the left and by @F from the right we get (20). Mu]'l‘.ii)lyillé (20)
by A, from the left and by 4, from the right we get (19). M11.11;i]51y11'1g
(19) by Q@3 from the left and by P from the right we get (18). This ﬁroves

Quasi-inverses of morphisms 353

that (17) i equivalent to (21), Le. that (15) is a necessary and. sufficient
condition for B; B, to be a quasi-inverse of A4,4,.

Similarly wo prove that 4,4, is a quasi-inverse of B; B, is and only
it Q% i3 a projoction. Thiz completes the proof of 2.6.

‘We recall that if 0 = @,1,, then condition (16) is satisfied.

The representations (12) of morphisms (11) are not unique. There- -
fore it can happen that for some representations (12) of (11) conditions
(1B) or (16) are natistied, and for other representations they are not
povti Hﬁ((l

2.7, If quasi-tnvertible morphisms (11) can be repwsmied in the form
(12) in such o way that the morphism R = P,Q, is a projection, then the
morphism A = Ay A is quosi-invertible and ils characteristic Sfactorization (4)
can be oblained as follows.

Let S, and S, be splits of the projections

(22) 8y == ATIOFROT Aoy, Bo= Aoz P; ~EP7Ag;
respectively, lot .

(23) Z)"‘Plgl 1a Q=Q2>'S’2Q2<~

(24) P> = P7ST, P<=S7PF, Q7= 0787, Q <= 5707,
and let '
(25) -“10 = Son,zP;Qon;Sf .

Then

(i) P is a projection and P= (P7,P<) is a split of P,
(ii) @ is a projeciion and Q= (0>, QF) is a split of Q,
(iii) Aq s invertible and A = Q”A,P~.
Tet R be a split of R. Since RG; = R, it follows from 1.7 that 8, is
a projoction, (i) is true and that
R<Q1>Ao,1Pi< = A1,1P<
whero
A1,1 = R<Q1>-A-0,1S1>
is invertible. Since P, R = R, it follows from 1.6 that 8, is a projection,
(if) iy true and
Q;—Ao,zpz(R> = Q>A1,2
where
-A1,2 = S;Ao,z 2<R>
is invertible. Since

P2<Q> (Pz—Pz QQI ;RQ]?:P;R>R<Q1>
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by 1.1 and §1 (1), we infer that
ALZAL1 = SF Ao PYRRO7 A (ST = S5 4o PQ7 A ST = A,
ahd coﬁsequently, by (12),
A =074, PFOT Ao Py = (Q7 40, PYR™)(R=Q7 Ay PT)
== Q;ALEAUP" == Q7 AP,
This proves (iii).

§ 3. Selected splits. In this section we suppose that the category € in
question has the following property: There is defined a function which
agsigns to every projection P in € a pair (P~, P<) of morphisms in such
a way that

1) P= (P>, P<) is a gplit of P, called the selected .mm of P, the
object |P| of this split being denoted by ra.lP,

2) it P, @ are projections and d@ = raP, then

(1) (P>QP<)> i 1)>Q>7 (P>QP&)4~ - 1)'((2'&' .

We recall that, by 1.4, the morphism R == P>QP< is necessarily
& projection and that (P~@Q>, @<P<) is a gplit of B. Condition 2) requires
that this split is the selected split of R.

In the proofs of all theorems in sections 1 and 2 we have dealt either
with arbitrary splits of projections under considerations, or with splits
formed from given splits by means of theorems 1.4. Tt follows from 2)
that if the given splits are selected, the splits formed by means of 1.4 are
also selected. Thus all theorems in sections 1 and 2 remaing true if we
restrict all splits under consideration to selected splits. In such a way
we get the following modification of thecrem 2.5.

3.1. A morphism A ¢ Hom(0y, 0,) is quasi-invertible if and only if
it is of the form .

@) A= Q74,P*
where P e Hom(0y, 0,) and @ e Hom(0,, 0,) are projections  and A,
e Hom (raP, raQ) is invertible.

The characteristic factorization (2) of an invertible morphism A4 i
not unique, in general.

If we restrict our consideration only to selected splits, we get the
following modification of 2.7.

3.2. If quasi-invertible morphisms A;, A, have characteristic Tfactori-
zations -

(3) A1 = Q1>Ao,11)1< ) Az = Q2>«A0,2P2<
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&
of form (2), such that Py@Q, is a projection, then the composition A, A, has
the following characleristic factorization of form (2):

(4) Ay dy = (Q; AOAP/Q1P>A0 2 2<)>
( & 2P<Q1P>A02 <—A-0 4P<Q Ao, (4, 1<vP2Q1>-AD,1)>)
(PTAGIQTP,Q7 4y, PF)<

In other words, if Py, Py, @1, @y, P,@Q, are projections, 4,,,d,, are
invertible, and (3) hold, then the expressions in the first line and in the
third ]me of the rlght-lumd side of (4) are of the form Q> and P<
respectively, where .P and @ are projections, and the expression in the -
second line of (4) is an mvermble morphism A4,. Moreover (4) holds i.e.,
Ay dy = Q7 4, P~.

§ 4. The case of conrete categories. For any mapping f from a set X
into a set ¥ the symbol df will denote the domain of f, i.e. the set X,
and the symbol raf will denote the range of f, i.e. the set of all f(z), ¢ X.
It Z C X, the symbol f|Z denotes the restriction of f to the set Z. If f is
one-to-one, then f~* denotes the inverse of f. By definition, a mapping
¢ is the inverse of a mapping f if d¢g = raf, rag= df and

y=7F(z) if and only if " z=g(y).

If f, ¢ are mappings and rafCdg, then the symbol gf stands for the
composition of f and g. By definitions, gf(«) = g(f(x)) for z < df.

A mapping ¢ is said to be a quasi-inverse of a mapping f if fof = f.
This equation implies that rafC dg and rag C df. A mapping ¢ is said
to be a reciprocal quasi-inverse of a mapping f if ¢ is a quasi-inverse of f,
and f is a quasi-inverse of g, i.e. if simultaneously fgf = f and gfg = g¢.

4.1. A mapping g is a quasi-inverse of a mapping f if and only if the
mapping ¢\raf is the inverse of the mapping f|ra(g|raf). A mapping g is
a reciprocal quasi-inverse of a mapping f if and only if giraf is the inverse
of the mapping f|rag.

In this section we assume that the category € in question is concrete.
Thug all objects are sets (with additional structuves, in general), and
morphisms 4 ¢ Hom(0;,0,) are triples 4 = (4,0,,0,) where A4 is
a mapping from 0, inte 0,. We shall always apply the convention thatb
if a symbol denotes a morphism, then the same symbol with the Qash
denotes the corresponding mapping, i.e. the first term of the morph1§m.
In particular, if O is an object, then I, denotes the identity mapping
of the set O onto O.

Observe that

BAd=B4

for any morphisms 4, B with cd4 = dB.
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More generally, if A;,.., A, are morphisms and 4,.. 4, exists,

then 4, ... 4, exists and is equal to 4, ... A,. Moreover, if B is a morphism
and dB = dA4;, cdB = cd4,, then

B=A4;..4, if and only if B= A,...4,.

Observe else that if 4 is an invertible morphism, then the inverse 4—*
of 4 exists and is equal to 4™

For any morphism 4, by the range rad of A we mean the range ra 4
of the corresponding mapping 4. By definition,

dA=d4d, rad=radCedd.

4.2. A morphism B is a quasi-inverse of a morphism A if and only
if the mapping B is a quasi-inverse of the mapping A. A morphism B is
a reciprocal quasi-inverse of a morphism A if and only if the mapping B is
a reciprooal quasi-inverse of the mapping A.

In the sequel of the section we ghall suppose that the category €
has the following property: for every projection P the set raP ig an object
in G, and the triples

@) P> =(I4p,1aP,dP), P<=(P,dP,raP)

are morphisms in C.

It follows directly from (2) that the pair P = (P>, P<) is a split
of the projection P and |P|= raP. The split P will be called the nalural
split of P.

It is easy to see that natural splits satisty conditions 1) and 2) from
section 3, and that for every projection P the symbol raP introduced
in section 3 coincides with the symbol raP introduced in section 4. Let
us assume natural splits as selected splits in C in what follows.

The characterization 3.1 of quasi-invertible morphismg can now be
formulated as follows: :

4.3. A morphism A is quasi-invertible if and only if the following
two conditions are satisfied:

(i) there ewists a projection P such that Ay= (A |eal, val, td) s
an imvertible morphism (in particular, the mapping A |val’ is one-to-one
and onto 1ad),

(ii) there ewists a projection @ such that rad = raQ.

If conditions (i), (i) ave satisfied, then 4 = Q>4,P< and con-

sequently 4= A,P. If B is the reciprocal quagi-inverse dual to the

characteristic factorization 4 = Q>4,P<, then B = 471q.
Suppose now that the concrete category C i closed with respect to
cartesian products, i.e. that the following conditions are satisfied:
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1) it 0, and O, are objects, then the set O, x @, is an object, and
the triples

D= (P, 0,X0y,0,), Py=(P,,0x 0y, 05) ,

where

Pyw,y)=wa and Pyw,y)=y for weO, and yeO,,

are morphisms, ; ‘
2) it 0,0, 0, are objects, 4 ¢Hom(0, 0,), BeHom (0, 0,), then

Cw) = (A(x), B(w) for  xe0,

is a morphism,
3) for any objects Oy, O, there exists an element o ¢ 0, such that
the triple o= (o, 0., 0,), where

o(w)=o0 for every weO,,

is a morphism.

The morphism ¢ defined in 2) will be denoted by (4, B).

4.4. If 0y, O, are such objects that

(a) 0, is o subset of O, and the injestion I= (I, 0,,0,), where
I(®) = o for every me 0y, is a morphism,

(b) there ewists mo projection P ¢ Hom(0,, O,) such that raP = O,,
then the morphisms

Ay = (Py, P,) e Hom (0, X Oy, 0, X 05)
Ay = (Py, 0Py) e Hom (0, X Oy, 01 X 0,) ,

where Py, P, and o are defined as in 1) and 3), are projections and therefore
quasi-invertible. However the composition A = Ay A, is not quasi-invertible.

By definition, for any @< 0, and y € Oy,

Aw, = (v, 9), @, 9) = (2,0,
and congequently A (z,y)= (y,0). Thus rad is the set Z of all (y, o)
where y € 0,. By 4.3, in order to prove that 4 is not quasi-invertible,
it suffices to show that there exists no projection @ e Hom (0, X Oy, 0y X Oy)
such that raQ = Z.
Suppose Q is such a projection, Then the composition P = P,Q(I, o)

e Hom (0, 0,) is a projection and raP = O, which contradicts (b).

* It follows from 4.4 that in many concrete categories there exist
quagi-invertible morphisms A4, 4, (and even projections) such that
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their composition is not quasi-invertible. It is so e.g. in the case of the
category of groups, of abelian groups, of finite abelian groups, and also
in the category of topological spaces, of metric spaces, of compact spaces
and of Banach spaces. It is less evident that it is so in the category of
all totally disconnected compact spaces (and, therefore, also in the
category of Boolean algebras) and in the category of dyadic spaces. To
prove it, let O, be a non-metrizable Cantor space (i.e. an uncountable
product of two-point Hausdorff spaces). Take two copies of Oy, choose
a point in each of them and identify the points. The gpace 8o obtained
is homeomorphic to a subspace 0, of 0,. The spaces 0, and 0, are .com-
pact, dyadic and totally disconnected, and satisfy conditions (a)
and (b) in 4.4 (for a proof of (b), see R. Engelking, Cartesion products
and dyadic spaces, Fund. Math. 57, 1965, pp. 287-304, Theorem 16; the
above example of spaces 0, and 0, was communicated to me by R. En-
gelking).

On the other hand, there are concrete categories with the property
that every morphism is quasi-invertible. It is so e.g. in the case of the
category of all sets, the category of all linear spaces (over a fixed field),
and, in the cage of the Fredholm category, i.e. the category whose objects
are Banach spaces and morphisms are triples (f, 0., 0,) where f is
2 bounded linear mapping from Oy into 0, that satisties the well known.
Fredholm theorem.
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