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Forcing in a general setting (9

Regu par lo Rédaction lo 27. 2. 1973 ) by
‘ Kemnneth A. Bowen

Abstract. Abstract topological notions of forcing and generic set are presented.
These notions are independent of the general notions of language and structure. Most
partieular notions of foreing in the literature' are subsumed under this notion. The
abstract notion is used to construct notions of forcing for languages containing the
equi-cardinality quantifier, infinitary languages containing dependent quantifiers, and
second-order languages.

The method of forsing was first invented by Oohen [Coh 1], [Coh 2]
to solve questions regarding the logical independence of the axiom of
choice and the continuum hypothesis with regard to the axioms of Zer-
melo-Fraenkel set theory. Subsequently Feferman [Fe] transferred the
method to the settings of number theory and analysis and Robinson
[Ro 1], [Ro 2] extended if the setting of general first order model theory.

Takenti realized that the existence of generic sets in set-theoretic

P forcing could be derived from the Baire Category Theorem and developed

| this point of view in [Ta] and lectures at the University of Illinois during

| 1965-66. This point of view was further developed in [Bo 3] and its ex-
tension to first order model theory was announced in [Bo 1]. The extension
to second order logic was presented in [Bo 2].

In thig paper we develop extremely abstract topological notions of
forcing and generic objects which are entirely independent of the notions
of language and structure. This development is presented in § 2. That
it apparently subsums a great many of the forcing notions already extant
in the literature is sketched in § 3. The extension of the notion of forcing
to langnagoes involving the equicardinality quantifier @ and to infinitary
Ianguages involving dependent quantifiers in the sense of [Ma] is
presented in § 4. )

The formulation of abstract forcing as given in § 2 is more general
than necessary in that in §§ 3-5 we always take the sets X and X, to be
X = {0, 1} and X, = {0}. We hope to use this generality to extend the
forcing concept to continuous model theory in the sense of [C/K] in a future
publication.

(*) This research supported in part by NSF grant GP-12187.
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§ 1. Preliminaries. Let 0 be a fixed infinite regulax cardinal number,
An arbitrary set is said to be 0-finite if it has power <0. A topological
space S is said to be a 0-space provided that every 0-finite intersection
of open sets of .S is again open in S. A base WU for §is a 6-base for § if
every 0-finite intersection of elements of W i expressible ag & union of
elements of .

As usual, we say that 7' C S is nowhere dense in § if S— T == §. T' ig
0-meager in S if T is the union of 6 nowhere dense subsets of S; otherwise,
T is §-non-meager in S. If S~ T' is §-meager, then T is called 0-co-meager
in §. Clearly, if § is 0-non-meager in itself, then every 6-co-meager
gubset of S is non-empty, and is in fact 0-non-meager in S. I § is T,
with no isolated points, then all subsets of power =6 are 0-meager gince
then points are nowhere dense. We say that S i8 a 0-Baire space it each
6-co-meager subset of S is everywhere dense in S. A 6-space S is a 0-Platel
space if for every € C U, where W is a 0-bage for §, if € is linearly ordered
by C, has power < 6, and containg no empty sets, then (M) C % 0.

Lemma 1.1, (cf. [P1]) Any 0-Platek space is o 0-Baire space.

Proof. As indicated in [P1], one can easily imitate the classical proof
that the space of real numbers is. an ©-Baire space (even though this
space is not an w-Platek space; cf. [Ku], p. 414).

For any product S= X S of topological spaces, the 0-product
iel

topology is the smallest refinement of the usual product topology which
makes §' a 0-space. A 6-base for this topology consists of all sets of the
form X Ui, where for each 4, U; is open in St, and card({i « I: U; # S84}
iel
< 0. Then if card(X) = 6, X is given the discrete topology, and *X is
given the 6-product topology, it is easy to check that XX is a 0-Platek
space and hence a 0-Baire space. Similarly, ¥2 becomes a 0-Baire gpace.
If € is a collection of subsets of § such that every basic open subset
of §' is a union of elements of G, then C is called a covering system for 8.
The 60-Borel subsets of § constitute the smallest 60-complete set
algebra of subsets of § which containg the open subsets of S, A subset
T'C S has the 6-property of Baire if there is an open set 0 of § such that
TAO(=(T—0) v (0—1T)) is 6-meager. It is easy to chock that in
a f-space, the collection of sets possessing the 0-property of Baire forms

a 0-complete set algebra containing all the open sets; hence every 0-Borel

set possesses the 6-property of Baire.
We write £ = 3' card(*6). If 62 = 0, then for : ny y < 0, card.(*0) == 0.

a<f
Clearly w& = o, if 0 is inaccessible, 02 = 6, and the GOH implies that
for any regular 8, 62 = 6. We write 8,(X) for the set of 0-finite subsets
of X, and 0% for the smallest cardinal greater than 6.

icm

©
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§ 2. Abstract forcing. Let 6 be a fixed regular cardinal, let § be
a 6-Baire space, and let C be a covering system of power < @ for §. Let X
and Y be fixed with X £ 0 and card(Y) < 0. Given X,C X, a map
D: SX Y—->X is called (X, 0)-Baire if for every ye¥, the set {ses8:
(s, y) e Xo} has the @-property of Baire in . In the remainder of this
section Xy £ 0 iy fixed and @ is a fixed (X,, 6)-Baire map., For ye ¥,
we seb Z(y) = {seS: &(s,y) ¢ X,} and Z(y) = 8—Z(y).

In the applications below the points of § will correspond to structures
for a certain language I and the elements of ¥ will be sentences from
a certain extension L' of L. The space X will be the space of truth values
and X, will be the set of designated truth values. In all of the applications
here, we will take X = {T, F} and X, = {T}. The map @ corresponds to
the satisfaction relation for sentences from ¥ in structures from S. Z(y) is
thus the set of points of X at which y holds (i.e., has a designated truth
value), while Z (y) is the set of points of § at which y fails. The predicate
P B35y defined below indicates that y holds at all but a “few” points of p.
When the language L contains a usual negation sign ], the predicate
P E® g to be defined below would correspond to p ESY Ty

DEFINITION 2.1. Let p«C and ye Y. Then p F3* y iff p nZ(y) is
0-meager in 8, and p F3y iff p ~ Z(y) is 6-meager in S. For se .S, write
s ER*y (s E3 y) iff for some peC, sep and p F2 y (p F2% y).

When no confusion is likely, we will omit the subscript S above.
Set C(y)= {se8: s k™ gy} :
or LmmmA 2.2. (cf. [Ta] and [Bo 3]). Let y ¢ Y. For nearly all seS, s £ y

§ B g,

Proof. Since both Z(y) and Z (y) have the 0-property of Baire,
there are open sets O, and 0, such that both Z(y) A 0; and Z (y) A O,
are 0-meager. Since 0, ~0,C (Z(y) A0, u (Z (y)A0,) and 0, O, is
open, it follows that 0, ~ 0, = 0. If s e Z(y) » O,, then for some p eC,
sep CO;. Then p ~Z (y)C O;A Z(y), so that p F** y and hence s F™ .
Similaxly, it s € Z,(y) ~ Oy, then s k™ y. The lemma now follows, since
(Z(y) ~ 0) v (Z,(y) ~0,) is 6-co-meager.

Set #=={seS: for all y ¢ ¥, s k™ y or ¢ k2 y}. Then since card(Y)
= 0 and 8 is a 0-Baire gpace, it follows that J& is 0-co-meager and hence
dense in S. & may still contain some points with unpleasant properties:
there appears to be no reagon why we cannot find an sed and a ye ¥
such that s E* y, yet @ (s, y) ¢ X,. We can remove these points as follows.

DeriNmoion 2.3. For each 4 ¢ ¥ and p G, set

8y, p)={sep: seZy) &P F™y}o{sep: seZ(y) &p ™ y}.
Then set

€= J— U Ug(%p)~

ye¥ peC
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By definition, each &(y,p) is 0-meager in §. Hence, since both ¥ and
C are of power <0, € iy 0-co-meager in § and hence-is dense in § since
§ is a 0-Baire space.

We will say that § C S is generic if § C € and § is 0-co-meager in S,
Clearly € is generic.

DeriniTioN 2.4. For §C S, p « C and y € ¥, define p g y (p forces y
with respect 1o §F and 8) to mean that p nF C Z(y). For s e¢$, we write
8 Iz y if there is a p € € with s e p such that p Ir§ y.

‘When no confusion is likely, we will omit the superscripts S above,
Set F(y)={seS: siyy} Clearly §F(y) "FCZ(y) and §F CF, implies
Fu(¥) 2 Faly). The theorem below is the gemeral form of what is ugnally
known as the truth lemma, even though it is the heart of all forcing
constructions. The present general point of view has led to the statement
as given. A restatement in slightly more perspicacious notation appears
at the end of the proof.

TEEOREM 2.5 (Truth lemma). If § s generic and y < ¥, then

CH) " EF=FW) nF=Cly) nF=Z(y) nF.

Proof. Firgt note that s e p n§ and p &2 y implies s ¢ &(y, p), since
& CE, and hence B(s, y) e X,. Thus C(y) n§ CZy)ng. Also, it sep n
~FC Z(y), then p ~ Z*y) CS—F and so p k™ y gince § is 0 - co-meager.
Thus F(y) nF C C(y) ~§. Thug, by remarks above, we now have:

EH) nTCFH) AFCCY) AFCZ(y) nF.

Now suppose that seZ(y) np n§ and p ™y, Then se &y, p),
contradicting § C €. Thus s ¢ Z(y) ~§ implies not-s F20* y, and so, since
seFC R, sE™y, Thus Z(y) n§ C C(y) n§. Finally, suppose s e p N~ Z ()
and p £y, Then s e &(y, P), so that s ¢ G Thug if p "y, then p ~ §
C Z(y), and so it follows that C(y) nF CE(y) nF. Honce we have

Z(y) nFCEy) ng,
completing the proof. Thus if § ig generic, s eJ, and y e ¥,

Skey Hf s gy iff s E"0y

itf D(s, y) ¢« X,.

A map &: SXx Y—+X iy an (Xy, 0)-Borel map it for every ye ¥,
{se8: D(s,y) e X} is a f0-Borel gubset of S. Since every 0-Borel set
hag the 6-property of Baire, every (X, 0)-Borel map is an (X,, 6)-Buire
map, and hence the foregoing resnlts hold for such a @. Most of the maps
we deal with in the sequel will be (X,, 0)-Borel maps.

Above, we began with a 0-Baire space 8 and agsumed that our map &
was an (X,, 6)-Baire map. Next we will consider a somewhat gpecial
situation in which we begin with a set S and a map & and look for a topo-
logy on S which will make § a 0-Baire space and @ an (X,, 6)-Baire map.
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Let 0 % Y,C Y be fixed, let SC¥* X, and let &: Sx ¥,—>X. Let § be
given the topology By whose bage is

{0} o {{s eS8t (An)d(s,w 1 T=g}: T eSp(To)Ag e X} .

TLet f< 6 and let O,= {s¢S: (Ax)B(s, %) } T,=g,} be a basic open
get for each a<C f. Suppose that there are a, ' < such that g, } Ty »
ATy # gy b Ty Ty, Then () 0, == 0 which is again a basic open set.

a<f .
O the other hand, if for all a, o' < f, go } Ty " Ly =gy } T, ~ Ty, then
lot 7= \JT, and g==|JT,. Then ge”X and since card(T,)< 6 for
a<f af . .
each o< 0, then by the regularity of 6, card(T)< 6. Thus on“
= {sel: (Aw)d_”v)(s, @) b T==g} is again a basic open set. Hence (S, G3)
iy a 0-space. N .
DErINITION 2.6. The map @: §x ¥y—X is (S, 0)-compact ift

VU ¢ 8 Yo)Vh € VX[V ¢ 8,(TU)Hs e STy e T[B(s,y) = h(y)]
> Tse STy e U[B(s,y) = h(y)]] .

Lumma 2.7. If @: §X Yy X is (S, 0)-compact, then the space (S, Bz)
is a 0-Baire space, and for each y ¢ ¥y, {s ¢ 8 O(s,y) € Xo} is @ 8- Borel
subset of S and hence has the 6-property of Baire.

Proof. Let <0, a< 0y be a descending sequence of non-empty
bagic open subsets of S, say 0,= {8 €S: (A0)D(s,2) t Ty= gt for each
a< 0. Then a< g implies that T,C Ty, ¢,C gs and g7 To= go: Let
U= T, and h= |Jg,, so that h e "X. Since 0 is regular and card (T',)

a<d 0

a< . .
< 0 for each a< 0, then U e8,(¥,). Now let T'e SG(U).’ Since 0 (1)s
regular, there is an ¢, << 0 such that T cr,,and soforye T,ifse0, #0,

B(s,y) = gol¥) = 1Y) -

Hence by the (S, 0)-compactness of @ there is an ¢ €S such that f)or
any ye U, B(s,y)=h(y). Thus (Az)&(s,®) } U="h, and 80 se() O,

a<<g
Thus (8, Bg) is a 0-Platek space and so by Lfm.ma 1.1,(8 ,ng,) isa Q-E;m;el
space. Now if 4 e X, and @€ Xo, {s €52 P(s, )= wo}. 18 bi‘)"s_lf . %’ .
et of §, and hence {seS: B(s,y) € Xo} zmogzo{s eS: D(s,y)= T :

a 0-Borel subset of § since card(X,) < 0.

§ 3. Relations with previous notions. We.examme the relationn];etizvseﬁ
the abstract formulation of forcing given in § 2 and some exarmp
foreing from the literature, . i

Let M be a fixed countable transitive model of ZF(;} a}ﬁnd llte]’: 1(;; g;lsét
< be elements of M such that (0, <) is a partially ordered set W
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element 1. Let °2 have the product topology (2 has the discrete topology),
and get S'= {@ ¢ "2: @ meets (G1)-(G2) of§ 3 of [Sh 27} Then S is closed
in 92, so it is a compact regular space and therefore an w-Baire space
(Thm. 34, p. 200, [Kel]). Let I be the language of ZF and let L(M) be
the extension of I containing a constant for each clement of M (ef. [Sh 1]).
Take ¥ to be the set of sentences 4 (closed formulas) of L(M) and st
A'={0,1} and X,={0}. (We interpret 0 as truth and 1 ag Lalsity.)
Finally, simply let C be the usual countable open base for the topology
on §. For an arbitrary subset & C 0, let M[@] be as defined in § 4 of
[Sh 2]. Then define @: §x Y->X by DG, A) = 0 itf M[G]k 4, where
it e M and iis the name of a in L (M) (cf. [Sh 1]), then in M[@], i is
interpreted as a constant denoting Kela)e M[G] (cf. § 4 of [Sh 21).
Leymma 3.1. @ is an w-Borel map (cf. [Sa 2], [Ta] and [Bo 3]).
Proof. We must show that for ay AdeX, {Gel: M[G]kA} is
an w-Borel set. We proceed by induction on the structure of 4. It A is
atomic, Z(4) is open since it is either empty or all of §. If 4 is 1B or
BV, the induction is obvious. Let D be the set of constants in L(M);
D is clearly countable. Then if 4 is H xB,

Z(UxB)= {6 ¢S: M[G]F UxB)
= {G e§: for some ieD, M[G E B[]}
= UZ(BJi) .
ieD

Hence by induction, Z(HxB) is w-Borel,

Thus & is 6-Borel, hence also 0-Baire, and thus the conclusions
of § 2 apply. In particular, € is w-co-meager in S. Moreover, if § C & ig
generic, G %, and 4 ¢ ¥, then

Ghgd if Glrod it GE™A it M[G]EA.

This is the Truth Lemma for elements of §. Given p ¢ 0, let p= {G ¢ S:
P € @}. Then p <C. Clearly g<p—q Cp. Thus if we define p |-
that p g4 as in §2, then the Wxtension Lemma holds. Finally, one shows,
that p g 4 iff p * 71 714, where I * is as defined in [Sh 27, by methods
similar to those used to prove Theorems 1.8.24 and 1.8.25 of [Bo 3.
Next we consider the notion of foreing in model theory as introduced
in [Ro 1]. Again we take X = {0, 1} and X, = {0}. Let T be « first-order
language containing denumerably infinitely many individual constants
and let K be a fixed non-empty consistent sot; of sentences of L. Let ¥ be
the set of all sentences of I. Tet At be the set of all atomic sentences of L,
let B= At {74: d <At} (the sentences in B are called basic), let
§=%2 with the product topology, and let € be the usual countable
base for this topology. An element s ¢ § is consistent with K if the set of

g 4 to mean
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ontoncos K= K v (0)u{14: Ades (1)} is consistent. S.ﬁnce s is
:;tlf::;lcl:izlfimth K iff éome :éim'te subsgt of K,g.is inc(')nsistent, it follows
that the set S of all s ¢ § which are consistent with K is a.closed subspaf;j}e
of §. Since § wag 4 compact complete ]I_a.usdqrff space w1th' the pI’O’_FJ-el y
of Baire, o is S. Let C= {0 n8: O C}. Given s E‘Sj’ define the f&tls“l}lle-
ture Mg 10 be the eanonical structure for 1'.11§ theory K in ‘Fhe serisi o [erif].
Finally, define the map @ by ®(s, 4) = 0 itf M, F A. Tt 213 easlj ;.OZ any
that @ is again an w-Borel map, Hence the ?e'su]ts' of § app y.o giStemy
finite p CB, we say that p is a sel oj condmmi if Ku ptls fe 1S a,ﬁon:;
Lot p”“‘ ho the set of atomie sentences in plimdjlo be thet;e t0” n%g 5
in p. Set p={seS" ])”"g_s'”l(o‘) and p™*Cs (1?}, 5o that p <C. y
- TamoreM 3.2. Let L have 71, A, and V as its logical primitives, .«,:z
P I+ Vxd be defined to mean that for all constants ¢ of L, p I A[e], an

~ for all other formulas 4 of L, let p - A be defined as in [Ro 1. Then for

all sets of conditions p and all formulas A,

prd iff pwsd. ’
Proof. We proceed by ind‘uctim.l on the number of. loglcallzfénx?sﬁ

respect to basgic sentences, and for conju s
ZS%ZT 1;1119 proof is straighttorward. Now suppose that ];l lllg-]fa—;A’ CS(; éh;t
Vs e G[s € p->"1.M, k 4]. Let g be a set of conditions S;c n sop—ﬁ C 5
Since an(f # 0 it follows that T1Vse (E[S e q—>M;E g'er;r , foll(gws
By induction, we now have ”‘]qﬂ:}k&;‘i-?s;ﬂg‘i‘iq ;V;LC{S ?ztl : E(S;ﬁﬁ Thon
that p I 714. Finally, suppose th t ) §(4. ) for any g;

ne ¢ k2 4. Suppose Mk 4. Since s EVCE’ then s ¢ , g) tor : .
fu}:te 1[}111\:% any element of C is of the for:;n q for sgmg s}i‘; (;fugﬁngll‘:siseq&
Thus since I, & 4, it follows that s k4. Tet g<C tent and hence is
and § F**A. Now sep ~ g implies that p v g 1 C?;ESIS b4 5o that
4 seb of conditions. Moreover, if s'¢Gnp f\q,h c?)I;mra,(;.’iets ) e as.
P~ { kg A. Then by induction, p v g A, whic o et
sumption that p I 4. Tll;ls given sep N € we \
and it follows that p kg 714, . . o
e flghf» 11101'.i(m of iﬁfinito forcing as introduced in [xf:;(‘:stiltc&sz‘o 9(’)1;‘05;;—
treatod within the present framework. Let K be aJ.co[RO 20 Lot S = Tx
tences in w countable language L and let ZK be‘ as m The EC‘ ubelassos
with the elementary topology; i.e., the open sets %Te domed .Sfis regular,
of S, Since these classes are easily seen _to‘ alslo fj o t,h s e dis.
Tet K be the set of universal closures of formu. aSA o by the Model
junction of negations of open formulas apcl I-;I ];elongs o S A i
Txtension Theorem ([Sh 1], p. 78), a structure s also equipped
a model of K. Xt 9 is the class of all structures for L s e .
wi1311 the elementary topology, it thus follows that Zx “ 2
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space of M. Bince P is compact by the Compactness Theorem, it follows
that §' is also compact. Hence ([Kel], p. 200), § is an w-Baire gpace,
-Let ¥ be the set of sentences of I and let X = {0, 1} and X, = {0}. Finally,
for M .S and 4 ¢ Y, define (M, 4) = 0 iff M k 4. Then as in Lemma 3.1
i is easy to verify that @ is an «-Borel map. Oonsequently, taking € to
be the collection of BO subclasses of i, it follows that the results of §2
apply and in particular, just as above, for any M e 2y, M= A itf M 5 d
where ||= i8 defined in [Ro 27].
Whether or not the construetion in § 1 of [Ba 1] can be subsummed
¢ under the present point of view is unclear. That such forcing con-
structions as [Lé] and [Ea] can be treated from the present point of view
can be seen by examining [Bo 3].

Ag our next example, we consider the construction in [Kei] with
which we assume familiarity, Let the fragment L4, the set K4, and the
forcing property § = (P,<,f> be fixed. Given s e? 2, let §CP be §
= {p ¢ P: 5(p) = 0}. Let B be the set of basic sentences of K4 and for
sef2, set :

To=U{f(p): pesto{T14: 4eB and A¢\{f(p): pes)}.

Let §= {s¢*2: T, is consistent}. Since each T, i8 an Ly, theory, we
can use the Compactness Theorem for L,, to conclude that § is a closed
subspace of T2, where F2 ig given the product topology and 2 the discrete

topology. Since ¥2 is compact and regular, so iy § and hence S is an

o-Baire gpace. Now let ¥ = Kqy X =2 and Xy=1. For s ¢ S, let M, be

the canonical model for the theory T, in the sense of [Sh 1]. Since T, is

an L, -theory and is complete for bagic sentences, M, is a model of 7.

Finally, define @ as usual by ®(s, d) = 0 off M, F 4. Then as above, it

is easy to verify that & is o-Borel, and hence the conclugions of § 2 apply.

As our final example we consider the construetion of § 2 of [Fe]

- with which we assume familiarity. Let ¢ and L* be fixed, Lot K be the
set of true basic sentences of I (i.e., true in the standard model of arithme-

tic), and let At and B be the sets of atomic and basie sentences of LY,

respectively. For s ¢ 42, lot K, = I w s~(0) U {7d: A es™(1)}, and let

S=1{sc42: K, is consistent}, Ay usual, equipping 2 with the disereto

topology and “%2 with the product topology, it follows by use of the

Compactness Theorem that S is a closed sabspace of 42, Honce $ i com-

pact and regular and ag such, 8 is an w-Baire space. Let ¥ be tho set

of sentences of L* and let X = 2 and Xy=1. For s ¢, let M be that

structure for L* such that the restriction of My to L is just the standard

model of arithmetic and for each < 4, the interpretation of Sy oin N, is

Sat = {k € ©: the formula § ¢ 8, oceurs in I} .

Finally define @ by D(s, Ay =0 iff M k 4. As usual, it is easy to verify
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that @ is w-Borel, and hence the results of §,2 apply. For.ﬁ]}ite pCB,
let P = {s €S: p C Ky}, and define p g4 iff p g 4. Then it is easy to
verify that

phred it prd,
where the latter iy as delined in [Te]. The construction in § 3 of [Fe] can
be treated similarly. :

§ 4. Forcing for extended first order languages. Torcing 'for infinitary
languages hag been considered in [Kei], where pmmagﬂy c’ounta!ole
:fl‘kmmm'tﬂ of L, are considered, and [Cov], where B,ob.msons not,lmxf
of infinite forcing is extended to the 1&nguages Laa: with 6 regular.
Regarding forcing ag a method for constructing extensions 01? gtruct@es,
wehwill use the machinery of § 2 to construct an analogue of finite forc11ng
for some of the languages Ly, which extends to the languages Ly under
suitable agsumptions on 0. o _

Lot o be a fixed first order similarity type of power < {).Where ¢ 1§
regular and 09== 0, and let T be the IL,-language of similarity type 01;
L(?i K be a fixed consistent set of basic sentences of l}land le}E Olbe a ;ee
of new individual constants with pawerLg 0;1 I.J(;;t _A-.Z; &1313 }73 (15) . ﬁiuse%;s

ined by adding t g of ¢ to L and le
obtained by adding the elements o ( d. B be & N
of atomic and basic sentences of L', respectively. 1J];iqulp sztvl;v;thfoz n(i

104 : th i gets are those
§-product topology: the basic open ‘ y_ v
{82““2: s } D=1 }D}, where D eB,(42) and te*2. For se<2, set

K=K ws™(0) v {74 desT (1)}

Lot S= {s e #2: K, has a model}. Since th(‘: theoriesf I{sLall zonf;:z ;)(’)f
e ot 5 1 a s dapace of 42, From hi 11 not
y and it follows that S is a closed . !
1@11:?11(111‘1?(1(]} geo that S is a 0-Platek space and hencehby ];eor?r;;al; t]éi.c;:
a 0-Baire space, Lot X == 2 and X, = 1, &Iﬂld let Y bet z seK g
of I/, For each 8 ¢S, lot M, be the csm.omc.',al struct;lrioroz BJS{,O iy
in [$h 1. Since K, is an L,,-thoory w.hmh is compl(; eb it
then M, is a model of K,. Finally, cl\efm;a the map Yy k
My & A. Note that card(¥)== 0 gince 5= 0.

Tovma 4.1, @ ig o 0-Borel map. ‘ .

1?"‘1?10017. By induckion on the number of 1og10jn1 Zs;(rriiﬂ;tgli IE—AZ'"(E)STI
definition, if 4 is atomie, Z(4) is open, afn.d for a;y ‘,VG e v fz b,
Also Z( M 4,) = (" Z(d,) and by definition of Ly,

. individual
TFinally, aﬁlf(VxA)ﬁ;ﬂ (M Z(Adc]), where O is the set of all individu
* ced

, ‘ i i ical model
congtants of L. ’I‘hisﬁfollows gince each M, with s ; 8 1;1 : g?n(;"t}lgjut ofel
50 that oach clement of .M,, is denoted by some elem
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the cardinality of the similarity type of I is <0 and card(C) <¢ 0, then
card(0') < 6, and we are done.

Thus the results of § 2 apply. Now if M is a fixed structure and L in-
* cludes as constants names for each element of M and K is the diagram
of I (i.e., the set of basic sentences true in M), then each M, with ¢ ¢ §
tis an extension of M. Note that M may have cardinality as large as 6,
and that card(M) < card(M,) < 6. The only place we have made use
of the hypothesis 6% = 6 is to guarantee that card(Y)== 6. Thus an
alternative to the assumption that 0% = 0 would be that ¥ was a set
of formulas of Ly, of power 6 which contained all basic formulas, wuas
closed under T, finite A, V, and substitution of terms for variables, and
contained all subformulas of its members.

A fragment of Ly, is a set of formulas of L., which containg all
of Ly,, is closed under 7, Vx, M of length < 6, and subgtitution of terms
for variables, and contains all subformulas of its eclements. Then the
development above goes through if ¥ is & fragment of Ly, with
card (Y) = 0. (The existence of such a fragment implies 0% = 0,) For the
only alteration necessary in the proof of Lemma 4.1 is to observe that
f < 0 instead of g < 4.

Finally, assume that 6= 0 and that instead of confining ourselves
to Ly,, we allow ¥ to consist of all sentences which can be formulated
in Ly, using the constants of I’. Then we still have card(Y)==0 and
Lemma 4.1 still holds. The proof proceeds as before with the addition of
a new case. If fef0', let A ...p5 [f] indicate the simultaneous sub-
stitution of f(a) for x, for all a< f. Then as before, we have

Z(V<xa: a<< /3>'A*) = Q Z(A(xﬂ: a<ﬁ)[f]) )
JekC’

and card (?0') = 6% < 0= .

Two further extensions are possible. If 0 is inaccessible and
card(C’) << 6, then we can. allow the language to contain arbitrary de-
pendent quantifier expressions <X, ¥,f> in the sense of [Ma] with
card(X v ¥Y)< 6. For then in the proof of Lemms 4.1 we have

Z(X, Y, 5B) = 1J ) (U s 8 h(y) # o) (h1f3))) ~Z(By),

eeQ heR ye ¥

whete
Q=" (Y0,
ye¥
B=%UN0" and B, is the result of simultaneously substituting h(x)

for x and &(y) for y in B, for all x e X and y € Y. By induction, Z(B,) is
6-Borel. Moreover,

{5 €85 1) = 00 1 £(3))
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ig either empty or all of §, and hence is §-Borel. Since card(X v ¥)< 0
and card (Q') < 0, then card (R) < 0 since @ is inaccessible. Since for each
ye Y, f(p) C X, it follows similarly that card(Q) < 6, and so we are done.
TFor the second extension, we simply assume that 6 is regular with
0% = 6. Then we can allow our underlying language to contain the equi-
cardinality quantifier @: ,
MEQxA i card{me M: Mk A m]} = card (M) .

Tor, once more, in the proof of Lemma 4.1, we would have

pel
where B[m] is B[m]. Now for u< 9,
{s €St card (Ms) = pu}

= U (N N (s es: a=py U2 2 5E) ~ () U Zle= b)),
hehQ! a<pf<p ceCla<p
while

{se8: card(My) =0} = (" N U N Zc#h(a)).

u<0 helQ’ ceC’ a<p
Tt follows from card (C’) <X 0 and 68= 6 that both of these are .O-Borel.
Again, for u< ¢ ‘
[seS: eard{m ¢ Ms: My Blm]} = p}
= U (N 2(B@) AN N Py ()
hepQ! a<p a<u p<p ce

where
Pop={s e8: a=p}v Z(1(a) # 1(p)),
and
Nt = (S—Z(Ble]) v U Zlo= hla).

a<p
Ay above, these can be seen to be §-Borel. And finally,
{s €8t card{m ¢ My: My Blm]} = 6}
=N N N (zBE) AN Zlo#hla)),
u<0 hepq ceC” a<p

and This is also 0-Borel. Tt now follows that Z(QuB) is ¢-Borel. Thus
the results of § 2 will still .a,pply.

§ 5. Forcing for second order logic. Given any fixed ﬁirst order 1aing"uimg.e
I in the sense of [Sh 1], the corresponding second order langnage L* 18
obtained from L by adding variables

X, Y7,7z,X,Y,7Z,X"...
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for sets (or unary predicates) together with the following additional
formation rules (using X as a metavariable for the new second order
variables).

0) If a is any term and X any set variable, then a ¢ X is an atomic
formula.

v) If u iy a formula, then ®.Xw iy a formmla.

The system of basic second order logic i3 obtained from first order
logic (ef. [Sh 1]) by adding the following axioms and rules:

Second order substitution axioms:

Second order @ -Introduction rule:
If X is not free in B, infer LXA—B from 4-B.

A second order structure W= <A, #£,..> for I* consists of a firgt
order structure (4, ...» for I and a set # of subsets of 4.

‘We will consider an extension of the foregoing notion of second order
logic. Specifically, in addition to the nonlogical symbols allreac'ly‘ per-
mitted, we will permit symbols ‘whose intended interpretations are certain
relations and functionals which may take ecither first or second order
entities as arguments, and the functionals may yield Lirst or second order
entities as values. In specifying a second order language I? we associate
with each relation symbol (functional gymbol) an integer » and an n-tuple
((n+1)-tuple) of 0’s and 1’s called ity index. The formation rules for
terms are then as follows:

(i) any variable x(X) is a term of type 0 (1),

(if) if fis n-ary with associated index iy, .., by, tppr> and @y, ..., #y
are terms of types i, ..., 0, respectively, then fu, ...m, is o term of
type 4py;-

The formation rules for atomic formulas are then:

(i) if w and v are terms of the same type, then == gy (written u = v)
i an atomic formula,

(ii) if w and v are terms of types 0 and 1, respectively, then euy
(written u ev) is an atomic formula,

(iii) if p is an m-ary relation symbol with associnted index (i, ..., t)>
fmnd By ooy W are terms of Gypes 4y, ..., 4, respectively, then puy ... my
is an atomic formula.

The formation rules for formulas are as before. In the second order
substitution axioms, U is now regarded as ranging over terms of type 1.
We also add all the appropriate instances of identity and equality axioms
(¢f. [Sh 1]). A second order theory 7 is specified wheni ts 15L1iguimge TATY is
specified and its momlogical axioms are specified. Structurves for such
enlarged languages are ag before except that as in the first order case,
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they must provide interpretations of the relation and functional symbols
of the obvious sort; equality between entities of type 1 is interpreted
extensionally.

The obvious analogues of the major theorems of first order logic
are known to extend to the usual second order logic and they are easily
shown to extend to the present context. In particular, analogues of the
following (cf. [Sh 1]) hold: the Validity, Tantology, Deduction, Equiva-
lence, and Tquality Theorems, as well as the Theorem on Constants.
The eanonieal structure for a given theory 7' iz defined just as for the-
first order case, as are the notions of extension and eonservative extension

for second. order theories and expansion and restrietion for second order

stiuctures. Using the model-theoretic characterization of the notions of
extonsion and conservative extension afforded by the analogues of
Bxercige 8, p. 65 of [Sh 1], it is easy to prove that the canonical structure
for a complete second order Henkin theory T is a model of T, that any
second order theory T has a conservative Henkin extension, and hence
that any T can be extended to a complete Henkin theory, thus yielding
the Henkin Completeness Theorem. Similarly one proves the analogue
of the Theorem on Functional Extensions ([Sh 1], p. 55) by model-theoretic
means and thus obtaing a version of Skolem’s Theorem: Any second
order theory 7 has an open conservative extension in basic second order
logic. This turns out to be pivotal in extending forcing to second order
theories.

Many formulations of second order logie explicitly or implicitly
contain various comprehension schemata as logical axioms. For our pur-
poses it is necessary to regard these as nonlogical axioms. In particular,
we say that a theory T formulated in a second order language L is im-
predicative if all ingtances of the schema

(+) EXVy[Y e X 4]
are provable from 7' in basie second order logie, where A ranges over all

formulag of L not containing the variable X.

Now let T be @ fixed countable second order theory formulated in
a countable second order language L with equality, and let A be a fixed
countable second order model of 7. Using Skolem’s Theorem, let T be
an open conservative extension of T and let ¥’ be an expansion of to
a model of T" (using the second order analogue of Exercise :‘31), p. 65,
[Sh 1]). Let I= {ea: n< @} be a countable set of new indiv'ldual con-
stants and let § = {Sn: n < w} be a countable set of new set (i.e., secqnd
order) constants. Let I* be the language obtained from L(I") by adding
the following: )

(i) distinet constants for each individual and set in the structure QI;

(ii) the elements of T w8 (it is agsumed that I~ 8= 0). Let Az

4 — Fundamenta Mathematicae, T. LXXXI
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consist of all closed instances of axioms of T’ in L* together with all
closed quantifier-free formulas of L(T’) true in A’, and let A% be the set
of closed atomic formulas of I*. Giving 2 the discrete topology, it follows
that 42 equipped with the product topology is compact and regular.
For s €42, let T = da* o s™0) w{14: Aes™™1)}, and let S be the
collection of s e 42 for which T is consistent in basic second order logie.
By the Henkin Completeness Theorem it follows that S is a cloged subset
of 42, and hence with the subspace topology § is itself compaet and
regular. Thug § is an w-Baire space and if € is the usual basis for the
subgpace topology on .S, then card (C) == 8. Let X == 2, X, == 1, and let ¥
be the set of all sentences of L*. For s e S, let M, be the structure for L*
obtained by converting the canonical structure for 7 in the sense de-
scribed above (cf. [Sh 1]) to an extensional structure in which = and
¢ have their standard-interpretations. The main step in this consists in
replacing the equivalence class U° = {¥: ko U= V}, where U is & vaxiable-
free second-order term, by the set of all equivalence classes a® of firgt
order terms a such that for some b e a® and Ve U Fa! b e V. Then define
the map @ by D(s, 4) =0 iff M, F 4. Then by using arguments similar
to those used in earlier sections it follows that @ iz an o-Borel map, and
thus all the results of § 2 apply in this setting. Let € be ag defined in § 2.

Nowfori=1,..,nandj=1, ..., m, let 4; and B; be closed atomic
formulas of L* and let C be the sentence

A]V vee VA%V ——]B]_V sas V »_‘Bm .

Let s ¢ €. It is easy to see that if D is an atomic gentence or the negation
of an atomic sentence of L* and Fz'D, then M,k D. We claim that if
FrC, then M,k C. By the remark above it would suffice to show that
either for some 4, k! 4;, or for some j, o' ] By. Suppose that for no ¢ do
we have Fr) ;. Then since T, is complete with respect to the basic for-
mulas of L it follows that for ¢ = 1, ..., n, we have Fx' "d;. Using k! C,
we have FziT1B V...V T|B,. Now since T, is consigtent (since GC.S),
it follows that for some j, By is not provable in T.. But then again, since
T; is consistent and complete with regard to basic formulas, we have
ko T1By, as desired.

Now let D be an element of Aa* and let s e @ Let D' be logieally
equivalent to D where D’ is in conjunctive normal form, say D' is CA ...
.. A G, Now by definition of 77, Fo) D and so bt D' Hence for k=1, ..., p,
F,Cy. But the remarks above apply to each Cy, and hence it follows
that M, F D. Thus M;|L(1") is 2 model of 7" and since 7" ig a congervative
extension of T, then M, |L(T) is a model of T. Moreover, since the diagram
of A’ is included in A&* it follows in the usual way that M, |L(T) can
?)e regarded as an extension of 9. Thus we see that for each 8 e €, M| L(T)
13 an extension of ¥ which is a model of T.
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