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Abstract. 'The infinitary language dealt with in this paper is like the usual language
for first-order quantification theory with the sole difference being that the predicate
symbols can be denumerably long, like P (z,, @, @5, ...). It is shown that in this language
certain types of finite sets of formulas must have denumerable models if they have
models at all, while some finite sets of formulas may have only non-denumerable models.
Similarly, certain types of sets of formulas with cardinality o, must have models with
cardinality o, if they have any models, while some sets of formulas with cardinality w,
have .only models with higher cardinality.

In this paper we present two theorems and four counter-examples
which compose & solution to a problem posed by Leon Henkin in [1].
The theorems deal with the problem of how certain infinitary theories
can force their models to have high orders of infinity. The fype of in-
finitary language dealt with containg a denumerable set of variables
Xyy By, Ty ..o A1l & not necessarily denumerable set of constants a; and
predieates P; and differs from the usual language of quantification theory
in that a predicate symbol may be followed by a sequence of constants
and variables of any type equal or less than o, i.e. infinitely long predi-
cates are allowed. But we emphasize that infinite conjunctions and dis-
junctions and infinite strings of quantifiers are not allowed. Such
notiong of quantification theory as “closed formula®, “model for
a theory”, ote. carry over to this language in an obvious way. For theories
with equality (E) as a predicate, we only speak of models such that
E(a, b) never holds for distinet elements a and b. :

Before the theorems can be stated, two concepts must be defined.
IC 8 i aoset of fornulas, then by 3 aqfe,(8) we mean the result of sub-
stituting a, for each freo a, in § for all n. We say that S is a sef of compa-

T

rable formulas it each pair of infinite sequences of constants in ' an/oa(S)

(t) The author would like to thank Professors Martin Davis and Alistair Lachlan
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has the property that all but a finite number of constants appear in
exactly the same places in the two sequences.

TeEOREM 1. If S is a finite set of comparable formulas and S has
a model, then S has a denumerable model.

TrrorEM 2. If 8 is & set of w, (first uncountable cardinal) comparable
Jormulas, all of which are cither closed or constant-free and contain no finitely
long predicates other than equality, and 8 has o model, then S has a model
with cardinalily equal or less than w,.

Note that if a theory has no more than o, predicatos and constants
and the axioms are comparable, there can be no more than w, axioms.

Before proving these theorems, we give examples that show the
impossibility of certain stropger theorems,

Examere 1. Let § consist of (tw,).d (a, 2y, @y, ...) and all formulay
of the form’ ~A (@, %y, %, ...) where n ranges over all positive inte-
gers. § has as a model any structure where the set of all ordinals less
than e, is the universe and A4 is the set of all sequences of type w,
such that the first element in the sequence is greater than the least upper
bound of the rest of the sequence. But & can not have a denumerable
.model because the theory requires thiat for every denumerable sequence
of elements in the universe there are elements in the universe differing
from each element in the sequence. So a comparable theory need not
have a denumerable model.

ExamprE 2. Let 8 consist of
(Fay) (Hany) (0 # ) and (Fay) A (w0, @y, @, ...)

and all formulas of the form
(A (s By, @, erey Doy ) AA(Dy, By Ty ey Ty ) Ay # Byp) Dy # W

where 7 ranges over all positive integers. In any model of this theory,
there are at least 2° sequences of elements, ¢,, ¢,, ¢, ... that can be chosen,
and for each such sequence an element e, can be chosen such that
Aley, e, ey, e, ...) s satigtied. In this way 29 gequences with 2@ different
first elements are produced. So any model of the theory has at leagt 2%
elements. Thus a denumerable, non-comparahle theory need not have
models with cardinality less than 2@,

BExAMPrE 3. Using the same idea as in Example 1, we can construct
a finite non-comparable theory which has models but no denumerable
models. Let 8 consist of (W) A (,, @, @, ...) and ~A (@, @, 0y, @y ...) and
A (@, Byy By, o)A (2, Bay one)

BExaMpre 4. To see the necessity of the requirements in Theorem 2
consider the theory containing the axioms (Hary) Py, my, w0y, 0.), 051

©
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and all formulas P (2, o(1), 0(2), ..., o(k); @prgy Tppsy -..) = Bo(a,), where o
runs through all mappings of finite initial segments of the natural numbers
into {0, 1}, and ~ (B.(z;)A R (2,)) for each pair (0, T) such that ¢ and =
have the same domain and ¢ # 7. :

Thus all finite strings of the constants 0 and 1 appear in the axioms.
The theory has models but all have power =2° gince in any model
Pla, f(1), £(2), f(3), .)AP(b, g(1), 9(2), 9(3), ..)>a 5 b for any elements
a, b and any mappings f and g from the natural numbers to {0, 1} such
that f # g.

Prootf of Theorem 1. Since § is finite and comparable, all but
a finite number of constants appear in exactly the same argument places
in 3 anfwa(8). Call this set of constants B and call the remaining finite
set of constants and variables F. The set of argument places that have
members of F appearing in them somewhere in § can be partitioned
into a finite set of sets of argument places, {Fi: 1 < i< n}, such that
each infinitely long atomic formula appearing in § hag only one constant
or variable appearing throughout each F,. Now expand § by adding,
for each intinitely long predicate P, the axiom Piyy by igy o) e
« P(#y, #yy @5y .oy @a) where P(iy, iy, 14,..) has the same constants
appearing in the argument places in ¥ as the formulas in} an/ma(S) and a4,
for 1 < @ < 0, appears in the argument places in F; inP (i, iy, tsy --.) a8 well
as appearing in P(m, @y, @y, ..., 2,). Call the resulting theory 8§’ clearly
it has models. Now if we replace each atomic formula P (j,, Jas Jas +..) Which
appears in 8 by P'(e;, e, e, ..., en), Where ¢, for each 1 <4< n, iy the
constant or variable which appears in ¥y in P(j;, j,, 4, ...), We get a theory
E(8) such that any model of 8 is a model of R(S). But since R(S) is
o finitary theory, it has a denumerable model M. We could expand M
to a model of § by defining an infinitary predicate P corresponding to
ea.ch fihitm'y predicate P’ that was introduced into R(S). We do this
according to the rule P(ay, ay, @y, ...) P'(by, by, b, ..., by) where b; for
1< j =< nis the first element a; which appears in F; in P(ay, a5, @, ...).
Q.E.D.

Proof of Theorem 2. Call the set of constant-free formulas
in 8 “4” and call the set of closed formulas “I'.

Since A v I"has a model therefore it either has a model of cardinality
les than o, or else there exists a set &, which has a model, of all the substi-
tution instances of all formulag in 4o I' that can be made from the
constants in {ay: 4 < ey}, The get 8" could be divided.into 2°° equivalence
classes formed by the relation of “comparability.” Bach equivalence
class has o, formulas in it. Denote the set of equivalence classes by
{87: i< 29}, Note that for each i< 2%, 4 v §; has a model. We now
define a set of sequences of sets of formulas. First note that each 8}
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could be arranged and denoted s {flim k< gy where each Jin (triple

7 1 ¢ ’ 4 - f 14 ’
subseript) is a formula. Let ¢;(8;) be the set formed by adding Bl 1)
to Sy for each formula f7,, in §; which is of the "l',m-m (¥La) hy o n®) and
adding hj,,;,k(r:) for all constants ¢ which appear in &) for each formuly, Jiiw
of the form (w)hy ,.(2).

And et gy.(S5) be the set formed Dby arcanging g8y s

{venan: k< o} and adding hy, o6 10 gn(8)) for ench formula
Irvs1,4 Of the form (8w hjy 4 i(w) and adding Al 1aade) Tor all constants ¢
which appear in 8§ if ( i’ 1k i of the Torm () by, uw).

Lt 8% be L oS0 We induetively define asequence {8% g o

S L) Ny ) 1
42y N<leag
using the axiom of ehoice. 1f 8§ hag been chosen, then 87! is chosen as
follows: let: A be the set of all substitution instances of A whose constants
are in 8% Then divide 8*v A* into equivalence clusses based on the
comparability relation. Oall the set of classos {84 - 2"} Hach ot §°
can be arranged and denoted as oe k< wb. Now, let gi(8%) be the
set formed by adding A, (¢} ,) to 8% for each formula 1%, , in & which
. ’ 1,4,\ Y1,k 1 PER NG i
is of the form ("w)hs, (2), and adding hi g i(e) for all constants ¢ in 8¢
if ff;, is of the form (w)h¢, ,(x). .

Leb gy, 1(8%) be the set formed by arranging g% (8% as {/, et k<o)
and adding Ry s, (03 g,6) 00 g8 i farq 0k 18 Of the form (Gle) Iy,
and adding A%, .{0) for all constants ¢ in 8% if %, ... i1 of the form

8 AN-p1,4,h N4
p o
() g, 5,0()
Then 8= ) | g4(89.

. 1<2% N<ag
It B is a limit ordinal, then let 8% == (&% Thus, our definition of
a<fl
{8: << w,} is complete. Let @ = J & Note that the set of constants

“<w
wh'eh appear in & hds cardinality wl.l.lf:f G is divided into 2" équivalence
classes {Gy: j < 29 by the re ation of comparability, then each ¢ has
the property that 6= {EJ 8fy for some sequence {jf: a <
) asfiwg

where 1 < j8 << 2 for a < f < w, 50 that each set 8 is one of the sets 87
mentioned previously, and 8, has the property that 8% is disjoint from G
when k< a.

It is easy to see that %_J ;S’f;ﬁ has & model with the sume universe

i«

a8 the original model U, since it N, has the property that 8% is always
disjoint from it if k< a, then 8%, contains only substitution instances
of 4, so each constant in 8%, can be assigned to an element in || and
each successively introduced constant in LJ & can obviously he

<< oy}

. R o e oy,
assigned to an element in IU] in such a way as to oreato n modol for
L 8. '
e f<oy ‘ :

We can convert @ into a'set of formulas @; such that & has & model

iom®
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whose universe is |U] and no 2 constants appearing in G} are assigned
to the same individual.

We define a sequence denoted as {(85): a << B< wy}, together with
an assignment of each constant appearing in any set of formulas 8% to
an individual in |U|. Let (8%,) = 87 We can assign all constants ap-
pearing in (8%,)" to different individuals in |U], since we assumed that | 7|
has cardinality equal or greater than -

Suppose (8,)" has alveady been chosen and every constant in (S5s)
has been assigned to a ditferent element of |U|. Then 8%$1; is chosen as

7

follows, along with an assignment of each constant in (8741.) to a different

-element of |Ul. Arrange and denote (%) as {08 ;000 <o} and let

(gf)’(ﬂ{,’ﬂ)' be the set formed by suceessively adding, for k<< w,,

1) mf g (e 1) to (865)" it 0 io1 18 Of the form (Bat) mf 5 (%), and has
the property that it is possible to agsign ¢ t0 an individual a in U]
that no constant in (8%) and no constant of; where j <k has been
assigned to in such a way that the assignment of f » to the element
o in |U], together with the assignments of constants in (8%)', gives us
a model for mf ;5 (¢ ). In such a case, we assign &, to some new indi-
vidual « with the above property.

2) M5 i(¢) to (8%)) if g, is of the form (Hz)m 5 (z) and ¢ is
a previously introduced constant in (gf)'(Sgﬁ)' and |U| together with the
asgignment of previously introduced constants gives us a model for
M g5,4(0). ‘

3) mf g r(c) to (8hp) it gf,, . is of the form (m)mé ;o (@) and e is
a constant in (8" :

We remark only that (gf..,)'(8%) is related to (9%)'(8%)" in the same
way that gh,,(85) is related to g5(S%) except that the same provision
is made ag in the definition of (g‘f)’(Sﬁ,})’ to insure that each new constant
is assigned to o new individual in |T].

Thus, by induction (and the axiom of choice) we have a model for

Ngo(gfv)’(k s)' Which has each constant assigned to a different individual

in U]
We define (8f}51,) to be (N U (9%)/ (85 ) © 4534, where A8%L, is the
=Sy
set of all gubstitution instances of 4 whose constants are in S and
which are comparable to the formulas in (J (¢5)(8%). If we choose
l\T N

<wg
any assignment of those constants in 4953, — (J (g%)'(8%) to individuals
: ' N<wy
in |U], we expand our model for |J (¢%)'(8%) to a model for (8851,
N<wo
Thus our induction is complete. We have defined a set @) = 1J (8

af<ay

which has & model with |U| as its universe and no 2 constants assigned
3 — Fundamenta Mathematicae, T, LXXXI
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to the same individual. This model gives us & valuation V; for all atomic
formulas in (G;)". For j < 2°°, each (G4)’ has such & valuation, and each (@)’
has exactly the same set C of constants appearing in it, and the valuations
do not conflict since (@)’ and (Gx)' are disjoint if & # j. Also, any substi-
tution instance of any formula in 4w I" which ig constructed with con-
stants in € appears in some (Gy)’. Thus, we have u stiructure with the
set € as the universe, each constant in ¢ assigned to itself, and the predi-
cates determined by the set of valuations V. It can casily be shown by
induction that every formula in | J (Gy)" is satistied by this strueture.

Jo@y
So the structure is a model for 4 v . Q.E.D,
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. Entscheidungsprobleme der Theorie zweier
Aquivalenzrelationen mit beschriankter Zahl von
Elementen in den Klassen

von

Kurt Hauschild und Wolfgang Rautenberg (Berlin)

Abstract. Let Eum (2 < n < m < o) be the class of structures (A, R,, R,> where
Ro, By are equivalence relations such that card ¢ |R, < n, card a|R, < m for alla ¢ A.
Among other things it is shown that B, is recursively decidable iff n = m = 2.
The same holds for the corresponding classes E’:,i_nm of finite structures. Proofs are by
model-interpretability.

1. Ubersicht. By sei F die Klasse aller Strukturen (M; R,, R,>, wo
R,, R, Aquivalenzrelationen iber M sind und iiberdies die Bedingung

() a[Ry ~afR, = {a} (aeM)

erfillt ist. Perner sei F, die Klasse derjenigen Strukturen aus ¥, die
dariiberhinans der Bedingung

(%)

geniigen. In [1] und — unabhiingig davon —in [2] wurde die rekursive
Unentscheidbarkeit der (elementaren) Theorie ThE (ohne Identitéit)
gezeigt und dariiberhinaus, daf F eine Reduktionsklasse im. Sinne der
Pradikatenlogik ist (d.h. jede Aussage H des Pridikatenkalkiils ist
effektiv in eine Aussage H' der Sprache von F (ohne Identitét) iiber:
fithrbar, so daf J dann und nur dann allgemeingiiltig ist, wenn H' ¢ ThE.
ThE, kann als Theorie einer Aquivalenzrelation mit Identitdt aufgefalBs
werden; diese Theorie ist bekanntlich entscheidbar, daher erscheint das
Entscheidungsproblem fir ThH,, insbesondere fiir n = 2 als eine interes-
sante Fragestellung. Die Antwort wird gegeben durch

Treorum 1. B, (n 3= 2) ist universell beziiglich Modellinterpretierbarkeit.
Damit ist By, eine Redultionsklasse fiir den PE, und daher ist Th By rekursiv
unentscheidbar.

Weil B, C By C F (n 3> 2), und weil ThE, endliche Erweiterung von.
Th B, ist, geniigt es, den Beweis fiir n = 2 zu fiihren. ThF, ist auch endliche

carda/By<n< o (aeM)

" Brweiterung von ThH, so daB dies Theorem eine Verschirfung des bislang

bekannten Resultats ist. Das bezieht sich im besonderen auf die:Uni-
*
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