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rem 3.3 one has to consider the reducts of the models of the full expanmon
of T to the original similarity type.
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The boundedness principle in ordinal recursion
by

Douglas Cenzer (Gainesville, Flor.)

Abstract. An application of Spector’s boundedness principle to ordinal recursion
yields, for a recursively regular and f < a: (1) Any a-recursive functional total on S P (B)
can be defined without the search operator. Let la/ﬁI be the closure ordinal of the class of

a-recursive inductive operators over f. For example, an operator over o is w;-recursive '
iff it is A}. A new prootf of the fact that |4}] is recursively singular follows from the more
general result (2) |a/B| > @ iff |a/B| is singular. Characterizations of closure ordinals are

obtained in terms of projectibility. For example, (3) |a/8] = aiff ¢is absolutely projectible
to B.

1. Introduction. The boundedness principle, due to Spector [6],
is basically that any X} set of well-orderings is bounded below ;. We
apply this principle to ordinal recursion to obtain several results regarding
funectionals and specifically inductive definitions on sets of ordinals.

We assume that the reader is familiar with the concepts of inductive
definitions and of ordinal recursion as ouflined in [1].

Briefly, an inductive operator I' over a set X is a map from P(X)
to P(X) such that for all 4, A CI'(4). I' determines a transfinite se-
quence {I*: £e¢ORD (ordinals}), where I*= U{I": o< £} for £=0
or & a limit ordinal and I**!= I'(I*). The closure ordinal |I'| of I" is the
least ordinal ¢ such that I®*!= I, The closure I' of I' is I'7l, the. set
indnctively defined by I

The definition of the a-recursive functionals and the primitive
ordinal recursive (p.o.r.) functionals is a natural generalization of standa-d
recursion over the natural numbers. We list in § 3 some basic facts about
ordinal recursion essential to this paper.

In this paper we congider the notion or ordinal recursive inductive
operators on sets of ordinals. Given recursively regular ordinals a and B,
B < a, let |e/B] be the closure ordinal of the class of inductive operators
over 8 which are a-recursive in parameters less than g; let |(aff)| be the
closure ordinal of inductive operators over § which are a-recursive in
parameters less than «. (The latter are called weakly a-recursive.) For
example, |w/w| = |(w/w)| = ». In this paper we consider only countable

‘a and B.
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The non-triviality of this eoncept can be seen by the fact that every
arithmetic operator on w i§ w,-recursive, so that |w,/o| is much larger
than ;. (See [2] and [4] for a diseussion of recursively large ordinals.)
Tn § 3 we prove the following result, which implies that (43 = |0l

THEOREM 3.9. An inductive operator I' over w 48 wy-recursive iff it is 4],

We obtain characterizations for the ordinals |e/f| and |(a/)|. We
also present conditions regarding the relative sizes of these two ordinals
and « and regarding the regularity of the two closure ordinals.

2. Summary of results. We need three notions of projectibility for
recursively regunlar ordinals « and f< a

DEFINITION 2.1. (3) « is absolutely projectible to B iff there is an a-
recursive function mapping a 1-1 into §;

(b) a is projectible to f iff there is a weakly a-recursive function
mapping « 1-1 into §;

(c) ais weakly projectible to B iff for all a<C a, there is a weakly a-
recursive function mapping e 1-1 into g.

In § 4 we apply the boundedness principle to obtain two somewhat
technical results which can be described informally -as follows:

(1) Any total weakly a-recurgive functional can be defined without

using the search operator.

(2) Any weakly a-recursive indunctive opemtor over a can be ap-
proximated by weakly a-recursive operators over ordinals less than a.

In § 5 we present the characterization theorem.

TarOREM 5.1. For any recursively regular ordinals ¢ and B < a:

(a) |(afB)| is the least ordinal y such that for any v << a, p+1 _¢__ {a: {0}
is p.o.x. in v and parameters less tham B}.

(b) For |(a/B)| < e, |(ofB)| is the least ordinal y such that for any v < a,
y+1 _¢_ {o: o is a-recursive in v and parameiers less than B}, or equivalently,
the largest ordinal which is projectible to B (by a weakly a-recursive function).

() For |a/f| > a, |aff] = (o/p)].

() For |a/f| < a, |aff| is the least ordinal y which is not a-recursive
in parameters less than B, or equivalenily, the largest ordinal which is ab-
solutely projectible to f (by am a-recursive function), or equivalently, the
least a-stable ordinal greater than or equal to f.

In § 6 we prove the following theorems.

THEOREM 6.1. For any recursively regular ordinals o and f < a

(a) |offl = a iff a is absolutely projectible to B;

{b) a absolutely projectible to § and {a} mot p.o.r. in parameters less
than B implies that |o/f| = a.

TeROREM 6.2. For any recursively regular ordinals o and § < a:

(@) (a/B)] = e iff a is weakly projectible to p;

icm

The boundedness principle in ordinal recursion 205

(b) @ projectible to B and {a} not p.o.r. in parameters less than a implies
that |(¢/f)| = a;

(¢) a weakly projectible to B and mot projectible to B implies that

I(a/B)] = a.

When «a is absolutely projectible to 8, the notions of weakly a-re-
cursive and a-recursive coincide, so that |o/] = |(¢/f)|. Conversely;
when a is not absolutely projectible to 8, the two ordinals are not equal.

It is known (see [1]) that |43 (which equals |w;/w| by Theorem 3.9)
is recursively singular, This fact is a corollary to part (a) of the following
result.

TuroREM 7.1. For any recursively regular ordinals a and f < a

a) |a/B] > a implies that |afB| is recursively singular;

(b) |¢/B] < a implies that |a/f| is recursively regular;

) la/B] and |(a/B)| are both fimed points of the sequence {w.: v ¢ ORD}.

3. Ordinal recursion. There are two approaches to ordinal recursion.
First, there are the p.o.r, functionals, the smallest class containing the
constant funetions 0,1,2,.. and o, the successore function, decision
by cases, a supremum and an evaluation functional for functions, and
closed under strong composition (or full substitution) and strong primitive
recursion, These p.o.r. functionals are all total on total functions. Second,
there are the a-recursive functionals {a}, (indexed by a < w), defined
by an inductive operator in a system with a search functional up to a
and an enumeration functional. There is a set PORC o, itself p.o.r.,
such that every p.o.r. functional is equal to {a}e, or U{{a},: a e ORD},
for some @ ¢ POR. A functional {a},, is strongly recursive iff {a}, = {a},
for all «. The nsefulness of the p.o.r. functionals lies in the followmg two
results.

ProposiTION 3.1. Every p.o.r. functional is strongly recursive.

An ordinal « is recursively regular iff there is no weakly a-recursive
function mapping a smaller ordinal cofinally to a; otherwise a is re-
cursively singular,

PROPOSITION 3.2. For each 1< w, there is a p.o.r. relation T such
that for oll a< , all a,f,y, and all f foy wens fr1o1t ,

{ad,(a, F) =B i EETHE, v, <Ay g B, )i
if p is recursively regular, a, f <y, and each fi y-recursive, then
{“}y(g;j)ﬁﬂ iff Hé<ylHo< 7'111{570'; <a'7£7/9>zvf)-

Since we are dealing in this paper with inductive definitions, it is
important that our ordinal recursive functionals be cloged under inductive
definitions in the following sense. (See [2], Lemma 3.12; for details:)
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PROPOSITION 3.3. If I' is an a-recursive (or p.ox.) inductive opemtw
on sets of ordimals, then {(z, &)t veI%} is a-recursive (p.o.r.).

The ordinal recursive functionals are connected with IT}
by the mext two results from [2], §5

PROPOSITION 3.4. If QC X P(w) is II3, then there is a p.o.r. re-
lation R such that for all m and A:

Qum, 4) iff Wo-R(o,m,4)

relations

iff Ho< oft-Rlo,m,A).

DerFiNITION 3.5. W(p) iff @ is the characteristic function of a well-
ordering of a subset of w; |p| is the type of  and |u4 the type of {u}4,

PROPOSITION 3.6. Let K[A]= {{a,m,n): ™ wf, of, (a, m,ny, 4)}
and let K [B] = {<s, a,u,vy: T|s|, Isi4, <a, [ul4, |v|4, B)}, for A BCo.
Then K[A] is IT} uniformly in A and K 4[B] is Hl wniformly in A and B.

We need two lemmas to prove Theorem 3.9.

LeMwmaA 3.7. There is a ]‘[1 relation L and Z} relations M and M’ such that

(a) for all p,yew, Lig,v) iff WeAW()Alpl <Iyl;

(b) if W(y), then for all ¢, M(p,y) iff Wip)Alpl < lpl;

(c) if W(y), then for all o, M'(p,y) iff Wip)Alpl<lyl.

LEMMA 3.8. For all AC w,

(@) W(A) = {u: W({{u}")} s II}- A complete,

(b) for any VCW(A), if Vis X1 in A, then there is a & such that for
all veV, L({o}4, {my).

THEOREM 3.9. An inductive operator I" over w i w, - recursive iff it is A3 .

Proof. (—) Suppose

mel'(A) it
m¢(A) it

{a’}wl(m7 A)~1,
{a}g,(m, 4) =0
Then since {a},, is total, being an inductive definition, and for any 4,

o, < of, we have as in Proposition 3.6:

mel(4) it (a,m,1xeK[A] if <{a,m,0) ¢ K[4],

proving that I' is 4}.

(<) Suppose I' is 4;. Then by Proposition 3.4 there are p.o.r.
relations B and 8§ such that for all m, A4:

mel(4) iff Ho< wf R(s,m,A),
m¢I(d) iff Ho< ot -8(c,m,Ad).
(1) Vm, Ao < wf[R(c, m, A)v8(c, m, A)]:

‘We want to show that o < o, is always sufficient. Applying Proposition 3.6,
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we can rewrite (1) as
(2) Vi, ALs[W ({s})AP(s,m, A)], -where P is IT*.

Let V= {v: ®m, AVs[P(s,m, A)—M ({v}, {s}4)]. Then ¥ is 2} and
vV C W(@D) by (2), so by Lemma 3.8 there is a % such that for all ve ¥V,
o] < |B] < ;. Tt follows that

Vm,A Ho < |7 < (ul[R(o‘ m, A)VS(J m, A)],
go that I is «,-recursive.

4. An ordinal recursive boundedness principle. In this section we apply
the techniques of (<) in the proof of Theorem 3.9 to bound more general
compntations.

‘We need the following lemma, due to Sacks [5]. We refer the reader
to [3] for a proof.

Lemma 4.1. For any countable weourswely regular ordinal a, there is

1

THEOREM 4.2. For any countable recursively regular ordinal a, any
7, < a, and any functional AL, B-{a},(v,{, B) total on Bx P(f), there
is @ o << a such that for all £< a, all £ < B, and all BC p:

{a}a(v, &, By~ & iff -Tl(g'r;y {a,7,(, &, B).

Proof. Let wi = a as in Lemma 4.1. Choose a well-ordering ¢ re-
curswe in 4 of type f and choose t 5o that [t]4 = 7. For any BC g, let
= {u: M'({u}4, p)}. B*is p.o.r. in B, A and Bis p.o.r.in B*, 4. (See [2],
Proposmon 5.12.) We have, for any &< @, any (<< 8, and any BCp,

{a}fz, ¢, B)y=¢ iff Wo< wiixy.'Tl(CU 0,4a,7,¢, &y, B).
For BC o, let B= {{u|4< B: u < B}. The relation R, defined by

R(b,s, A,B) it o TY(|s|**Z, |s[**Z, (a, 114, [BI4, |24}, B)
is II' by Proposition 3.5. We have
(%) Vb, B[M'({b}4, p)>Hs-R(b,s, A, B)].

Let
= {'v: b, B[M’({b}“, (p)AVs(R(b, s, 4, B)—>M ({v}4, {s “"B))]} .

Then V is Z*-4 and ¥ C {u: W ({u}%)} by (). It follows from Lemma 3.7
that there is a % such that for all £< a, all {< B, and all BC g,

{a}(7, 8, B)~¢ iff Ho< WH'TI(G’UJ <a'777;76>5B) .

Let o= |al4.
This i our formal version of result (1) as stated in the summary of
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results. We next state without proof the formal version of result (2), as
it requires a similar, although more complicated, argament.

TaEREOREM 4.3. For any countable recursively regular ordinal a, cmy
T, < a, and any functional A5, B-{a},(z,{, B) total on aX P(a), there
s a B< a such that for all {< & and all B C a: {a}(7, ¢, B) ={a},(v, &, B [p)e

5. The characterization theorem. In this section we prove Theorem 5.1.

|(a/B)| is the least ordinal y such that for any v << a, y+1 g_: {o: {0}
48 P.0.x. in T and parameters less than ﬂ}.

Proof. (<) Assume f < a, and suppose that y < |(¢/f)|. Then there
is a weakly a-recursive inductive operator I' over § such that |I7 >y.
By Theorem 4.2 there is a 7 << a such that I'is p.o.r. in v. For any o <y,
there is ¢ < B such that o is the unique ordinal with § e I"**—I", and
therefore p.o.r. in = and { by Proposition 3.3.

If vy < |(afa)], then there iy a weakly a-recursive indnctive operator I'
over o and a £< a such that & ¢ I'"**—I”. Applying Theorem 4.3, choose
B < a such that at &, I' depends only on ordinals less than. B. Let I be
the restriction of I' to §; it follows that & e I'*'— I'f. The proof now follows
as above for << a.

(=) Suppose we have v < o such that for any ¢ <y, ¢ is p.o.x. in 7
and parameters less than g. We want to define I" so that for all o <y,
I” is a pre-well-ordering of type ¢. For any ¢ <y, we have a ¢ POR and
¢ < g such that o is the least ordinal with {a}(z,¢, ) ~1. It follows by
a rather technical argument that for any pre-well-ordering A of type g,
there is an a e POR and (<< f§ suoch that {a}(v,l, A)~1 and for any

_initial segment B of 4, {a}(r,(, B)~0. Let

{a,0relyd) iff <<a‘16>7 <“7¢>>5-A y
and let

{a,{y eI (A) iff
Now, let

a e PORAL << BA{a} (v, C, A) =L ALw, L) ¢ Ty(4).

0 == (g, Lo>y by, Edy e (A
it o e Av<ay, Ly e Iy(d) v I(A)A ey, &> e I (A) .

(b) For |(a/B)] < a, |(a)p)| is the least ordinal y such that for any © < a,
y4+1 g_ {o: o s a-recursive in v and paramelers less than f)}.

Proof. One dlrectlon iy trivial since if ¢ << « i the umqu{, ordinal
such that {a}(z ~1, then o=Ileast £<< a-{a}(v,{, &) ~1 and is
therefore «- recurswe in 7 and {. In the other direction, suppose thati
all 0 <y are a-recursive in v and parameters less than 8. Let f(o) ~ leagt
Ka, 8, &y < a[l < BATY(E, &, {a,7,C, 0))], and let & = $UPge, f(o). Then.

icm

The boundedness. principle in ordinal recursion 209

£ < a by regularity and every o <
less than g.

(e) For |off| = a, |a/pl = |(a/B)].

Proof. For any o < |e/p}, there is an a-recursive inductive operator I’
over B and a (<< p such that { e I"*—I" If 0< a, then o= least £< a-l
e I*¥1— " and is therefore a-recursive in parameters less than f. Now
if |a/f] > a, then every =< a is a-recursive in parameters less than a,
g0 that any weakly o-recursive inductive operator is a-recursive in
parameters less than B and |o/8| = |(o/B)I-

(d) For |a/f| < a, |a/B| is the least mdmal y which is not a-recursive
in parameters less than f.

Proof. (<) This is direct from the proof of (c) above. (=) Let y be
the least ordinal not a-recursive in parameters less than 8. We split the
‘proof into two cases.

Case I. y= . For any y< § and any BC g, let

I(B)={o<y: Vr<o,7eB}.

It is clear that for any o <y, Iy= o, and that |I| = y.
Case II. <y < a. Given y< 7, let

y is p.o.r. in £, 7, and parameters (Z)

a=gup least o< a[la< 0HE< B T%o, o, <a, &, )]

<y
Then a < a by regularity and « is a-recursive in parameters less than g
since f§ and y are.
Let. C(a, &, ) iff T(a @, {a, &, 7)) and let E(r,B) iff Ho< ol§
< BlKa, Ey e BAC(a, &, 7)]. We now define 4, such that for all v <y,
{o: B(c, A})} = v and such that |4,|=y.

4,(B) = {{a, & a< oAE< AT < y[O0(a, &, 2)AVe < v B (o, B)] .

6. Projectibility conditions. Before proving Theorems 6.1 and 6.2,
we need the following equivalences for the three notions of projectibility
defined in § 2. See [2], Proposition 4.6, for proofs of (a) and (b); (e) is
similar.

PROPOSITION 6.3. For any recursively regular ordinals a and f< a:

(a) o s absolutely projectible to B iff

aC {o: o is a-rveoursive in paramelers less tham B}
(b) a is projectible to B iff there is a v<< a such that
aC{o: o is a-recursive in v and parameters less than B -

(e) a is weakly projectible to § iff for all a<< o, there is a v << a such
that ' ‘
aC {o: 0 is a-recursive in T and parameters less than f}.
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‘We now prove Theorem 6.1.

(@) |a/Bl = a iff a is absolutely projectible to f.

Proof. (—) Given |a/f| = a, we have as in the proof of Theorem 5.1 (c)
that o C {o: o is a-Tecursive in parameters less than g}. It follows from
Proposition 6.3 that o is absolutely projectible to .

(<) Given |a/f| < @, we have by Theorem 5.1(d) that |a/f] is the
least ordinal y which is not a-recursive in parameters less than §. This
being less than a implies by Proposition 6.3 that a is not absolutely pro-
jectible to f.

(b) a absolutely. projectible to B and {a} mot p.o.x. in paramelers less
than 8 implies that |o/f| = a.

Proof. (=) This is direct from (a). ]

(<) Suppose that |a/f] > a. Then by Theorem 5.1(¢c), |o/f] = |(¢/)],

so by Theorem 5.1(a), {a} is p.o.r. in some 7 < a. By (a) above, this 7 is .

a-recursive in some (<< f. We have that v={b},({) and that a is the
unigne ordinal such that {a}(z, a) 1. Then « is the unique ordinal such
that

Wo, v < a[Tc, &, <b, L, TD)A{a} (v, a)~1], and is p.o.x. in .

Next we prove Theorem 6.2.

(a) |(a/B) = a iff a is weakly projectible 1o f.

Proof. This is immediate from Theorem 5.1 (a) and Proposition 6.3 (c).

(b) a projectible to B and {a} not p.o.x. in parameters less than B implies
that |(a/B)| = a.

Proof. (>) This follows from (a) and the fact that projectibility
implies weak projectibility.

(<) This follows directly from Theorem 5.1(a).

{e) a weakly projectible to B and not projectible to B implies that
l(e/B)| = a.

Proof. (=) This follows from (a) above.

(<) Suppose |(a/f)] > a. Then by Theorem 5.1(a), there is a v < a
such that o C {o: ¢ is p.o.r. in v and parameters less than a}. As in the
proof of Theorem 5.1(b), each o i a-recursive in v and parameters legs
than g, so that by Proposition 6.3(b), a is projectible to p.

We now obtain the converse of Theorem 5.1(c).

PROPOSITION 6.4. For any recursively regular ordinals o and < a
such that a is not absolutely projectible to B, |o/f] < |(afB)|.

Proof. |o/p] is the least ordinal not a-recursive in parameters less
than g by Theorems 5.1(d) and 6.1(a). It is clear that for y = |a/B|, y+1

C{o: 0 is a-recursive in y and parameters less than g}. It follows from
Theorem 5.1(a) that |o/f] < [(¢/B)]-

icm

The boundedness principle in ordinal recursion 211

7. Regularity. In this section we prove Theorem 7.1.
(a) |a/B| > a implies that |a/f] is recursively singular.
Proof. Let y = [¢/f]. For t < a, let f(7) = least y <7 [y+1 & {o: {0}
ig p.o.r. in = and parameters less than g}]. It follows from Theorem 5.1(c)
that y = sup f(z). We can write f(z) as
r<a

least y <y Va e POR V¢ < fl{a}(z,, y) 2 1-Ho < y-{a}(z, L, o) ~1].

Then f is weakly y-recursive and it follows that y is recursively singular.

(b) la/fl < a implies that |a/| is recursively regular.

Proof. By Theorem 5.1(d), |¢/f] is the least ordinal y not a-recursive
in parameters less than f. Since the set of ordinals a-recursive in para-
meters less than g is an initial segment by Proposition 4.10 of [2], |off} is
closed under all g-recursive functions, or a-stable. It follows that |o/f] is
recursively regular, recursively inaccessible, and recnrsively Mahlo. (Pro-
position 4.14 of [2].)

Since |I7}| is the least ordinal y which is 9™ -stable, (Theorem A of [2]),
we have the following corollary.

COROLLARY 7.2. For amy recursively regular ordinals a and §, f < a
< T2 implies that |a/f| = |ITH.

(c) |o/B| and \(a/B)| are both fiwed points of the sequence {w.: v « ORD}.

Proof. For |¢/f| < a, this is given in (b). For |(¢/f)| in general, sup-
pose that p < |(¢/f)| and prove that y* < |(o/f)|. We need the following
lemma from § 3 of [2]. ,

LemMA 7.3, (a) For any ordinal £, & is recursively regular iff
Va< o Vo, 0< E[T0(£—|—1, &,4a, oy, Uz)‘)“)To(E} &, <a, 01, 02))];

(b) the relation RR, defined by RR(E) iff & is recursively regular,
18 P.0O.T.

For regular y < |(¢/p)], we have by Theorem 5.1(a) v<< a such that
p+1C{o: {0} is p.or. in v and parameters less than g}. We prove by
induction that for all & < ¥, {£} is p.o.x. in v and parameters less than f.

(i) &< y. This is given by hypothesis.

(i) y < &< yt. This implies that & is singular, so that as in
Lemma 7.3, we have oy, 0, < £ such that & is the unigue minimal ordinal
sneh that T° (£-+1, &, (a, oy, 0xy). By the induction hypothesis, {o}
and {0y} ave p.o.r. in = and parameters less than f; it follows easily that &
is algo.

(iii) &= p*. By hypothesis, y is unique such that {a}(z,,y)=>1.
Then ¢+ is the unigue minimal ordinal & such - that RR (&) A
ANHo< & {a}(7,0,0)=1.
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8. Open problems. The notion of weak projectibility introduced in
§ 2 ig different from projectibility since &,, the wth stable ordinal, ig
weakly projectible, but not projectible, to w. We would like to know
whether the ordinal [(e/8)| in Theorem 5.1(a) is similarly different from
the least ordinal y such that {y} is not p.o.r. in parameters less than e,
(It is always less than or equal to that ordinal.) The equality of these
ordinals would imply, for example, that |4}| is the least ordinal ¢ such
that for all @ ¢POR, {a}(c) ~1->Hr < o-{a}(z) =1, a nice characteri-
zation and parallel to those given in [2] for |[T}| and |Z}.

A related question is whether for any § and any o > 8 abgolutely
projectible to g, {o’: {0} is p.o.r. in parameters less than ﬁ} is all of a. It
is easy to see that this set will be cofinal in «, whereas {o: o i3 p.0.r. in
parameters less than g} is always bounded below a.

Another problem is whether or not [¢/8] (ot |(¢/B)|) equals the closure

ordjnoal of the class of (weakly) Z)—a operators over f. Recall that 12
= |48 = o, \
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Langages a valeurs réelles et applications
par

Jean-Louis Krivine (Paris)

Résumé. Dang cet article, on définit les notions de formules et de modéles de
langages dans lesquelles les valeurs de vérité sont prises dans R, ef mon, comme
d’habitude, dans {0,1}. I1 y a beaucoup de possibilités pour définir ces notions,
possibilités qui correspondent aux divers choix pour les “connecteurs propositionnels’.
On étudie 'une d’elles ici, qui semble particulidrement intéressante. Un certain nombre
de théorémes classiques du calcul des prédicats peuvent &tre démontrés, avec des
modifications convenables, pour ces langages: théoréme de Herbrand, interpolation,
définissabilité. On en donne ensuite des applications 3 la théorie des espaces normés’
(en particulier les espaces L®); certaines d’entre elles sont énoncées dans [5].
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1. Définitions générales

On guppose connues les notions de formules et de langages du premier
ordre et de moddles d’une théorie du premier ordre. Nous utiliserons la
terminologie conrante sur ce sujet (voir par exemple [4], ou [81).

On considére un langage £, avec symboles de relation et de fonetion,
ne comportant pas le symbole =; on supposera toujours que L possede
an moing un symbole de constante, et un symbole de relation 4 un argu-
ment distingné que ’on note N. On désigne par A (resp. A4,) ’ensemble
des formules atomiques (resp. atomiques closes) de £. Les termes de £ sont
définis comme d’habitude.

On. définit maintenant, mais pas de la facon habituelle, les notions
de modeéle et de formule dn langage £.

Un moddle M de T est, par définition, constitué par: un ensemble
non vide (’ensemble de base du moddle) noté. |AGl; pour chaque symbole
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