Variations of Keisler’s theorem
for complete embeddings (")

by
William C. Powell (Nijmegen)

Abstract. We improve Keisler’s theorem for complete embeddings in two ways,
and we prove an analogue which shows when an elementary embedding j: VoM can
be extended to the whole set theoretic universe so that the range remains a transitive
class.

0. Introduction. Throughout the paper we assume M= <M, E) is
a model of a set theory that contains the axioms of extensionality, pairs,
unions, comprehension, and the following two principles:

(a) VueaHogu,v,y)>Tf (fis a function with domain

o A Vuesp(u,f(u),y),

(b) = is infinite — there ig a function from = onto »x #.

(The first principle together with extensionality and pairs implies that
the Cartesian product x X © exists.)

Since M may not be well-founded, we cannot identify & with the
standard -membership relation e. However, we can (and will) assume
without loss of generality that {#,y}= {#,y}m, where {z, ¥}y is the
unique element z ¢ M such that I satisfies that ¢ is the pair of @ and .

We will say X is an M-class if X is an M- definable subset of M,
i.e. if there is an e-formula ¢ and a parameter xe M such that

={yeM: Ml=p(x,y)}. If there iz some wzeM such that X
= {y: <y, %) ¢ H}, then we will call X an M-set. We will call a function
an M-function if it is an M-class. :

We say a relational structure % = (4, R, ... is an IM-structure if
ity upiverse 4 and its velations k&, ... are M-classes. We do not assume
that % is in D in any other sense. We say an expansion (extension) %A’ of
9 is an M-ewpansion (I -extension) of A if A’ is an I-structure.

Q] The results were ongma.lly intended to be contained in a paper titled “Ele-
mentary embeddings preserving well-orderings”.
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Suppose B = (B, 8, ...> is an arbitrary structure. We call an em-
bedding j: A—->B an M-embedding if A is an M-structure. (We do not
require B to be an M-structure.) If j: A—B is an elementary embedding,
then for a relation R’ in % we let j(R’) be the unique corresponding re-
lation in B. .

We say that an elementary I-embedding j: A—-B is IM-complete
if there is an IM-expansion A’ of Y containing all relations on A that are
M -sets and an expansion B’ of B such that j: A’ —»B’ remains elementary
and for every « « B there iz some IN-set X C A such that o € j(X). Clearly
we can drop the last clause if 4 is an M-set. We also define an I -em-
bedding j: A—B to be weakly M-complete if there is an IM-expansion U’

of 9 containing all binary relations on A that are IN-sets and an expansion

B’ of B such that j: A —»B’ is elementary and for all © ¢ B there is an
M-set X C A such that (w,a> ¢j(X x X). Note that we may assume
without loss of generality that U’ contains all unary relations on A that
are It-sets since we can define j(X) = {z e M: <z, 2) e j(X x X)}. If M is
the standard model ¥ = ¢V, ¢) of set theory, then (weakly) 9t-complete
embeddings are just called (weakly) complete embeddings.

H. J. Keisler [1], [3], [4] has shown that the completeness of j: % —%B
is & necessary and sufficient condition that there is an elementary em-
bedding j': V' such that j* Dj, J'2Jj and V' containg all relations
that are V-classes. We will prove three variations of Keisler’s theorem.
In section 1 we will prove that weak completeness is also a sufficient
condition, and we will show that Keisler’s theorem holds for all 9 in
the sense that j: % —B is M- complete if and only if there is an elementary
Pi-embedding j':= M’ —»M" such that j' D4, j'Dj and M’ contains all
relations that are 9 -classes. In section 2 we will consider the extent to
which this is a generalization of Keisler’s theorem. For example, we can
suppose It is a model of the theory of hereditarily finite sets. Finally in
section 3 we will define an analogue of completeness which is a necessary
and sufficient condition that there is an elementary embedding j’: ¥’ -’
such that 9N’ is well-founded, j'Dj, j'Dj and 7’ contains all relations
that are V-classes. ‘

A. Joyal independently proved Keisler’s theorem for the case MR =V
using essentially the same proof that we give here. Also most of:Theorem
15 was independently proven by H. Gaifman using limit ultrapowers for
the case M= V.

The results of section 1 were essentially proven in the author’s thesis
[7] for set theories with class variables. The vesults of the lagt section
were anunounced in [6]. :

1. Canonical direct limits of M~ ultrapowers. Let % be a fixed M-structure.
In this section we define the category 4 of all normal directed systems
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of 9N -ultrafilters concentrating on 4, the eategory $ of all It-complete
embeddings defined on 9, and the category B, of all weakly Mt-complete
embeddings defined on %. We show that £ and & are equivalent and that,
if 4 is infinite in 9N, then 4 and B, are equivalent. The two improvements
of Keisler’s theorem then follow.

An ultrafilter in the field of 9-classes which concentrates on an
M-set we will call an IN-ultrafilier. We define D = D, <, W, F> to
be a directed system (of M-ultrafilters) if {D,<) is a directed set and <Us
and § are functions with domains D and D x D, respectively, such that
for all @,b,¢ceD, FeFy, GeFy, H e 5, and M-classes X, we have

(0) 4 e Foy where 4= {(o, 23: e M3},

(i) a < b iff Fap #0, .

(i) Fop is a set of M-functions with domain M,

(iil) We is an M -ultrafilter,

(iv) X € Wq iff FY(X) € Usp,

(v) {w e M: F|G{z)) = H(2)} ¢ Ws,. .
Note that D is determined by U and F alone. We say D concentrates on A
if each U concentrates on 4, i.e. if A = 9U,. Furthermore, we say D is
normal if we have

F: MM is an IN-functionA{w e M: F(x) ¢ A} ¢ Up»Ta e D F e Fap

and

@ F D> Foorn Fpe=0.

‘We define the objects of + to be normal directed systems of - ultra-
filters concentrating on A. Morphisms f: D— D’ from D to D’ are defined
to be order preserving mappings f: ¢D,<>—+<D’,<’> such . that
Uoa = Uy AN Fap = Fypyypy. Such mappings must be one-to-one.

We define the objects of B,, to be the weakly Mt-complete embeddings
defined on %. A morphism %: j—j’ from j: A—>B to j': A->B’ is an ele-
mentary embedding k: BB’ such that j' =k o j. B is the subcategory
whose objects are the M-complete embeddings defined on 9.

Next we define a functor i £—-%.

We may form an ultrapower of U by an IR-ultrafilter U almost
ag usual. F'or a relation B on 4 that is an M- class, we define a relation Ry,
between M -functions F: MM by :

FyeRqy it {weM: F @)y e R} eUs.

Since =q,, is a congruence relation for all relations Rq,, we may form the
equivalence clagses [Fq, for IMM-functiony F: M — M, and regard the re-
lations Raq), as relations between the equivalence classes. Let oy,
= (dAqy, Raqy,, +..> and call Uqy the M-ultrapower of A by U.

9 — Fundamenta Mathematicae, T. LXXXI
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Tog’ theorem holds in this general setting:

e M: QH=9J(F—_(5¢-)‘)}E‘\L.

Wy, [= ¢ ((Fly,) I
Lot dqy: U->Aq, be the embedding defined by iq (%) = [%]:u, , Where
¢z: MM is the constant M -function with value x. By Los’ theorem
iy, i mentary.
i g:wﬁﬁgimesls D is a?r directed system of I-ultrafilbers. ]?‘()1: aeD,
let g =Wy, and ig=dq,;: A—~Ua. For a<b, Qup: Q{Q'—r‘ub defined 1?y
@ao{[Fla) = [F o Gy (for G € Fap) is an elementary e}nbeddmg. And,,. ‘hemlc?,
{a; pay} is 2 directed system of structures and {ig: U—Ws, Pap} is 2 chl
rected system of elementary embeddings. Let Wy = <Ag, R:D_, ey bevt ©
direct limit ‘of {Ws, par}, and let gz As—UAp be the na,tu-ml el.ement.ary
embedding associated with aeD. We call ?ID the canonical d.wect_ lwmt
of M-ultrapowers of A with réspect to D. Liet ip: x - Ag, be the direct limit
H - .
* {%03 ifmg,gagn object of #, then let ¢(D) = ip: A—~Agp. It f: DD
is & morphigm, then define ¢(f): (D)= 1(D') to be the clementary em-
bedding k: Agp— g defined by

E(pallF10)) = o [Fliay) -

Tt is routine to verify that :: £— % is a functor.
Before proving that ¢ £—% is an equivalence, we state a lemma,

whose straight-forward proof we omit. o
For a directed system D concentrating on 4, let ag: D —.4 be defined

by np(a) = @a([4]s) where 4 = {{z, 2d: e M}, ‘
LevMA. Suppose D is a directed system concentrating on A. Then
(a) for a e D and an IM-class X,

Xe ‘le 1;ff Eg)(a) € Xg) ,

(b) if a,b e.b and. F: M—M is an M-function, then

Fp(ngp ()= mp(a) iff WG eTFalll =[G,

(¢) if f: D—D' is a morphism in £, then o(f) o mg = Tgy o f, '
(d) D is normal iff mg: D Ag, is a bijection and for all a,b e D and
IMM-functions F: M M

Fop(ng(b)) = gy (a) > F e Fap .
THEOREM 1. i £ B is an equivalence. If A is infinite in M, ¢ £-B,,
is am equivalence.

Proof. We must show that 1 #£-% is a full representative, faijthful
functor.

icm
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For a morphism %k: ¢(D)—1(D’) in B, let #(k) = g} ok o mgy. Then
using the lemma we can check that x(k) is a morphism from D to D’ and
t(%(k)) = k, and that #(e(f)) = f for morphisms f: D-»D". Hence, ¢ is full
and faithful.

To show that ¢ is representative we must show that for any I-com-
plete embedding j: % — B there is a normal directed system. D concen-
trating on A such that there is an isomorphism =: B == Uq such that
tp = m o j. Since j: A—B is M-complete, there is an M-expansion A’,
of U containing all relations on 4. that are Mi-sets and an expansion B’
of B such that j: A' - B’ is elementary and for every « € B there is an
M-set X C A such that o e j(X). Let D be the set of finite sequences of
elements of B. Let U, = {XC M: acj(X P)}. Let a* b denote the
concatenation of the sequences ¢ and b. For an 9R-function F, let F*
={axb:a,beDAF(a)=b}. Then let F, Dbe the set of IN-functions
F: M —M such that b * a ¢ j(F*). Using the lemma it is routine to check
that D = <D, <, U, F> is a normal directed system concentrating on 4.
We only note that O is directed since a < a b and b < a = b, Finally by
the lemma 7} B: B—UAqg is an isomorphism such that ig= (nptB) o 4.
Hence, ¢: £—% is an equivalence.

Now suppose 4 is infinite in 9. We have already shown that 1: #— B
is full and faithful. To show that o A~—B, is representative, we alter
the construction of D slightly. Suppose j: A - B is weakly - complete.
Hence, there is an M-expansion U’ of U containing all binary relations
on A that are IM-sets and an expansion B’ of B such that J A ->Wis
elementary and for all x ¢ B there is an M-set X C 4 such that z j(X).
Let D be defined as follows: Let D= B, Uy = {XCM: aej(X ~A)},
and Fu be the set of all IMN-functions F: M —M such that b, ay
€JF ~ (AxA)).

To show that (D, <> iy directed we need the assumption that 4 is
infinite in IN. Suppose @, b ¢ D. Then there is an M-set X C A4 such thab
@, b ej(X). And, hence, there is an M-set Y C A and an IM-function
F: ¥ - X x X which is a surjection. For if X is infinite in IR, we can take
Y = X. In the case that X is finite in 9, we use the fact that 4 is infinite
in M. Now let Py: XX XX (i=1,2) be the projection IN-functions.
Let G= P, oF and H= P,oF. Then there is some c¢ceD such that
J(@)(¢) = a and j(H)(c) = b. Hence, D is directed.

The remainder of the proof is as above.

Note that since s has direct limits and o #£— % is an equivalence,
3 has direct limits.

Next we give our two improvements of Keisler’s theorem.

COROLLARY 2. j: U—B is an M-complete embedding if and only if
there is an elementary embedding §': M’ —IM"" such that j* Dj, j' DJj and M

contains all relations that are M-classes.
9* .
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Proof. By the theorem it suffices to show: that' we can e'xtend im’:
9 - g . But clearly ig: I~ (WM)p is guch an extengion for suitable ',
We say that M is an o-model if its natural numbers are isomoxrphic
to the standard natural numbers. o '
COROLLARY 3. If M is an w-model, then an S)J't-.embeddz'ng yl : ‘l[,—> B v,:s:
weakly I -complete if and only if there is an elementary embedding j ] M —-M
that §' D4, j D j and M contains oll velations that are M- classes.
Proof. The theorem. shows that if A is infinite in M, then j: A~ B
is weakly 9-complete if and only if it is SIJt—complgt;e. Hepce, when 4 is
infinite in M, Corollary 3 follows from Oorollary 2. Since M is an cﬂu—mpqel,
if A is finite in 9, then it is finite, in which case Corollary 3 is trivial.

such

2. Existence of M-complete embeddings. In this section we consider
where 9-complete embeddings arise. o o

We say an extension It of I is an end extension if zT'y € M implies
e M. We call an embedding k: M-I’ an end embedding if M’ is an end
extension of the image of &. o ’

Tirst we will show that every elementary embedding j: M~ hag
a natural factorization as a M-complete embedding followed by an ele-
ime‘ntzury end embedding. This will be immediate from the next two pro-
positions. _

I M = (M, B, ...> and M’ = (M", B”,...> are gtructures, we say

an embedding j: M I is cofinal if M"' = | {y ¢ M": <y, j@)y e B}
zeM .

Then we trivially have
PROPOSITION 4. Am elemeniary embedding j:. M-I’ s cofinal if and
only if it is M- complete.

PROPOSITION 5. Boery elementary M-embedding j: M—~I'- can be
factored as a cofinal elementary embedding followed by om elementary end
embedding. :

Proof. Let M be the restriction of M’ to | {y ¢ M': <y, &)y ¢ B'}.

weM
We will show that 9’ is an elementary submodel of M. Then we will
have that j: M-I is a cofinal elementary embedding and that the
identity map id: I’ -’ is an elementary el}:il embedding. ‘
Suppose that @ ¢ M and that M’ |- Tye(w,y). We lel boe done if
we can show that there is some y ¢ M’ such that M’ = (@, y). We can
find u,v ¢ M such that ZH'j(u) and

M = V7 e u(@yp(3, y) ~Ey < vop(7, 9) -
Hence, .
M =VE e jw)(Hyp(2,9) -0y j©)p(7; y)) -

Consequently, there is some y « M" such that W' |= ¢(@, ¥).
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In the last section we will consider complete embeddings defined
on models of strong set theories. Next we briefly consider models Mt
that satisfy (i) all sets are finite, and (ii) all sets are countable.

Every model o’ of Peano arithmetic can be regarded as the finite
ordinals of a model IM(w’) of the theory of hereditarily finite sets, which
is unique up to isomorphism. Furthermore, an elementary embedding
Jj: @'’ between models of Peano arithmetic has a unique extensgion
to an elementary embedding j': M(w’) »DM(w"). Hence, by Propositions 4
and 5 and Theorem 1, we obtain the following factorization of elementary
embeddings between models of Peano arithmetic:

PROPOSITION 6. If w' is a model of Peano arithmetic and j: o' — "
is an elementary embedding, there is a directed system D of M(w')-ultra-
filers and an elementary end embedding k: o' — o' such that ip: o' — wf)
is a cofinal elementary embedding and j =% o iq.

‘We can obtain a similar result for models of second order arithmetic.
If A is a model of second order arithmetic, then it determines a model
IMM(A) of ZFC™ 4V = HC whose sets of natural numbers are just those
in 9. (See Zbierski [8], Marek [5]). Furthermore, an elementary embedding
j: A—»B between models of second-order arithmetic extends naturally
to an elementary embedding j: M(A) - (B). Thus, we may formulate
a result for models of second-order arithmetic similar to the last result
for models of Peano arithmetic.

‘Next we consider I - complete embeddings that arise from elementary
embeddings that are not defined on all of IN. )

For the purposes of this paper, let us define a limit ordinal « to be
inaccessible if the image of each function, whose domain and values
have rank les§ than «, has rank less than a.

For an ordinal a of M, let M, = {x ¢ M: M |= x has rank less than a}.
Let M, be the restriction of M to M.

TucoreM 7. If a is inaccessible in M, then every cofinal elementary
embedding j: M, —»M' is M-complete.

~Proof. By Proposition 4, j: M, M’ is I, -complete. Hence, by
Theorem 1, there is a directed system of M, -ultrafilters and an iso-
morphism z: M’ =2 (M )q such that iq = moj. Let D' be the directed
system of M-ultrafilters defined as follows: Let (D', <’y = (D, <,
Wy, be the set of all M-clagses X such that X ~ M, e Uy, and F,, be
the set of all M-functions F: M — M such that F ~ M, e Fap. Let &: (IM,)g
(Mg, be the embedding defined by K(pal[Fla) = ¢u([F'ls), where
F' ig any IM-function defined on M that extends F. Clearly igy = k& o ig,.
Since a is inaccessible in M, for each a ¢ D and each IM-function F: M - M,
there is an M, -function G: M,— M such that {x ¢ M, F ()= G(2)} € Usy.
Hence, % is an isomorphism onto (Mg and % ox is an isomorphism
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from OV onto (Mg such that g, = (kow)oj. Hence j: M, - M is
I - complete (1). )

The proof that «: 4— B is representative essentially gives the following
lemmaz

LmmMA. Suppose §: A—B is an elementary Nt-embedding and B' is
o substructure of B such that there is a fumction I defined on B’ such thai
for weB’

(i) Iy is an M-set contained in A,

(i) for @y, v, ®q € By all M-classes contained in I X ... X I, are
n-ary relations in U,

(i) @ ej(Ia).

Then there is a directed system D of WM-ullrafilters and an isomorphism
a: B oUWq such that iq= e j.

THEOREM 8. (a) Suppose in M, a is a imit ordinal of cofinality f< a
and j: M, >IN’ is a elementary embedding such that j maps the ordinals
less than f onio the ordinals less than j(B). Then there is some MM such
that M is an end extension of M and j: M,~IM"" is M-complete.

(b) If j: M,—M' is a cofinal elementary embedding, then there ewisls
an end extension I of M’ such that j: M-I’ is D -complete.

(¢) If o is an infinite ordinal of M and j: M, W' is an elementary
embedding that can be extended to M, ,,, then there is an end extension M’
of M such that j: M,—M" is M-complete.

Proof. (a) Let B'= {J{ye M': (y,j(x)> e B'}. Then we can easily

zel

€
expand 9N, and MM’ to structures U and B such that the conditions of the
preceeding lemama hold. Let M be the restriction of M’ to B’. Then
by the lemma, there is a directed system 9D and an end isomorphism
7z M’ — (M,)p such that iq = = o j. If we can show that = is a surjection,
we will be done. Consider iq, extended to 9. Since in M the cofinality of a
is B, there is some f ¢ M such that in 9 fis an increasing f-sequence of
ordinals approaching «. Hence, in Mg, ig(a)= sup dig(f)(y). Then
’ y< 46

since § maps the ordinals less than g onto the ordinalg less than j(8),
e M = (M,)p must be an isomorphism onto (M,)g.

(b) The proof of (b) is similar to (a).

(¢) Suppose j'': M, ~M” is an extension of j: M, W', Let M* e
the restriction M to M,.. Then since all relations on M, that are
IM-sets can be coded as elements of M,,,, we have that j: 9, —IM* is
M -complete.

(*) We can prove the theorem directly (without use of directed systems) if Mgy,
satisfies the reflection principle. But since I may satisty neither the power set axiom nor
- the principle of dependent choices, it is not apparent that the reflection principle holds.
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Not all cofinal elementary embeddings j: V,—9M’ are complete.
Consider a non-principal ultrafilter U on » and an ordinal ¢ of cofinality w
such that ¥, is a model of Zermelo-Fraenkel set theory. By proposition 5,
dqy: Vo= (Vo)q can be factored as a cofinal V, - complete embedding followed
by an elementary end embedding. But the cofinal ¥, -complete embedding
cannot be complete.

3. Nicely complete embeddings. In this section we consider well-
founded M. Thus, we assume that M = (M, ¢ is a standard transitive
model. We also assume that M C M and that in 9% every seb is well-
orcdered. Let 2 be the set of ordinals in M.

Since we have considered collections of M -classes, we have been
viewing I from the “outside”. Thus, unless we make some minor modifi-
cations, our results do not literally hold for the standard model M=V
of Zermelo Fraenkel set theory. However, it is natural to consider “second
order” sets built up from the “first order” sets in 'V as is done in 2y, [71.

We say that a directed system D of Mt-ultrafilters is nice if for any
increasing sequence a = {an: % ¢ w) of elements of D and X e M ~ [] U,

neEw
there exists s e [| X, such that for all new and F e F ananns F(s(n—]—l))

new
= §(n). Note that we obtain an equivalent definition if X is not required
to be in M. Note also that when 9D is nice, W, must be countably
complete for each aeD.

We say an elementary embedding j: N — B is nicely M-complete if
there is an M-expansion A’ of A whose relations include all binary re-
lations on A that are M-sets and there is an expansion B’ of B such
that (i) j: A - B’ remains elementary, (i) for every x ¢ B there is an
M-set X C A such that » € j(X), and (iii) j(R') is a well-ordering on B for
every well-ordering R’ on 4 that is an I-set.

Let +5 be the subcategory of & of all nice, normal directed systems
of M-ultrafilters concentrating on 4. Let B, be the subcategory of B,
of all nicely M-complete embeddings defined on 4. We will show that
1 7 — By 18 an equivalence.

We will call a partially ordered set T a iree if T is a set of finite
sequences with the extension relation < understood. We say T is well-
founded it T has no infinite chains. A rank function for a tree is a function

R from T into the ordinals such that for te T

R(t) = sup{E(s)+1: s S tAseT}.

More generally, we call a function from T into the ordinals a norm for T
if it is order-preserving and one-to-one. If a norm is an M -function, we
all it an 9N -norm. Every well-founded tree has a rank function, which
we denote by Rz. It is the least norm for T in the sense that (i) Rr is
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a norm for 7' and (i) for any norm N for T, Ro(t) < N () for all teT.
Note that if T ¢ M, then Ry ¢ M. Hence, if a tree is in M, it is well-founded
if and only if it has an $%-norm. We call sup {Rx(f)+1: ¢ e I} the rank
of a well-founded tree T.

Suppose D is a directed system of M-ultrafilters. To each increasing
sequence a of elements of D, X e M n [] U, and Fe]F we

NneEwW neEw

An -1,

associate an induced tree

T=T%57 = | J[te[] Xm: Vm<n Fnlt(m1)) = t(m)} .
neEw msn

Since we agsume X ¢ M, T e M. Olearly T is well-found if and only if
there is no se [] X, such that for all new, Fals(n41))= s(n). Con-

neEW

sequently, D is nice if and only if every induced tree is not well-founded.
THEOREM 9. Suppose D is a direcied system of M-ultrafiliers. Then
for a<< Q, igla) is well-ordered if and only if no induced tree 1T' has an
M-norm N: T—a.
Proof. Suppose that there is some induced tree T = T%%F and an
M-norm N: T —a for T. For each n e o, let Gy: M — a be the M-function
defined by

N(tyny,) if tel and t(n)=wa,

Gula) =
(@) 0 otherwise .

Then for n ¢ w,

{wéM: Gra(@)<< Gn(Fn(w))} QX0 q (Fo °Fm+1 AN Fn)—l(xm) €W

(7R
Hence, for n ¢,
¢an+1([(}n+1]an+x) <o ‘Pun([an,]aﬂ) .

Consequently ifn(a) is not well-ordered.
Now suppose that ip(e) is not well-ordered. Then since <D, =) is

directed, there iz an increasing sequence a of elements of D, there are
sequences ¥ e [] &, and <@, M-ad,. of M-functions, and there
new

is a sequence X ¢ M ~ [] W, such that for n e w, X,y C{w e M: Gy (@)
Nnew

< Gu(F (@)} Let T = T%%F. Let N: T—a be defined by N (1) = Ga(t(n)),

where n--1 is the length of t e 7. Then clearly N is an 9 -norm on 7.

* CororLARY 10. Suppose D is a directed system of M-ultrafiliers and o< Q.

Then iga) is well-ordered if and only if every well-founded induoced tree has
rank greater than a.
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CoroLLARY 11. D is nice if and only if for all a << Q ig(a) is well-
ordered.

LeMMA 12. Suppose B < Q has cofinality greater than w. Suppose D is
a directed system of M-ultrafilters such that for a e D s, concentrates on
an M-set I, whose cardinality in M is less than B, and for all a < B ip(a)
is well-ordered. Then for all a < Q iq(o) is well-ordered.

Proof. Suppose iq(a) is not well-ordered for some o< Q. Then since
(D,<) is directed, we can find an increasing sequence a: w—D and
a sequence <(Fy: M—ad,,, of M-functions such that <., ([(Fnlu) neo 18
decreasing. Since in M, I,, has cardinality less than g and g has cofinality
greater than w, the cardinality in M of \JF, (I,,) is less than B. Hence,

new

for some y << B there is an M-function G: M —y whose restriction to
T,/ (1,,) is order-preserving and one-to-one. Thus, <g,,([& > FrlyDneo

new

is decreasing so that iq(y) is not well-ordered.

THEOREM 13. 1 4, — By is an equivalence.

Proof. If D is nice, then by Corollary 11, ¢(D) is nicely M -complete,
and hence, is an object of B,. The rest of the proof is the same as the
second part of the proof of Theorem 1 except that we must check that
the directed system D that was constructed is nice. But this follows from
Lemma 12 and Corollary 11.

COROLLARY 14. j: A — B is a nicely M -complete embedding if and only
if there is an elementary embedding j': W'~ such that j' Dj, j' D j, W
contains all relations that are M-classes, and for every well-ordering R’ that
is an M-set j'(R') is a well-ordering. ’

Next we give sufficient conditions for the existence of nicely Mt-com-
plete embeddings.

THEOREM 15. Suppose o< L.

(a) Suppose a has cofinality greater than w, and the cardinality in I
of every element of M, is less than a. Then if I’ is well-founded and j: M,
—V is a cofinal elementary embedding, there is a well-founded end exiension
M of M such that j: M,—IM" is nicely M-complete.

(b) If a is inaccessible in MM and M’ is well-founded, then every cofinal
dlementary embedding j: M, —~M' is nicely M-complete.

() If §: Vg = Vpyy 18 an clementary M-embedding and a s the first
ordinal moved, then jV,: V,—V, is nicely M -complele.

(A) If j: Voo =M is an elementary M- embedding and M’ is a standard
transitive model such that M' D Vigysy, then j1Vorst Vs =V i) 8 nicely
M - complete.

Proof. The proofs of (a) and (b) are the same as the proofs of Theo-
rem 8(a) and Theorem 7, respectively, except that we must cheek that
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the directed system we obtained is nice. But this follows from Lemma 12
and Corollary 11.

We only prove (c) since the proof of (d) is similar. We are given an
elementary embedding j: V44—V, Where g= j(a) and « i the first
ordinal moved. It suffices to show that j preserves well-orderings.
Suppose, on the contrary, that B’ is a well-ordering of V,, but that j(R’)
is not a well-ordering of V. Then there is a j(R')-descending sequence
s: 0—>V,. Since p > w is inaccessible, s ¢ V,. Hence, V., satisfies

Hs: -V View {s(n1), 8(n)) ¢ j(R') .
Then since j: V. —Vpyy i8 elementary, V,,, satisfies
Hs: 0V, Vnew (s(n+t1),s(n)> R

But then R’ is not a well-ordering.
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Two conjectures regarding the stability
of w-categorical theories
by
A. H. Lachlan (Burnaby, British Columbia)

Abstract. Tt has been conjectured (1) that any w-categorical first order theory
has finite Morley rank, and (2) that any stable w-categorical theory is totally trans-
cendental. In this paper it is shown that any structure, whose theory is a counter-
example to either of these two conjectures, contains a pseudoplane. Here a psendo-
plané consists of a universe of “points” and “lines” together with an incidence
relation; the axioms are that each line containg infinitely many points, and that
two distinet lines meet in at most a finite number of points, together with the
duals of these. Thus hoth conjectures would follow if it could be shown that
w-categorical pseudoplanes do not exist.

The greater part of thiz paper is motivated by the conjecture:

OL. If T is stable and o-categorical then T' is totally transcendental.

Tn § 1 we prove a conjecture weaker than C1 namely:

O1'. If T is superstable and w- categorical then T' is totally transcendental.

The truth of O1’ was first known by Shelah. Allthrough it has not
appeared explicity it. follows immediately from two lemmas of [6],
Lemma 38, p. 106 and Lemma 40, p. 108. The main tool we use namely
that of normalizing ranked was also invented by Shelah.

In § 2 we show that if M is a structure which refutes C1 then M
contains a pseudoplane. Let “\/z” be read “for at most a finite number

of &”. A pseudoplane is 2 moc({el for the axioms
Val(l(e,y)vIy,a),
Veal(z,))A\yIl(@,y).~2#Y,
@y # mw\ﬂ/y(I(wo, YAL(@1,Y)) 5
Yo # .«/1—>\w/w(1(m, ywVI(@, ),

/oL (@,y)— 1Vl (@,9). A\ yl@, y)-> " VoI(@,9) -
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