b6 . V. Trnkové

Proof. The proposition follows immediately from Propositions 7,
6 and 8. g.e.d.

Remark. Since every space from \/ MC is a locally compact '

No .
separable metric space, the theorem follows immediately from Propo-
gition 9.
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Limit mappings and projections of inverse systems
by

E. Puzio (Warszawa)

Abstract. Let S= {X,,II;, X} and §' = {¥,, Hg/’ ,Z’} be inverse systems and
{g, f»} be a mapping of .S into S*, For some classes K of mappings we discuss the problem
when fy ¢ K implies lim{p, fr} ¢ K and when I ¢ K implies IT, ¢ K.

In this paper we are concerned with limits of inverse systems, their
projections and limit mappings induced by mappings of inverse systems.
More precisely, we show how the projections depend on bonding mappings
and how the limit mapping depends on the mapping of systems induecing it.

To begin with, we recall some definitions and simple facts about
inverse systems and give two auxiliary examples. Our terminology and
notations are consistent with those used in [3]; except that by a mapping
of an inverse system S'= {X,, [Ty, X} into S'= (¥, II%, 2’} we under-
stand a system {gp, f,} satisfying besides the usual commutativity con-
ditions also the condition that ¢(ZX’) is cofinal in X.

The diagram
xr—1—v
& ol E
r—t .y

is said to be ewact (see [8], p. 19) if it is commutative and the following
implication is true:

i hy)=k(t), them gH)NfHY) £O.
The diagram (1) is exact (see p. 19 of [8]) if and only if

2) feU(B)=h"%(B) for BCT
or, equivalently,
(29 af{4)=Fkh(4) for ACY.

Obviously, the diagram (1) is commutative if and only if
(3) fo{B)Ch'k(B) for BCT
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or, equivalently,
(31) gf_l(A_) C k_lh(_A.) for ACY.

A mappmg {g, f,} of the gystem S={X,,II;, Z} into the system
8 ={¥,,10%, 2'} is said to be ezact if the dlagram

@) ‘ = 1%'

is exact for each pair o', ¢’ ¢ 2’ with ¢’ <o
It is said to be limit-ewact if the diagram

lim § —L—1im§"
&) e Ty
Ter b

Xy —— ¥,

is exact for every ¢’ ¢ X',

It is easy to see that if X and X' are the gets of all natural humbers,
then an exact mapping of systems is limit-exact.

Recall that the limit of S = {X,, IT;, X} is non-empty if the spaces X,
are compact for every oe X (see [3], Theorem 38.2.10). In the case of
countable X, the limit of a system of non-empty spaces is non-empty
if the bonding mappings JIS are onto, but it may be empty if II7 are not
onto. In the case of non-countable X the limit of an inverse system of
non-empty spaces with bonding mappings onto may be empty:

ExaMpIE 1 ([5], simplified in [6]). Let X be the set of all ordinal
numbers less than w; and R the real line. For every a< w, we take
= {y: y < a} with the ordinal topology (see [3], Example 3.5.1) and
let X, be the set of all homeomorphic embeddings f: W,—~R with the
diserete topology. For f< o we define mappings IIy: X, X, as re-
strictions, i.e. we put If5{f) = f|W, for f < X,. One shows that the limit
of the inverse system S'= {X,, Iz, X} is empty.
Now we shall describe a similar inverse system of countable spaces.

ExsupiE 2 ([7)). Let S= {X,, I3, Z} be the inverse system from
Example 1. For every ae¢ X we shall define by transfinite induction
a countable set ¥,C X, consisting of strictly increasing embeddings
of W, into R, satisfying the following condition:

(8) for all B<a<<w;, a positive integer m and f; e Yﬁ there ewists an
Joe X, such that II(f,) = f, and fla)—f,(B) < 1/2™
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Let Y, be an arbitrary one-point subspace of X;. Suppose that the
sets ¥, satisfying condition (6) are defined for a << a'; let us consider

- two cases: when o' = o''41 and when o' is a limit ordinal  number.

If o' = a”+41, then for every f..e¢ ¥, and neN we take an ex-
tension f,. of f,. over W, such that f,.(a') = f.-(a'")+1/2" Clearly, f., e X,
and f.(a)—fn(a") < 1/2" Let ¥ be the set of all functions constructed
in this way for every f,» ¢ ¥, and n ¢ N, taken with the discrete topology.
It is easy to see that Y, has the required properties.

Now, let «’ be a limit ordinal and a an arbitrary ordinal less than a'.
For f,e Y, and n» e N choose an increasing sequence of ordinals a= g
< @< a3 < ... convergent to o’. By the inductive assumption there exists
a sequence f, = fo, fu,sfuss -~ SUCh that f. e ¥, ,IE™(f, V=f, and
Famsr Cmpr)— fam(@m) < 1/27F™ for every m e N. Let us consider the combi-
nation f': {y: y<a}—>R of {f, }m-: and its extension f over W, such
that f(a') = supf’(y). The function f is one-to-one (being strictly in-

<a’
creasing) andy continuous, it is also closed as a continuous mapping of

a compact space into a Hausdorff space. Thus, fe X, and

- 11
) =1u@) < D) 5w =5 -

m=1

Let Y, be the set of all functions constructed in this way for every a < o,
f.eY, and nelN, taken with the discrete topology. Since -the set
{aeZ: a< o'} and all ¥, are countable, the set ¥, is also countable.
Moreover, Y, consists of strictly increasing functions and satisfies the
condition (6). -

Let us denote II]Y, by ﬁg. The family 8§ = {Ya,ffg, 2} is_an
inverse system such that ¥, is a countable discrete space for each a, [I7 is
onto for f< a and th’

‘We shall now examine h_m1t mappings. In section 3 of [4] there is
an example showing that f=lim{p, f,} need not be onto, when each
f, is onto even if both of the systems are countable with the bonding
mappings onto. However, it can easily be verified that if the mapping
{p,f»} is limit-exact and each f. is onto, then f= lim{p,f.} is onto.
Hence, if the mapping {p, f} of countable systems is exact and each f, is
onto, then the limit mapping is onto. .

Let us consider the projection II: lga{X,,, IT;, 2} »X,. 1If the
inverse system S is countable and I7; are onto, then the projection I7; is
onto, but it is not necessarily onto, if X' is uncountable, this follows at
once from Example 1.

THEOREM 1. For every inverse system S = {X,, II;, 2} and o, ¢ 2 there
exist o system S’ and a mapping {@,f.} of S, where f, are bonding mappings
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of S, and a homeomorphism h: lim S —X,, such that II, = hlim{p, f.}.
Moreover, we can asSume that @(Z')= . ‘
Proof. Let $'= {Yd, II%, 2'}, where X' = {O‘ eXio= oy, Yo=1X,
for every o' € X' and Hg ldXﬂo Y, Y, for o = o. Let ¢: X'~ X be
the natural injection and let f, = II5: X,~X, for each o= o,. The

diagram

5 =1,
Lmdd

a '+Xuo = Ya

HZ J } idXﬂo:Hg
H§n=fg

X e Xﬂu = YQ

commutes for ¢ > o > gy, and 50 {p, f,} is & mapping of § into S’. The
gpace lunS’ is the diagonal of the product P Y. Let b be the natural
04
homeomorphism of this diagonal onto X,. Then Iif(,o = hlim{p, f} and
(") is cofinal in X. If we take the system {X,, II7, ¢(X")} instead of the
system S, then ¢(X')= Z.
We state without proof the following well-known theorems:
TruoREM 2. For an arbitrary subspace A of the Uimit X = lim {X,,
oy X} the famzly Sy = {4,,I%\4,, 2}, where A,= IT(A), i an inverse
system and limSy=AC X.

COROLLARY. A closed subspace A of the limit X = lim {X,, IT;, X} is
the limit of the inwverse system Si= {Ha( yIGIT(A), 2} of olosed sub-
spaces of X,.

TaeEoREM 3. If the 'm,apping {p, s} of the system S={X,,II;, X}

of T,-spaces into 8" = {Y, IT% oy 27} satisfies the condition @(2') = X, then‘

there exisits a homeomorphic embeddmg h: imS— P Z,., where Z, =
o'ex’
onto a closed subspace of P Z_ such that hm{zp, fo}= P I b
ezt

o’eX’

Now we pass to the main subject of thig paper, i.e. to the
determination when (under what conditions for ¢, f,, and for the inverse
systems) for the given class of mappings & the limit mapping lim{p, f,}
belongs to &, and (which is a special case by Theorem 1) when pro-
jections I, belong to K.

We shall consider the following classes of mappings: 1) open, 2) closed
and perfect, 3) quotient and hereditarily quotient, 4) monotone.

1. Open mappings. In [4], K. R. Gentry has given an example of
a mapping {idy, f,} of an inverse system S= {X,, II™, N} into a system
S’ ={¥,, II’*, N} such that f, are open and onto and the limit mapping
f=1lim{idy, f,} is not open and is into. In fact in that example I7™, [I™
and f, are closed-and-open and f is neither closed nor open. By a small

»(a’)
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modification of Gentry’s example we can obtain similar systems for

-which f is an onto mapping but is not quotient (*). For this purpose it is

sufficient to add to the space X, for » = 1, 2, 3, ... an isolated point = (y)
for each ¥ = {ya} ¢ HmSf(imS), and to define II,’{‘(m(y)) = n(y),
Faln ()= yu for m,n eN.

In [4] it is shown that for an exact mapping {idy, f,} of 2 system
S={X,, II", N} into §'={Y,, I}, N} if each f, is open, then so is
lim {idy, fn} For uncountable systems an analogous theorem is not true.
This follows from Example 4 given below.

The following theorem is & genera]ization of Gentry’s result:

TueoreM 4. Let S= {X,, IIZ, £} and 8" = {¥,, IT;, I} be two in-
verse systems and let {g, f,.} be & limit-exact mapping of S into S’ such that
each f. is open. Then the limit mapping is open.

Proof. Let U= II;}(U,), where U, is open in X _,,, be an ele-
ment of the base of 11215'. As the diagram (5) is exact, we have f(U)
= II;'f(U,). It follows that f ) is open in LimsS” and that f is open.

TaeoREM 5. Let S = {X,,, I, N} be an inverse system such that each
I 4s open and onto. Then the p; ojection I, is open.

Proof. It is easily seen that the mapping {p, f.} of § into §" from
Theorem 1 is exact. Thus, it follows from the above theorem that the
projection II, is open.

ATl the assumption of Theorem 5 are essential. The following example
shows that Theorem 5 does not hold for uncountable systems.

Exavpre 3. Let S= {X,,II;, X} be the system from Example 1.
For each a ¢ X'let ¥, be the hedgehog with m prickles (see Example 4.1.3
in [81), where m = X,; that is ¥,= (X,x [0, 1])/R, where

DB = [(f=F" and t=1) or (=1 = 1),
with the ftopology induced by the metric
- —vp i f=f,
ot ={, iy
Let the mﬂppmg Uﬁ ¥,—~Y, be defined for o> § by the formula:
I, 0] = [(17“ N for [(f,0]e X, .
Ag IT is onto, so is 1];;, moreover, it is easy to see that H“ is open. As the

limit of the inverge system S"= {¥, Uﬁ, 2} is a one- pomt space, the
projection f7,: th'—>Y is not open.

ExAMPLE 4. Usmg Example 3 and Theorem 1 let us consider the
mapping {@,f,} such that IT, is the composition of lim {p, f. and of
& homeomorphism. Then {p, f,} is exact but lim{p, f.} is not open.

() f: XY onto Y is quotient if U C ¥ is open if and only if 7(U) is open in X.
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2. Closed and perfect mappings. The following theorem was proved
in (4] in the case of countable systems.

TaworEM 6. Let S= {X,,II5, X} and 8" = {X., I 5, 2" be two in-
verse systems, where all X, are T2 spaces, and let {p, f,,} be a mapping
of 8 into 8 such that f, is perfect for each o' e X'. Then f=lim{e, f}
is perfect.

The proof is exactly the same ag in [4] for countable systems.

The above-mentioned example of K. R. Gentry shows that an analogous
theorem for cloged mappings is not true, even if both systems are count-
able. A slight modification of that example shows that the assumption
of {p, fa} being exact does not help.

The following two theorems are concerned with the projection II,.

TaEorREM 7 ([9], Theorem 4.2, [10], Lemma 2.4). Let § = {X,, I, X}
be an inverse system of T,-spaces such that the bonding mappings II; are
perfect. Then the projection II, is perfect.

Proof. This follows at once from Theorem 1 and Theorem 6.

TeEOREM 8. Let S= {X,,II™ N} be an inverse system such that the
bonding mappings IIT are closed. Then the projection II,, is closed.

Proof. This was proved by P. Zenor in [10] under the additional
assumption that II® are onto, which is not used in the proof,

Theorem 8 does not hold for uncountable systems, even if bonding
mappings are onto. This is shown by the following example:

Exawrre 5. Let §' = {Y,, H" 2} be the inverse system from
Example 2. We take ¥ = {a: a < 0)1} with the topology defined by as-
suming that a subset F C Y is closed if and only if F < &, or I'> ;. With
this topology Y is a Lindeldf space.

For each ae X let X, = (Y, xY)@(—B (X, % {¥}), where X, =X, x
%[0, ] has the discrete topology. Since the set {y: y < o} and all ¥, are
countable, all X, are Lindelof spaces.

The mapping I75: X, X, is defined for ,3 a in the following way:

if (Y., 9)e ¥ X Y then

TT{(yar ) = (5 (v, ) = (% dp) (e, ) 5
i (y,, )X {y} e (¥, %[0, y]) X {y}, then

d) X for
ﬂ;((y,,, X{})~{?/y, )X {v} r B>y,
(T3(3,),8) for <y
It is easy to see that IIPIf; = IT* for a > § > ¢ and II® = idy_for each a.
The mapping II; is continuous on the discrete seb O (X, x {y}), and

17“ H Xidy on ¥, % Y and so II" is also econtinuous on tha,t set. Since X, is
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the union of those open-and-closed disjoint sets, the mapping Il is con-
tinuous.
‘We shall show that IIj iz closed. Take a closed set FC X,. Then

F= {J Fly,) v A, where A <y, and F(y,) is empty or is an uncount-
Yge¥

able subset of {H“ ¥.)}X Y containing the point {y,} X {w;}. We have

IT(F) = U IT(F(y,)) © ITj(A4), where IT(F(y,) is empty or is an un-

Yoc¥a
countable subset of {H“(yu)}x Y containing the point {H“(ya)} X {w}, a8
ﬂ(A) < 8, we see that IT5(F) is closed. As H“ is onto, the mapping II; is
also onto.
Now let X = {limX,, ITg, >}. We shall prove that for each qye X
we have
(T X IINTp X {ou ]V @ (XX {7}) C I (X)

y<ap
For (Y, 8) € (Lo X INNY, X {w,}) we consider two cases: 6 > ¢, and
< ay. If 6 >, then we choose y,,u e (I ™y,,) # 9 and define

(e, D)X {8} for a>0,
2, — ~
* Ww),8  for a<é.
Tt is easy to see that {z} is a thread such that II,({z.}) = (¥4, 0)- It
8 < ag, then we define
{(HZ“ (Yao)s 6) for a< ap,
© (o ) x{og}  for a>q.
In this case also one can easily see that {z,} is a thread such that
I, ({2.}) = (Yayy 6). On the other hand, if (s, )X {y}e @ (X, {y}) then
y<ag
for the thread {z,}, where
_{("”yya)x{'}’} for a> ay,
“ O x{y}) for a< q,
we have Hao(lza}) - wy? 6) X {7}

The subsystem 8’ = {¥,X {o;}, T§l(¥, X {w,}), £} has the empty
limit, because 11m{1¢,II5,Z'}—® Therefore, IT,(X) = X, N T, X {@1})
and, as this set is not closed in X, , the mapping I1,, is not closed.

Observe that the existence of an inverse system S {X,, T3, X} of
T,-spaces with the bonding mappings closed and onto such that the pro-
jeetion 1T : th —X,_ is not closed leads to an inverse system of non-
empty spaces with the bonding mappings onto and with the empty limit;

50 we can hardly expect a simple example of such a system.
Indeed, suppose that F is a closed subset of 11mS guch that II,(¥)

is not closed in X, . Let F,= IT(F) for each o X and x, e F, NI (F).
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Since the mappings II are closed, II(F,) =F, for all o, ¢; thus for
each o> o, the seb (I13) M@,y N By is non-empty. The fa,mily S
= {4,,II|4,, Z}, where Z'={oe¢ 2 oy <o} and A, = (II) Yx,,) ~ T,
for ¢ ¢ X', is an inverse system of closed and non-empty subspaces of X,
with the bonding mappings onto. Moreover I(i‘r_x}S’ = @, since w,, ¢ 11, (F),
and linS' CF Dby Theorem 2.

3. Quotient and hereditarily quotient mappings. Recall that 2 mapping
f: XY is said to be hereditarily quotient if f(X)= Y and for each AC Y
the restriction f|f~Y(4): f(4)~4 is quotient. Note that the mapping
f: X7 is hereditarily quotient if and only if, for each set U open in X
and containing f~X(y), the set Intf(U) is a neighbourhood of ¥ in ¥. All

_open mappings onto and closed mappings onto are hereditarily quotient. -

A space X is said to be a Fréchet space if for each » ¢ A C X there
exists a sequence {w;} such that »elima, and 2, e 4. Every quotient
mapping onto a Fréchet T,-space is hereditarily quotient (see [1] and [2]).
Since each metric space is a Fréchet space, it follows that each quotient
mapping onto a metric space is hereditarily quotient. From the modifi-
cation of Gentry’s example mentioned in § 1 it follows that the mapping
f=1lm{p, fa}, where f, is hereditarily quotient and onto, need not be
quotient, even being onto.

However, we have the following

THEEOREM 9. Let § = {X,,, II}, N} be an inverse system such that each
IT7" is hereditarily quotient. Then the projection II,: 11F1~n8 - Xy 18 hereditarily
quotient for each n e N.

Proof. First we prove that /I, is quotient. Let A be a subset of X,
such that I7;%(4) is open in X = Lim 8. Suppose that A is not open,
i. e. that there exists an @, ¢ 4 such that o, e FrA. Since 17, ,,(X) = X, ,,
it follows that (L") ™Na,) CIL,,,II;%(4). I we had (') Ya,)
CIntil,, II;'(A), then, II*** being hereditarily quotient, the set
Int [Ty Int 1T, T, (A)) would be a neighbourhood of the point ,
contained in A4, which is impossible, because @, ¢ FrA. Thus there exists
an &, e Fril, | IHA) o (T2 Y w,,,). This process may be continued
to obtain a thread {z,} such that ,, e Fril,II;Y(A) ~ (II™)Y(a,) for
each m > n. Bvidently, @, ¢ IT,,(X\JI,*(4)) for each m e N; thus since
the set X\JI7*(4) is closed, by Theorem 2 we have {w,} e X\II;Y(4),
which is in contradietion with @, 4. It follows that IZ, is quotient.

Now we show that II, is hereditarily quotient. For ¥, C X, we have
I;X(Y,) = lim{¥,,, ITM¥,,, N}, where

- {H,",Z(Yn) for m < n,
"o lImY,)  for n<m.
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Since each mapping II7'|Y,, for m = n is hereditarily quotient, from the
first part of our proof it follows that the mapping 17 I;X(Y,): II;YY,)
->Y, is quotient.

In order to show that Theorem 9 does not hold for uncountable
systems we shall modify the system S= {X,, 7, 2} described in
Example 5, where II; were closed and onto but JI, was neither closed
nor onto, in the following way. We fix a ¢, ¢ 2 and add for all g > gy
one isolated point g(x) to the space X, for each xsXa\HG(lignS); we

define II2(o(®)) = 7(x) for ¢ = 7> d,.

The projection II,: limS— X, need not be quotient if the bonding
mappings of the system S are quotient.

AOUA1UA2CX1 (Ao\ L} ‘l})u U [071]711UA1UA2CX2

np=1 (M1 ny=1

o ) - Do oo 3 BRI

ny =1 np=1 =1 ng=1 1

o0 (=] .
v U ule, Lnpne v ACX,

m=1 ng=1

Fig. 1

ExaMrLE 6. We shall define vecursively X;, X,, X;,... Leb
(see Fig. 1)

00 B
X,=iJ4,v 4,
k=0

5 — Fundamenta Mathematicae, T. LXXX


Artur


66 E. Puzio

where

Ay=(0,1],
=0 e O (e x(Eh, 1]

ni=1 ng=1 nE=1

o= (e[
(nmieN% | Trm
and the equivalence relation R is defined by the formula:
(11 ) (ll\ )] [ [r1_J1
— Xt R t =1 = N — gt
[(\%m! "nm[x : ( 1) o \m {m,n} and ¢ t)]
The topology in the set X, is generated by the following neighbour-
hood system:

R L1
1° The base at the point {E}x e X {—;b—[—} ed, ; for k=1,2,3, ..
k
congists of all sets of the form

1) 1 1 11,1
{mlx s X{nk_l}x(a——l—,—ﬁ;—l—f) vBu(,
1 1 1

where =

1< np w1’
(n  B= [ Hx. x{-l-x( )]u
| " Mg
1 1
[n k+1>nl:+1{ 1} * {’nk} {‘W/;H—l} X (0’ 77:k+2(%;c.:1-5)] e
B O S o I
[n 41 >Nk (n k+z>ﬂk+2(ﬂk*1){ } Ko X {'”/kl X {'”’;H-l } x {'”';c+2 [ x

1
X0 (w_h,w__,_
" \ng—s (Mo, 77:/a+z)))] e

® . ,O= {nnL;)JET ({%} X(O’J'{nlm})) ’
{{nm} o [ } x{%}eB for each i > k}

and jp, », 1, ny,
s by Mgy k+1;“k+1y”k+2("k+1)7”k 7
numbers. 20 Ml

14 ’
g1y Wpts) - aTe natural
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1 1] 1 1
2° The base at the point —} x{— tle A for — <1< -
poi {%1 X nk;x{}e k orl+1< < 7

consists of all sets of the form
1} X =\ X (t ! t+ 1)
{’nl K {""k! L’ A ’

1 .
where — < Iin

1 1
ll (t Z_:I—_i *“—-) and l, ZJ_EN.

1
3° For t e (0,1) the base at the point [{n—} X {t}] e A consists of all
143

sets of the form

“;:7,,} % (t—%, 1+ %)] ~ Hnl }x 0, 1)] where leXV.

1
4° The base at the point H }x {1}] e A consists of all sets of the

J ({ﬂll’ (1——%,1])/R, where leXN.
{nm}e NS0 m

It can easily be verified that Xy is & Ty-space. The space X, is the

form

union of two connected subspaces | Ap and A; since each point
k=0

1 1 -
{ } { } ¢ A,_, belongs to 4, the space X; is connected.
My, Mg

Take %k > 1 and assume that X, are already defined for n<C k. Let

Xk-rl [.Xk\ U . {11 X{%\] 4 D e D [0’1]71,1,...,nk'
m¢ =1

=1 711] k‘ =1 nE=1

The topology in the set X, is generated by the fE)llowing neighbour-
hood system:

1° The base at the point 1, .. €[0,1], ., consists of all sets

nk

of the form (1_? 1] .mp By O, where B and C are defined by the
formula (7) and (8), and le N.

2° The base at the point 0, .. €[0,1],, .
of the form

j1 1 111 1 1
—¢X . X X|\=——7, —+=)| v |0, ’
1'”1 Ny me U omg o 1 l Nty ey M

1 1 1
where 1 e N and - << —— .
1 " M+l

consists of all sets

s Nk

5%
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3° The base at the point ¢, .. €(0,1), .. consists of all intervals

1 1
LoD SRR o A0, 1) s where leXV .
l l i3 eees NE

4° For k> 2 the'base at the point 1, ..  €[0,1], .. = consists
of all sets of the form

1 1 1 1 «© 1
e P S A
Ty aeey Mot %]J M1 l ng=1+1 ! Tty eees i1, M

where e N .

5° Bases at all remaining points are the same as in Xj.

The space X, defined in this way is a connected T;-space.

‘We -shall now prove that X, is paracompact for each n. Observe
that X, = A v (X,~4), where 4 i3 an open, metrizable subspace of X,
and X,~4 is a Lindelof space, because it is a countable union of Lindelsf
spaces. Let Ul be an arbitrary open covering of X,,. Let U; be a countable
subfamily of U such that XA CV = [JU;. It can easily be seen that
there exists an open set W satisfying X, NACWC WCV. Let U, be
a locally finite open covering of 4 which is a refinement of 1I,
= {4 " U}gey. The family U, = {U~ (X, W)y, is a covering of
X \W; moreover, U, is locally finite in X,. Indeed, if #e¢ X,\A, then
W is a neighbourhood of # disjoint with all elements of 1I,. And for any
@ e A there exists, U, being locally finite in 4, a set U, open in 4 and
hence also in' X,, which contains z and ‘meets only a finite number of
elements of U,. Thus ¥, v U, is & o-locally finite open refinement of 1I.
This proves that X, is paracompact (see Theorem 5.1.4 in [31).

Now define the mappings I;**: X, X, assuming that

1 1
Iy = I
G i) {”1} X X |nz for A [ l]m,...,nk
and
Yy =g it 3+ by

PRI ()

I.t is eisylr —tlo vgrify that the mappings I7Z* are quotient, monotone
(Le. (IIZ™)7(y) is connected for y ¢ X;) and onto, but (except for I72)
are not hereditarily quotient. 1
Obviously §={X,,[I™ N}, where II™= [Tn+
" —_ Jint2 LA
m = n-+1, is an inverse sygt:em.’ " PR e

The projection I7,: 13131S§Xn is not quotient, because the set D Ay
k=0

is not open in X, although the set I (1) Ay) is open in lim.S. Indeed,
k=0 i
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for each thread {=,} <II;*({J4,) there exists a k < N such that z, = =z,
k=0
for m = k. If @, = 1, ,, for some I, then there exists a neighbour-
hood Uy, of the point @y, in X, such that iy Uyy,) CIT;* (U 4Ap)
k=0

Otherwise, we ean find such a neighbourhood of @y, in X,,;.
Finally, note that the limit lim§ is not connected, because it is the

union of two sets II;'(|J4,) and IT;*(4), open and disjoint.
k=0

4, Monotone mappings. Recall that a mapping f: XY is monolone
if for each y ¢ ¥ the set f~'(y) is connected.

The following theorem was provedin [4] in the case of countable
systems. ’

TreeorEM 10. Let S= {X,,II], X} and S§'= {Y,,,,Hgf, Z'} be two
inverse systems, where all ¥, are Ty-spaces and all X ., are compact. Let
{9, f.} be a mapping of S into S’ such that f,. is monotone for each o' € 2.
Then f=lim {g, f,} is monotone.

The proof is exactly the same as in [4] for countable systems.

COROLLARY. Let S'= {X,,II%, X} be an inverse system of compact
spaces such that IIS is monotone for o = o. Then the projection IT,: Him S— X,
s monotone.

Proof. This follows directly from Theorem 1.

If the spaces X, are not compact, then, as the following example
shows, the above theorem does not hold even if the limit mapping is
closed and onto.

ExAmMpLE 7. For n=1,2,3,... let
X, = {(@,y) e R >0, 0<y <1}

with the topology of a subspace of R? and A, = {(#,y) e Xn: y=10 or
y =1} v {(®, y) € Xu: © = n—1}. Denote by Y, the quotient space X, /R,
where the equivalence relation B, in X, is defined by the formula:

(@, ) Bula', y') = [{2,y) = (%'yy") or (%, 9), (@', y') e An] .

Let f,: X, ¥, be the natural quotient mapping, [77*: X,,— X, the identity
mapping and II([(@, )]) = [(@,9)]« ¥, for [(#,y)]€¥,. Then S
= {X,, 1™ N} and S'= {¥,,II" N} are two inverse systems and
{idy, f,} is & mapping of § into §’ such that the mappings 17 X, —~+2X,,
o™ Y,-Y, and f,: X,—+Y, are monotone, closed and onto, and the
limit mapping f= lim {idy, 1.} is closed and onto but is not monotone.
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The corollary to Theorem 10 is not true if the spaces X, are not
compact; this can be seen from Example 6. We give below a simpler
example, but the bonding mappings of the given inverse system are
not quotient (see the Corollary to Theorem 10).

ExsmpLE 8. Define the inverse system S = {X,, [I™, N} by as-
suming that:

1° Xp=Anw By Op, where Adp={(@,y) e B —1<20<0, 0y

1
<1}, Bp={(»,9)eR: =0, 1—

. <y <1} and O,= {(m, y) € Re:

1 1
0<w<1—%, y:lh"—z} for each n <NV (see Fig. 2).

% X X5
Fig. 2

2° For m=n and (z,9) e X,

1 .
(0,1—ﬁ_m) if (2, y) satisties 0< 2 < = — L.
n m
I ((«, ) = 1 1 1 . NPT B |
n |(x—(q—% —;i) 1— E,) if (2, ) satisfies P <r<<l— % ,
|z, 9) otherwise.

The spaces X, are connected and the bonding mappings IT™ are
monotone and onto. The limit IimS is not connected, because limS
= U, w U,, where -

Uy=1lm{4,, I} 4,, ¥}
and

U, =1m{B, v G,, II}|B,u C,, N}
are open and disjoint.

ExAMPLE 9. Let X, and II™ be as in Example 8. Let X, = {(0, 0)}
and II3M(w, y)) = (0, 0) for (#,9) € Xpp and m > 1. The bonding mappings

of the inverse system S ={X,,I™ N u {0}} are monotone and onto,

but the projection II, is not monotone.

We. shall now prove that the limit of the inverse system of connected
Spaces 18 connected under an additional assumption.

icm®

Limit mappings and projections of inverse systems 71

TarorEM 11. Let S = {X,,, II?*, N} be an inverse system of conmected
spaces such that the bonding mappings IIT are monotone, hereditarily quotient
and onto. Then the limit Lm S s connected.

Proof. Suppose that lim§= U, v U,, where U; and U, are open,
non-empty and disjoint. By Theorem 9 the mapping IT,: LimS—>X, is
hereditarily quotient. Suppose that A, = IT,(T;) n I1,(U,) = @ for some
neN. Then U,;=IL;UL(U,) for ¢=1,2 and X, = IT,(U,) v IT,(T,).
Since II, is quotient, the sets II,(U,) and II,(U,) are open, non-empty
and disjoint, but this is impossible by the connectedness of X,; thus all
sets A, are not empty. :

Clearly IT;(A,)C A, for m >n. We shall show that II™(4,,) = 4,,.
Take w, ¢ A,; since II* is monotone, the set (JI™)~z,) is connected.
Let B, = (IIMYw,) ~ IL,(U,); obviously B, v B,= (I™ Yz,). To see
that B, n B, # @ suppose the contrary. Then I }B;) = U, n II;XIT7)Y=,)
and this set is open in IT;*(J77™)~(x,). Sinee the mapping IT, | T NI~ (a,):
I Y »,) > (IT™)Y(2,) is quotient, the set B, is open in (1™ Y(z,)
for 9=1,2, which contradicts the assumption that (™) Yz, is
connected.

The family S8’ = {4, II}'|An, N} is an inverse system of non-empty
spaces with the bonding mappings onto. Thus the limit lim §* is non-
empty. Since the sets U; are closed, by Theorem 2 we have lim§' C U~ U,
which contradicts the assumption that U, ~ U, = @.

CorOLLARY. Let §S'= {X,,,II", N} be an inverse system such that the
bonding mappings are monotone, hereditarily quotient and onto. Then the
projection I, : imS—X, is monotone.

Proof. Take , ¢ X, ; clearly II;(z, ) = Hm{d,, II7'| 4, N}, where

Iz Na,,) for m>mg,

m I(z,,) for n<n,.

Since each mapping /77 is monotone, hereditarily quotient and onto,
each A, is connected and II'|4,: A,—A4, is monotone, hereditarily
quotient and onto for each m,n e N. Thus, by Theorem 11 the limit
Lim{4,, II;}|4,,, N} = IT\(=,,) is connected.
One can check that all the assumptions of Theorem 11 are essential.

The author does not know the answer to the following questions:
1. Does there exist an uncountable system of connected spaces

with bonding mappings monotone, onto and hereditarily quotient (better:
open or closed) and with a disconnected limit?
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2. Does there exist an uncountable system S = {Xd,‘ﬂg , &} with
bonding mappings monotone, onto and hereditarily quotient (better:
open or closed) such that the projection I, is not monotone?

Clearly a positive answer to problem 1 gives a positive answer to

roblem 2. ‘ ) .
P The main results of this paper are described in the following
tables.

Table 1
quo- heredit-
I open closed perfect | oo arily monotone
quotient
uncount- |— + for -+ for X,
able |+ for{p,fw}| — - —  |compact and
systems | limit-exact el Y. T,
lim{p, fo'} __‘
count- |— + for +for X,
able |+ for {p,fo} — X. T, - " |compact and|
systems exact o= Y, e,
Table 2
heredit-
b4 open closed perfect | quotient | arily monotone
¢ quotient
uncount- —
able — _ + for _ — + for X,
systems : Xy e Ty compact
17, ~+ for .Xi;,
count- s compac
+ forIT -+ for _
able onto | T X;e T, + +tor I
systems onto and
hereditarily
" quotient

‘The author wishes to express her grafitude to Prof. R. Engelking
for his help and suggestions.
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