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Irreducibility and indecomposability
in inverse limits (*)
by
D. P. Kuykendall (Corpus Christi, Texas)

Abstract. Irreducibility, indecomposability, and hereditary indecomposability of
the inverse limit of an inverse system over the positive integers are related to the
bonding maps. It is shown that if there is a hereditarily indecomposable inverse limit
on a sequence of nondegenerate compact metric eontinua, then in a certain sense almost
all inverse limits on the sequence are hereditarily indecomposable.

‘What are the relationships between the bonding maps in an inverse
Jimit system and various topological properties of the inverse limit space?
We investigate this question for irreducibility and indecomposability and
obtain characterizations of these properties in terms of the bonding maps.
‘We then show that if there is a hereditarily indecomposable inverse limit
on a sequence of nondegenerate compact metric continua, then in a certain
sense almost all inverse limits on the sequence are hereditarily inde-
composable.

The closure of the set 4 will be denoted by cl(4). The notation I7,(8)
means the nth coordinate projection of a subset 8 of a product of spaces
over the positive integers.

‘We assume that (X;, fi*?) is an inverse system such that, for each i,
X, is a compact nondegenerate metric continuum with metrie d; and
fi** maps X,,, onto X,;. Let M be the inverse limit of the system.

Tevmaa. Suppose that M is irreducible about the points p', ..., p* and
E,, E,, Ky, ... is a sequence of continua such that if n is a positive inleger
and j is a positive integer not greater than k then the n-th coordinate of P
pl,is in K, and K, 73 a subcontinuum of X,,. Then if n is a posztwe inleger,

AJLTHE, wii)) = Zn-

(*) This paper is based on the author’s dJssert&tlon, in partial fulfillment of the
requirements for the degree Doctor of Philosophy at the University of Houston, May,
1971. The author wishes to acknowledge support nnder an NDEA fellowship during
the progress of the research.
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Proof. Let # be a positive integer. For each posi.tive integer j let
Y, = (U fit(E); let gt be the restriction of fi™* to ¥,,. For
1

each j, ¥; is a continuum and gi** maps Y., onto Y;. The iP.V'eI'SG %.imit
of the system (¥;, gi™) is M since it is a contilmllumAcontaamng o’ for
each positive integer § not greater than k. This implies that Y, =X,
for each n.

TeEOREM 1. Suppose that for each positive 'mteger.z' not greater than
the positive integer &, p* is o point of M. Then the following three statements
are equivalent. '

(1) M is irreducible about the points p', ..., p*. .

(2) If K, Ky, Ky, .. is a sequence of continua such t_hm? for each posztiv_e
integer n and positive integer ¢ mot greater than k, p, is in K, and K, is
a subcontinuum of Xy, then, for each positive integer n, el( - for4 K, +¢)) =X,.

(8) If m is a positive integer and 0 << e, there is a positive i&jctgger 12,
n < I, such that if L<m and K is a subcontinuum of X co.ntmm‘ng o
for each positive integer ¢ not greater than k, then, for each point & in X,
dfz, fMEK)) < e.

Proof. (3) implies (2): Suppose that (3), but not (2), holds. Then
there is a sequence K;, K,, Kj, ... of continua such that for' each positive
integer n and each positive integer ¢ not greater than &, p, is in K, and
there exists a positive integer # such that cl(\_J fA" %K, .,) # X,,. Let & be

a point of X,— cl| ) f*T¥XK,,,)) and let ¢ be a positive number such that
i 'y . .
if da(z, y) < ¢, then ¥ is not in cl(u It (K,y4). By assumption, there is

" & positive integer m, n < m, such that dﬂ(w, f,’:‘(Km)) < ¢, a contradiction.

(2) implies (1): Suppose that (2) holds and ¥ is a subcontinuum

of M containing p* for each positive integer ¢ not greater than k. If » is

a positive integer then, for each positive integer 4, fr+Y(IT, , (V) = IL,(N).

Therefore, for each positive integer n, IT (N)= U far{M,, (N)); thus

13 -

c](ﬂ,,(N)): Xn; since IL(N) is closed, II(N) = X,. Since II(N) = Xy
for each positive integer n, N = M.

(1) implies (3): Suppose that (1), but not (3), holds. Then there are

2 positive infeger » and a positive number e such that if % < m then

there are a positive integer L not less than m and a subcontinuum K of X,
containing pi for each positive integer 4 not greater than % such that there
is a point @ in X, such that d,(z, f(K)) is not less than e; let Ky= f5(K);
then K, is a subcontinnum of X, and d,(w, i K,)) = d,(z, f2(K)), which
is not less than e. For each m, n < m, let K, be a subcontinuum of Xm
containing pf for each positive integer ¢ not greater than % such that
there is a point » in X, with d,,(a;, f(E,)) not less than e.
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Suppose that B is an open set with respect to X,. Then R containg
a point of fA+HE, . ) for all but finitely many 4; for suppose not. Then
for some increasing sequence iy, i,, ... of positive integers, if r is one of
them, E does not contain a point of fat(K,,,). This gives a contradiction
since the inverse limit of the system (Xotss f;‘jfj*"}, where j ranges
over the nonnegative integers and i, = 0, is irreducible about the points
paj;ipz;-l‘ﬁ:?:’;-}-i,a e i=1,2, .., k, implying that Cl{ \_jjz+ij{Kn+:';)) =X

e

Sinee X, is compact, some finite collection [Gl,j..., @G,] of open sets
each of diameter less than e covers X,. For each Jy 1<j<r, there is a
positive integer N; such that if N; < m then @; containg a point of f™MK,).
Let m = N;+N,+ ... - N,. Then if z iz in Xa, x is in Gy for some j not
greater than » and there is a point y in @;and in fM(E,); d,(z, y) < e since
the diameter of @; is less than e; thus d,fz, faH,,)) < e. This gives
a contradiction.

THEOREM 2. The following two statements are equivalent.

(1) M is indecomposable.

(2) If n s a posiiive integer and 0 < e, there are q positive integer m,
n <, and three points of X such that if K is a subcontinuum of Xy con-
taining two of them then d.(z, [ME)) < e for each z in X,.

Proof. (1) implies (2): There are three points between each two of
which M is irreducible. Applying condition (3) of Theorem 1 to each
pair of them, ome sees that condition (2) holds.

(2) implies (1): Suppose that (1) does not hold. Since M is non-
degenerate, there are proper subcontinna H and K of M such that
M = H v K. There is a positive integer n such that IT(H) and ITu(K)
are proper subcontinua of X,. There is a point p, in Xn—IL(H): et e, be
a positive number such that du(p,, IZ,(H)) is not less than e,. There is
a point p, in X,— IT,(K); let e, be a positive number such that dnlpy, LK)
is not less than e,. Let ¢ = min(e,, &,). If # < m and a, b, and ¢ are three
points of X, then two of a, b, and ¢ are in one of II(H) and IT,(K) and
since fi{IT,(H)) = IT,(H) and LK) = IL(E), it follows that (2)
does not hold.

TEEOREM 3. If K is a positive integer greater than one, then the following
two statements are equivalent,

(1) M is irreducible about some K poinis.

(2) If n is a positive integer and 0 < e, there are a positive integer m,
n<1m, and K points of Xn, such that if H is a subcontinuum of X containing
them then d,(z, f(H)| < e for each @ in X,.

Proof. According to a theorem of R. H. Sorgenfrey [3], M is irre-
ducible about some K points if and only if M is not the sum of K41
subcontinua such that the sum of each K of them is a Pproper subcontinuum.
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of M. Using this résult, the proof is essentially the same as the proof of
Theorem 2.

TeroREM 4. The following two statements are equivalent.

(1) M is hereditarily indecomposable.

(2) If n is o positive integer and 0 <Ce, there is a positive integer m,
n < m, such that if K is a subcontinuum of Xm then there are three points
of K such thai if H is a subcontinuum of K containing two of them then
dofz, fMH)) < ¢ for each @ in f(K).

Proof. (2) implies (1): Suppose that (2) holds and N is a sub-
continnum of M. Then N is the inverse limit on its projections and con-
dition (2) of Theorem 2 holds for the inverse system on the projections of V.
Therefore N is indecomposable.

(1) implies (2): Suppose that (1), but not (2), holds. Then there is
a positive integer n such that there is a positive number e such that if m ig
a positive integer greater than n there is a subcontinuum Ky of Xy such
that for any three points of Kpn there is & subcontinuum H of K, con-
taining two of them with d,(z,f7(H)) not less than e for some point &
in f™K,). Assume without loss of generality that n=1. Some sub-
sequence of the sequence f3(K,), fi(Ky), ... converges to a subcontinuum
of X,; noting that M is homeomorphic to the inverse limit on any sub-
sequence of X;, X,, X, ..., we might as well assume that the sequence
FAK,), fH(K,), ... converges; denote its limit by H,. Some subsequence
of the sequence f3(K,), fi(K,), ... converges to a subcontinnum H, of Xy
again assume that the sequence itself converges. The sequence FAK,),
fYK,), ..., atter the change in notation involved in making the above
assumption, still converges to H,. We claim that f3(K,) = H,. Clearly,
f2 maps H, into H,. Now suppose that y is a point of H,. There is a se-
quence of points from a subsequence of Ky, K, ..., such that the se-
quenee of images in X, converges to ¥; some subsequence of the sequence
of images in X, converges to a point = of H,; fi(z) = y. Continuing this
process we obtain an inverse limit system (H,, gi*'), where gi** is the
restriction of fi** to H,,,; denote by N the inverse limit of this system.
By assumption, N is indecomposable. Therefore, there are a positive
integer m > 1 and three points a,, by, and ¢, of Hy, such that if J; is a sub-
continnum of Hy containing two of them, then d(, f{"(Jo))< ¢f2 for
each point # in H,. Taking successive subsequences and changing no-
tation, we get the following.

(A) Por each i greater than m, a;, b;, and ¢; are three points of Ky
TP M Gggy) s F(Agsn) , ooy CODVETZES tO @, etc.; J; is & subcontinuum
of K; containing a; and b; such that there is a point p, in fi(XK;) such that
dy(p;, fiT ) is not less than e.

(B) T paa) s [P ) 5 .. CODVErges to a subcontinuum J, of Hu,
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and f]r.n+l(Jm+1)7f;n+2(Jm+2)9 ..

converges to fi(J,). Note that J, contains
a, and b,.

(G')D Th(? SCQUENCE Pyyiys Py . COLVEIges to a point P of Hj.
_The e/2 ne}ghborhogd of‘ Py, N.lpg), intersects fMJo) and  therefore
intersects fi(J;) for ¢ sufficiently large. Also, P; is in N, p,) for i suf-
ficiently large. This implies that, for ¢ sufﬁci;entlv 1a , d
a contradietion. ’ ¥ larges dipe I <o

Theorems similar to the following have been i

ms | en proved by Bing [1]
and Mazurkiewicz [2]. Dr. Howard Cook suggested to me that the methods
developed above could be used to prove this theorem.

TBEOREB‘I 5. Suppose X, X,, X, ... is a sequence of mondegenerate
compact metric continua and d; is a metric for X, Jor each i. For each positive
integer i, let F; denote the space of continuous functions from X, onto X
with the metric Dy(f, g) = max,, x,. d(f(x), g()). Let 8 be the pmduc;
over the positive integers of the spaces Fy. We assume that diam (X;) = 2~¢
Jor each i; it follows that S is metrized by taking the distance between points
to be the sum of the distances between their coordinates; denote this metric
by r. Let A be the set of elements of 8 for which the inverse limit of the corre-
sponding system is hereditarily indecomposable. Then if A is not the empty
sel, A is a dense inner limiting subset of the complete metric space S.

Proof. Suppose that 4 is not empty and let 72, I3, ... be an element
of A. As usual, for m greater than n, we denote by fa the composition
of the funetions i+, far2, ..., /™ s we will follow this convention below
for other sequences of functions. For each positive number ¢ and positive
integer », let B,, be the set of elements ¢, g2, ... of § such that there is
a positive integer m greater than « such that if X is a subcontinuum of X,
there are three points of K such that if H is a subeontinuum of K con-
taining two of them then d,(z, Ja(H)) << e for each w in f*(K). We prove
first that B,, is dense in 8. Suppose that k3, b3, ... is in § and B is a positive
number. Let ¢ be greater than » and sufficiently large 5o that the distance
from R, S, ... to R, ..., Ri_,, fI*%, ... is less than #. There is a number F
greater than 0 such that if dy,y) <F then d,(h%(z), hi(y)) < e. There
is a positive integer m greater than ¢ such that if K is a subeontinuum
of X, there are three points of K such that if H is a subeontinuum of K
containing two of them then djw, fi(H))< F for each z in f7(K); for
each @ in hLf"(K), d (o, b, f™H)) < e. Thus B,, is dense in § for each
positive number e and positive integer n. Now suppoise thab Gy 93y oo
isin B,,. Let m be a positive integer greater than n such that if X is a sub-
continuum of X,, then there are three points of K such that if H is a sub-
continuum of K containing two of them then d,(z, f™(H))< ¢ for each =z
n fH(K). We show that there is a positive number ¢, < ¢ such that if X is
a subcontinuum of X,, then there are three points of K such that if H is


Artur


270 D.P. Kuykendall

a subcontinuum of K containing two of them then dn(m fH ))< ¢, for
each # in f™(K); suppose this is not the case. For each positive integer i,
let E; be a subcontinuum of Xy, such that if a, b, and ¢ are three points
of K, then there is a subcontinuum H of K, contammg two of them such
that there is a point z of fi(K,;) with e—1/i < (2, f™H)). Some sub-
sequence of K, Ky, ... converges to a subcontinuum K, of Xn; for no-
tational convenience, we assume that K, K, ... converges to K,y. There
are three points a,, by, and ¢, of K, such that it H is a subcontinuum of K,
containing two of them then d,(» ( , f™H)) < e for each ¢ in f}(K,). Taking
subsequences and changing notation, we have sequences a, b, and ¢ of
points and a sequence H of continua such that, for each 4, as, b;, and ¢;
are points of K, and H; is a subcontinuum of K; containing a; and b;
such that there is a point p; in K; with e—1f5 < d,(fi(p,), falH, )) and
such that ay, gy, ... converges to ay, ete., Hy, H,, ... converges to a sub-
continnum H, of Ky, and 9, p,, ... converges to a point p, of K,. Note
that H, is & subeontinuum of K, containing a, and b,. But the fact that
@ f™Mps), fM(H,)) is at least e—1/i for each 4 implies thatb A pg) , F(H,))
is at least e, a contradiction.

To show that g%, ¢3, ... is in the interior of B,, it remains to show
that if 7{¢%, g}, ..., B2, k3, ...) is sufficiently small then hm differs from ¢
ab each point by less than (e—¢,)/2. We omit the proof of this.

‘We now have that for each positive integer # and positive number e,
B,, is a dense open subset of S. Since § is complete, the intersection of
all the sets B,, for ¢ a positive rational number and » a positive integer
is a dense inmer limiting subset of S; but according to Theorem 4, this
intersection is 4.
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O MOIIHOCTH OTKPHITHIX NOKPHITHE TONOIOIHIECKHX
IPOCTPAHCTR

H. B. Bemmuxo (Caepznosck)

Pesiome. VCTaHABIMBAIOTCA ONEHKHM MONIHOCTH OTKPBITEIX TIOKDEITH TOMONOIHYECKHX
npocTpancrs. JLIS 9TOH LM HCHOMB3YIOTCA MHBAPHARTHL: ¢ (X) — wneiao Cyomma, o6 (X) —

macnegcrsennoe wicao Cycmmma, ¢ (X) = sup|g]: 5 — muckpernoe cemeiicrao
B X MHOMECTB. OTHPBITHIX

1) Bom y — noxamso ¢(X) — xparnoe noxperme X, 10 |y < ¢(X).
2) Ecam y — NOHATHHO KOHEWHOE HOKPHITEE X, T0 |p| < ¢o(X).

3) Ecmm p — TOUETHO KOHEWHOE NOKDLITHE COBEPINEHHOro mpoctpaucrea X, 10 |y| <
< ee(X).

4) Ecim y — ¢'- TOIETHO KOHEUHOE NOKPEITHE 53POBCKOrG npocrpancmaX 10 [y] < ¢(X).
Cperu IpYTHX PesyJbTATOR OTMETHM CHEHyIonmii:
5) BapoBckoe ¢-NPOCTPAHCTEO 08NEAaeT IIOTHBIM METDHIYEMEIM HOJUDOCTDAHCTEOM.

VCTaHaBIHBAIOTCA OUEHKH MOIJHOCTH OTKDBITBIX IIOKDBITHH TONOIOrH-
HeCKUX NIPOCTPancTB. i 9TOH Nems HCHONBSYIOTCH HEKOTODHIE KADIHHAIBHO-
3HAUHBle MHBAPHAHTE! IIPOCTPAHCTB Taxue, Kax ¢(X), d(X), i¢(X). Bompocsr
HORCGHOre XapaKIepa PacCMaTpHBATMCE W DaHee, HA30BEM [ULT IIpUMEpA Clie-
Iyronpie QaKTbi:

1) Ecmz y — TOYEWHO CYETHOE OTKPBITOE IOKPBITHE TIPOCTPaHCTBA X,
To |y} < 8(X).

2) Bcmw y — Toueumo cuermas $asa CUSTHO KOMIABKTHOIO Xaycmopdosa
TPOCTPAHCTBA, TO || < .

3) Ecnu ¢ — ¢- IM3BIOHKTHOE OTKPBITOE NOKpEITHE X, 10 || < ¢(X).

3nmecs u panee:

|y] — momsocrs cemelicta ¢,

8{X) = min|8|: § wriorso B X,

¢(X) = suply|: ¥ — NUSHIOHKTHOE CeMEHCTBO OTKPBITEIX B X MHOMKECTR.

Bcee xapmuransmele wmcma NPEIIONAratoTc OECKOHEUHBIME, BCe CeMeHCTRa
H IOKDBITUA OTKPBITBIMH, €CJTH He OroBapHBaercs nporusHoe. Ha npocrpaacma
HaJaraercss aKcHoma ormeiumoctd T .

Tumrursie ofo3HavueHmMs :

[4] — sampxanme muoxxectsa A,

18 — Fundamenta Mathematicae, T. LXXX
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