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is separated by no subcontinuum, what is a necessary and sufficien‘t
condition (or conditions) in order that M have 2 monotone, upper semi-

continuous decomposition, each element of which has yoid interior and
such that the quotient space is a simple closed curve?
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The Whitehead Theorem in the theory of shapes
by
M. Moszyinska (Warszawa)

Abstract. The purpose of this paper is to establish in the theory of shapes a theorem,
which is an analogue of the Whitehead Theorem. We start with proving some statements
concerning eategory theory (Section 1); they counld not be found by the author in the li-
terature. These statements enable us to prove the exactness property for homotopy
systems (§ 1 of Section 2). Next, we establish some propositions on inverse systems
of polyhedra (§ 2 of Section 2); they are needed in a proof of Theorem 3.5, which is
referred to as the Whitehead Theorem for inverse sequences of polyhedra (§ 3 of Sec-
tion 2). At last, applying the Freudental Theorem, the Holsztyiiski theorem on the
fundamental dimension and the results of {6] and [10]-[13], we obtain the main
theorem (Th.4.3).
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Introduction. As proved by J. H. C. Whitehead in [16] {see also [15]),
if two spaces X and ¥ are homotopically dominated by some connected
CW-complexes of dimension <, (of infinite dimension), then for a map
f: X=Y to be a homotopy equivalence it is sufficient that f induces
isomorphisms of homotopy groups, fa: mn(X)—>mn(¥), for n=1,..,n,
(for n=1,2,..).

Thus, for spaces with nice local properties (e.g. ANR’s) the homotopy
groups are the most important homotopy invariants. However, for arbi-
trary compaet metric spaces, the homotopy groups lose their validity.
For this reason K. Borsuk introduced the notion of fundamental groups.
As proved in [1], p. 253, the fundamental groups are shape invariants;
for ANR’s they are isomorphic to the homotopy groups.
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The main result of this paper (Th. 4.3 of Section 2) shows that, as
regards movable compacta of a finite fundamental dimension, the role
of fundamental groups in the shape theory is quite the same as the
role of homotopy groups in the homotopy theory.

TFor the notion of movability and uniform movability, see [2], [7]

and [12]. .
The author would like to express her gratitude to Mr. 8. Nowak
for his valuable remarks.

Section 1

1. Exact diagrams in categeries with zero-objects. Let us consider an
arbitrary category . We use the symbols X, ¥, ..., A, B, .. to denote
objects of % and f,g, .., 9, %, ... to denote morphisms. If f belongs to
Mor (X, ¥) we write f: X-»¥; the symbol 1x: X — X denotes the identity.

Let us recall some definitions (see [9]).

[1/ f: X->Y is a monomorphism < A fo=fo'=9=79"
Di o0 Z->X .

12f f: XY is an epimorphism < N yf =9pf=yp=19"
Dt gyt Y2

3/ f: X+Yisa bimorphism;; fis a monomorphism A f is an epimorphism.

‘We have
1.1. Bvery isomorphism is a bimorphism.

Obviously the converse is false.

/4] A family of morphisms, {wxyeMor(XY)}xy, i8 a class of zero-

morphisms < A\ N\ [wxyf= 0ir]A[oxy= oxp]
Dt y: 4—+X g: ¥—B

If the category J6 has a class of zero-morphisms, then the following
three notions can be defined in J:
/5/ Take N5>XL¥. The pair (N¥,4) is a kernel of f (in symbols
Kerf)g;[i is a monomorphism]A[ff = wyy] A Z/})X[ﬁp = wgy
'Y

=\ ¢=jp"

¢'s Z->N
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/6/ Take XL ¥ 2 M. The pair (M,p) is a cokernel of f-(in symbols
Cokerf) E[p is an epimorphism] A [pf = wxul A A [ = ozz
v Y2

= V p=1y'p]

' M—Z
xLy Sy
o
N
/7] Let Coker f= (M, p). Then
Imf = Kerp .
Now one can define the exactness of a diagram as follows:

/8] The diagram ... 2X, A x5 . is ezact <> all f; have kernels and
images and Imf; = Kerf;,, for every i.

Thus, the notion of exact diagram can be introduced for an arbitrary
category X with zero-morphisms. Now, let us recall the definition of
zero-object:

/9] X is a zero-object ﬁMor(X s X)= {1z}

It is known that (see [9]),

1.2. All the zero-objecis in X are isomorphic.

1.3. If X has zero-objects, then it has a class of zero-morphisms as well.

14. X i8 a zero-object <> Mor(X, X)= {wxx} < 4\ [Mor(X, X¥)
= {0xy}]A[Mor(Y, X) = {wrx}].

By 1.3, the exactness of a diagram can be defined for any category X
with zero-objects. The statement 1.2 enables us to denote by 0 an arbitrary
zero-object.

Assuming X to have zero-objects, let us establish the following
statements 1.5-1.8 (1). )

1.5, f: XY is a monomorphism = Kerf= (0, wyx).

Proof. Let Kerf= (N,j). For j, onx: ¥N—+X, we have fj= oxr
= foyx; thus, by /1), j = w~x.

Take an arbitrary ¢: N—>N. We have jp = wyzrg = oxyx = jonw,
where j is 2 monomorphism; 80 ¢ = wyy. Hence Mor(N, N) = {wxy} and
then, by 1.2, ¥ is a zero-object. B

(*) Some of these statements can be found in the literature, however only under
additional assumptions on XK.

18 — Fundamenta Mathematicae, T, LXXX
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1.6. f: XY is an epimorphism = Cokerf = (0, wyp). °

Proof, This statement is dual to 1.5. B

1.7. Cokerf= (0, wyy) <> Imf= (Ny, jz),j» being an isomorphism.

Proof. =. Let Cokerf= (0, p), where p = wygy. By [7/, Imf = Kerp
= (Np,Jp) ‘

By /5/, since p = wyy, We have

VAR T
¢: Z—Y ¢’ Z—>Np
Take = 1y: ¥—»Y; there is ¢": Y-+, such that jp¢’' = 1y. Hence,
Ju(0'in) = 1vip = jp = jply,, Where jp is & monomorphism; thus, by [1/,
@'jp==1n,. S0 ¢’ is an inverse of j,, therefore j, is an isomorphism.
<=. Let Coker f = (M, p) and Imf = (Ny, j»), j» being an isomorphism.
By /6], pjp= wn,mu = wymujp, Where jp is an epimorphism; thus, by [2/;
p= wyy. For any ¢: M—->M, we have ¢p=goury= wry= ouup,
where p is an epimorphism; thus ¢ = wuyu. Hence, by 1.2, M is.a zero-
object. m
1.8. Kerf = (N,§), j being an isomorphism = Imf = (0, w,p).
Proof. We have '
yLx Ly 2y,
2
Ny
where j is an isomorphism, Imf= Kerp = (N, jp) and Xerf = (N, j).
By /5/, fi = wyy = wz¥j; 50, by 1.1 and /2], f = wxy. Then, by /6/,

V o w=qvyp.

y: Y=Z y": M—Z

Take p= ly: ¥—Y; there is y": MUY such that wp=1y. By [5/,
Pjp= wnyu; 80 jp=1y'Djy = wy,r. For any ¢: Ny,—N,, we have jp

= WY = jp ONpN,, Where jp i & monomorphism; thus @ = wy,N,. Hence,

Np is a zero-object and-jp, = wy,y = wep. B

Let us prove now

1.9. PROPOSITION. Given the exact diagram X > Y5250 in a cate-
gory with zero-objects, let v be an epimorphism. Then Z = 0.

Proof. By 1.6 and 1.7, since v is an epimorphism, we get Im=z
= (Np;js), jp being an isomorphism. By the exactness of our diagram

©
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and by 1.8, we get ImZ = (¥, wyz) = Kerd, where N iz a zero-object.
Take an arbitrary ¢: Z—+Z. Since dp « Mor(Z, 0), it follows by 1.2 that
0@ = wgy. S0, by /5], there is a ¢': Z—+XN such that ¢ = jp'. But N is
a zero-object, thus ¢ = w,y and therefore ¢ = w,,. Hence Z is a zero-
object. M

2. Exact diagrams in weak additive categories. Let X be a category
with a class of zero-morphisms {wxy}x . T0 every two objects X, ¥ let
us assign an operation

+xyp: Mor(X, ¥)x Mor{X, ¥)>Mor(X, Y).
The system (K, {+xy}, {oxr} i3 said to be a weak additive calegory
whenever the following two conditions are satisfied:
(i) <Mor(X, ¥), +xv,oyy  is a group (with the group operation
+xr and the neutral element wxy) (%),

() ¢(fi +xv fo) = gfi +xzfs 208 (gi+7z8:)f = 1 f +x20.f for any
fyf,eMor(X, Y), g,9, e Mor(Y, Z).

Obviously —xpf denotes the unique morphism f’ satisfying the
condition f+ x¢ f' = wxy; we define as usnally f —xrg Ef +xp{—xv9)-
In the sequel we shall write often -+, — instead of + xp, —xp. Assuming X
to be a weak additive category with zero-objects, let us establish the
following statements 2.1-2.3.

2.1. For every f: X=X,

Kerf = (0, wyx) = f is a monomorphism .

Proof. In order to prove f to be a monomorphism, let us take
@1, 92t Z—>X and assume fp, = fo,. Sinee Kerf = (0, w,x), by 1.2 and by
definition /5/

4\3 [fo= wzr=9¢=wzx].
g: Z>3

Betting ¢ = ¢;—@s, by (i), (i) we have
fe=Flo—@) = fp—Joa = wzy;

50 ¢y—@s = wzx, and then ¢, = g,. Hence f is a monomorphism. M
2.2. For every f: XX, ‘

Kerf= (0, wpx) A Imf= (0, oz} =X =0.
(®) If, moreover, <Mor(X,Y), + 5y, wgy> is an abelian group, then we get an

additive category.
5%
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Proof. Take an arbitrary ¢: X—>X. We have

x-Ly- 2o,

T ‘

0

Im f= Kerp=(0,7p), jo= ®or,

thus it follows by 2.1 that p iz a monomorphism. Besides pf= wxy.
Hence, p(fp) = oxy® = wxy = poxy implies fp= wxgy. Furthermore,
since Kerf= (0, wyx), there is ¢’: X—0 such that ¢ = wyxe’. Thus
¢ = wxx and therefore X = 0. W

Now, let us prove

2.8. PROPOSITION. Given the emact diagram

xX3y5z5x 5y

in a weak additive category with zero-objects, let = be an'ejpimorph@'sm and
v’ be a monomorphism. Then Z = 0.

Proof. Since 7’ is & monomorphism, it follows by 1.5 that Kerz’
= (0, wyx-). Sinee 7 is an epimorphism, it follows by 1.6 that Cokers
= (0, wyy); and then, by 1.7, Imz = (N, jz), j» being an isomorphism.

By the exactness of the diagram we obtain

Keré = Imz = (Np, jz), jy being an isomorphism;

80, by 1.8, Im& = (0, wyy).
By the exactness, we have

Kero=Imé= (0, wyz) and Imé= Kerz = (0, wyy)-

Hence, applying 2.2, we obtain Z=10. m

3. Categories of inverse systems. We are concerned with the inverse
systems over (4, <) in a category K. Let us recall the definition.

Take a closure finite directed set, i.e. a pair (4, <), where the re-
lation < is reflexive, transitive, for every a, o’ € A there exists an o'’ e 4
such that «, o’ < o/, and for every ae.A there is at most finite number
of predecessors (see [5]). The system X = (X,,p%, 4) is said to be an

inverse system over (4, <) in the category I, whenever
X, e Obyg

22 € Morg(X,,, X,)
a<<a

for every ae 4,

dza,

for

" s "
<a’'=peve =0a
and

pe=1x, for every aeAd.

(We write also o’ > « instead of a < o).

icm
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Given two inverse systems in X,

X = (XGY P;', -"—'i) and ( a? Qu b A) ’

the system f= (p,f,) is said to be a cofinal map of systems whenever
p: 4+ A is an increasing function, p(4) cofinal with A,
Jo € Morg (X, ¥,) and the diagram

is

is commutative for every o' >

If, in particular, ¢ = 14, then f is referred to as an ordinary k'map; in
symbols f= (f,).

Let X* be the category
objects and cofinal maps of
the equivalence relation
f'=1(¢'. 1)), then

f=f=

DI 51 (4, <14, <)

with inverse systems in X over (4, <) as
systems as morphisms (see [12]) (3). Define
in Morg.(X, ¥) as follows: let f= (p, f.),

Abla) = gla), (@A furl = f2250)-
Since 4 is assumed closure-finite, it follows by Lemma 5 of [5] that
the above definition of =~ is equivalent to that used in [12] and [13].
The quotient category K*|~ will be denoted by &* (4.
Let us prove that
3.1. For any wmorphism f=
cations hold:

(@, f) in K* the following two impli-

fo is a monomorphism (epimorphism) in X for every a =
[f] is a monmwrphism (epimorphism) in F*,

Proof. Take X=(X,, 27, 4), Y=(T,, ¢, 4) and f=(p,f,): X V.
Let f, be a monomorphism in 3\, for every aeA Take Z=(Z,,r%, 4)
and g,g"s Z—>X, g= (9,4.); § = (%', §o)- I fg == fg', then there exists

8: (4, <)—(4, <) such that §(a) = pp(a

1)
thus we get
@)

a), 8(a) = y'p(e) and

a ’
Jaue 7’;‘.;7()41) = folpay Tz(';)«u) 5

7
G2 = QuaT0e  Tor every acd.

(*) In [12] we did not restrict Mory* to the cofinal maps.
(*) In [12] and [13] the more general case was considered. Here ~ is an identity
relation.
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Take any fe.A and let ¢(a) > B. By (2) we have

~A(a) (@), g8
pg(a)gq:(aﬂ q:(a) =D g [P) Tw’;’(ﬂ) ?

SO
9(c),.3(c) ‘o(a), 8(a
. TS Ty = G T »
whence
(@) 5(a)
(3) G570 = G5"yh -

By (3) it follows immediately that g = g'; hence [f] is a monomorphism
in &*.

NOW, let f, be eplmorphmms, aed. Take Z= (Z,%,4A) and
g,8: Y>Z;let g= (p, g,) and g'= (¢, g.). I gf ~ g'f, then there exists
8: (4, <)—~(4, <) such that é(a) = pp(a), é(a) = pp'(a) and
(4) Gu o P50 = Gy Doghy  for every acd .

It is easy to see that

(5 /\ V = a),w(a)]/\[w(ﬁ) é(a)] .
By (4) and (5) we get
(6) /\ \/ gaf q)(a).pw(ﬂ) gaf ’(a).'pw (a) *

a By, (@
By the commutativity of the diagrams for the map f, the condition (6)
implies
(M A \/ Jalhnfo = Galyls -

Sinee ffj is an epimorphism, we get g o g’, whence [f] is an epimorphism
in £ m

Let us notice that

3.2, If the collection {wx v} is @ class of zero-morphisms in 3, then
the collection {oyy = (0x 7 )} 8 o class of zero-morphisms in K* and the
eollection {[oxyl} of equivalence classes with respect to =~ is a class of zero-
morphisms in X°. M

In turn, we are interested in kernels and cokernels of ordinary
morphisms in the category &*. Let us prove

3.3. PROPOSITION. Given an ordinary map f= (f,): X=¥ in &%
let Kerf, = (N,, jo) for any a € A. Then there exists a collection of morphisms
i By (B )yrmar SUch that
&y (Ngyng'y 4) € Obgys  and (14, Jo) e Morgs,

(i)  Ker[fl= (N,[j), where N= (N, n, A) and j=(j,).

icm
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Proof. Let X=(X,,p%,4) and Y= (Y, ¢, 4). By the as
sumption, Kerf, = (¥, j.), ie.

(1)

(3)

Let o'

'

(#)

Jo 18 & monomorphism ,

fﬂjﬂ= w

Nﬂ Yd

/\ qu5=wzra=> \/ I=73.01.
' Z—.

i Z»X,

“Na

> a Take Z= N, and = p%jy: N,—X,; by (3) there exists
ng: Nopo—N,, such that

Jaa

i.e. the diagram

Thus, a <<

N

Ja

PR

M

R
-7!! 710

s
o
n

a o
< \'u,

v
o X
a’
ES

a

a' < o implies

e Mm@
= Polo’s

ifr 15 commutative for every o' > a.

= Py Jor = D5 (Paju) = Daderfe = Jolnana);

since j, is a monomorphism, we get

(5)

aga'sa”

In turn, we have

rr o ar
= 05 = ng NG

JaMe = PJa=Ja

which implies the condition

(8)

By (4), (5) and (6) we obtain (i).

for any a.

Let N= (¥,, n%, A) and j= (j): N>X. By 3.1, the condition (1)

implies

(7)

[j] is » monomorphism in &*.

By 3.2, the condition (2) implies

(8)

1L = [owy]

(moreovér fi= o).
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Take any Z= (Zy, 7’2’, _A) and a morphism‘g‘:‘(qp, 'AE Z-X in X* Let
fg = o7y, ie. there is a §: (4, <) - (4, <) such that

9) Foa?D = © 25 Fa for aed.
By (3), for any a ¢4 there exists gut Zyey—> N, such that
(10) G = Jaba -

In order to show that (4, g,) is a map of systems, consider the diagram

By (10), we have ‘

Jafa?5s = 9areie) 5
on the other hand, by (10), (4) and by the commutativity of the dia-
grams for g, ’

PR g SR . By a(a’) .
JaPa Yo = Dadu Joar = DaarVoar = JaToie 3

thus
Jal9ar5) = JunGgu) -
Hence, by (1),
GaT5(e) = M Gur 5
i.e. the diagram commutes. So, we get
g =1(0,9): Z>N.
The condition (10) implies

() [e]1=[lg].
By (7), (8) and (11) we obtain (ii). m

3.4. PROPOSITION. Given am ordinary map f= (f.): X—Y in X*, .

let Cokerf,= (M,,p,) for any aecA. Then there emists a collection of
morphism in X, (m%)ys, , such that

(i) (M, m, 4) € Obgr and  (Lu, p,) e Morgs ,
(ii) Coker[fl= (M,[pl), where M= (M, m;A) and p= (p,).
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Proof. Let X=(X,,{,4) and Y= (¥, ¢, 4). By the as-
sumption, Cokerf, = (M,, p,), i.e.

(1) P, 15 an epimorphism ,

2 Pofo= Ox, M,

and

(3) /\ {Efa"'_" Oxz = v §=£ ,?u’] »
& Yp—Z & My—~Z

Let a<< . Take Z= M, and &= p,¢¥: Y, —>M_; by (3) there exists
m?: M,—M_ such that

€5 Pals =MD
ie. the diagram

&
? at— Yo
zaa\YL (7w i3 commutative for every a< o'.
¥
_1'[“47 M,
m,

3

Thus, a < ¢’ < o” implies

M Do = Dol = (0505 = MaPr @ = (MIME ) P
since p,~ is an epimorphism, we get
(3) a<e <a’'=>m =mimZ .
In turn, we have
MePa = GaPa= Pa >
which implies the condition
(6) mg=1,  Tfor any a.

By (4), (5) and (6) we get (i). Let M= (M,, m¥, 4) and p = (p,): Y->M.
By 3.1, the condition (1) implies

(7) [p] is an epimorphism in 3*.
By 3.2, the condition (2) implies
(8) [PIlf]1=T[oxy] (moreover pf= wy).

Take any Z = (Z,,r%, A) and a morphism g = (p,g,): ¥->Z in X*
Let gf o~ wyz, ie. there is a 6: (4, <)>(4, <) such that

(9) Gof g Py = X, 70 for acd.
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Then, by the commutativity of the diagrams for f, we have

(91) (ga g;(((:x)))\ﬁi(a) = ?)Xd(a)za for aed.

By (3), for any a <4, there exists got Myy—Z, such that

(10) gaqz((aa)) = gc’l.pd(a) .

In order to show that (4, g is 2 map of systems, consider the diagram

M4(a)
M 8@ < M, &(a’)
Qc’; - ”a

Zys——— iy
"
T
a

By (4) and (10), we have

g;mgg?Pa(a') = gclxpﬁ(a) ngZ;’ = o w((:;)) E:;) ga!l's w(a) )
on the other hand, by (10) and by the commutativity of the diagrams
for g,

7a ga'.’pd(a’)— aga)qzo(a) gaQi(a) H
thus
(gama(u) VPsary = (rg ga’)pd(a')
Hence, by (1),
qamgg)) - V ga’
i.e. the diagram commutes. So, we get
g =1(5,0) M>Z.
The condition (10) implies

(11) [g]1=[g'llp].
By (7), (8) and (11) we obtain (ii). m
As a consequence of Propositions 3.3 and 3.4, we obtain
3.5. PROPOSITION. Given an ordinary map f= (f): X->Y in XY

let Imf, = (V,, 8,) for any a e A. Then there ewists a collection of morphism
n I, (?Jﬁ')a,>a, such that

(i) (Voyo%, A) e Obys and (1, s,) e Mory»,
(i) Im[f]=(V,[s]), where V= (V,,o%,4) and s=(s,).
Proof. Let Cokerf,= (M,, p.), then

Kerp,, = Imfn = (Va’ sa) N

icm®

The Whitehead Theorem in the theory of shapes 233

By 3.3, there exists a collection (#%),, such that
(Voy 0%, A) € Obgx, (1, 8,) € Morg:
and '
(1) Xer[p]l= (V,[s]), where V={(V, %, 4)and s=(s,).
By 3.4, there exists a collection (m%),, such that

(M,,mZ, A)eObyr, (1,,P,) € Morg«
and
(2) Coker[f]= (M,[p]), where M= (M,,m,A)and p=(p,).
By (1) and (2), we get

Tm{f]= Ker[p] = (¥, [s]) -

By Propositions 3.3 and 3.5, we obtain
3.6. COROLLARY. Given a finite or infinite diagram

)
0: .25 x5 x5 in the category X*,
where f® = (f®),_, for k=0, 1, ... and X® = (X®, p®*, 4), consider
a system of diagrams (Dy)eey
{e) 7(1) (2}
Dyt > XD XO L in K.
If all the diagrams D, are exact in K then the diagram D is exact in .
Consider now a weak additive category (X, {+xyp}, {wxy}r. For
any pair of objects X, ¥ in X%, define an operation +xp in Morg+(X, ¥)
ag follows:
Take two maps in Morg+(X, ¥):
f=lp,f) and g=(y,4.)-
1° If ¢ =y, then

freg= tm‘u +ga) -

2° If @ # v, then, by Lemma 5 of [5], there exists é: (4, <)»(4, <)
guch that é({a)>= @(a),y(a) for any a; let

f (8, fa.pi((uc)) and g = (4, ga?ﬁa));
put

tg=f+%.
fregite
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Notice that [f+ g] is independent of the choice of §. This enables us to

define [f]1+1[ g](d)by the formula
[f1+lel= [f + gl

for an arbitrary &: (4, <)—=(4, <)‘.
It is easy to show that

3.7. The system (K, {+ )y {{oxy]}> s o weak additive category. m

' Section 2

1. Exactness property for homotopy systems. The homotopy system
mn(X, ;) has been defined in [12] and studied in [13]. It is understood
as an inverse system of mth absolute homotopy groups; more precisely,
if (X, x,) = (X, %), 9%, 4), then for every n > 1,

7n( X, Xo) o (’zﬂ(—Xa; Ba)s (.’p;’)n’ -A) ’

where n4(X,, #,) is the nth homotopy group of X, at x, and (P )
sn( Xy @) —>7n(X,, ) is the homomorphism induced by the m:ep
pg' (Xu 7 w )%(Xaﬂ wa)

In a similar way for every n > 2 the relatwe n-th homotopy system
m(Z, X, x,) can be defined: if (Z, X, x,) = ((Z., X,, %), 1%, A), then

(Z) X xo) . (ﬂn(zln Xu’ a}a) ( )n, A) k)

where my(Z,, X,, x,) is the nth relative homotopy group of Z, modulo X,
at @,, and (r¥), is the homomorphism induced by 7& (see [4]).

Remark. The category G of pointed Hausdorff spaces can be treated
as a subecategory of the category B’ of Hausdorff triplets, since any pair
(X, @) can be identified with the triplet (X, (), 2,). Thus the functor
of relative nth homotopy group is an extension of the functor of absolute
nth homotopy group. Hence, in similir, the functor of relative nth homo-
topy system is an extension of the functor of absolute nth homotopy
system. This justifies the using of the same symbol n, for both the
functors.

‘We use the following notation:

I = {(tyy s tn): NO<H
i=1 .
= {(t1, .oy ta) € I™: 1, = 0} —the initial (n—1)-face of I7
IV =ty ey ta) e ' [V ti=0)v(\/ %= 1)} — the union of re-
i<n i
maining (n—1)-fces, ‘
I"= 1o J** —the béundary of I™.

< 1} —the unit n-dimensional cube,
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Let § be the category of groups.

We are interested in the exactness property for homotopy systems.
As was noticed in § 2 of Section 1, the exactness of a diagram ean be
defined in any category with zero-objeets. Thus, for our purpose, the
group structure of the absolute or relative homotopy groups cin be
neglected. In other words, it is sometimes convenient to treat s, (for
n>1) as a functor from the category of triplets to the following
category C. The objects of C are pairs (@, 0, consisting of the set @ and
the fixed element 0 of G; the morphisms are functions preserving the
fixed elements. Of course C has zero-objects. Then, m(Z, X, a,) is con-
sidered as the following pair:

anlZ, X, 2} = {[Z, X, ‘tﬂ][p’p’ﬂ_l]a 0,
where 0 is the homotopy class of the constant map. Consequently,
mnl X, 2) = 7a( X, (20), '730) ={X, ], 0;

(see Remark). Of course, such approach enables us to include the ease
n =1 to our consideration.
Let us take an inverse-system of triplets,

(Z; X, x9) = ((Zay Xay %) 72, —AJ s

X, being an arcwise connected subset of Z, and z, being any point of X,.
Let i: (X, x,)—(Z, x,) be the ordinary inclusion (see [10]), i.e. i= (1, i.),
i(#) = o for any z « X,. Consider the following diagram in the category C*:

D: (X, xo)*"”‘n(Z, xo)—mu(z X, xa)—”‘u—;(X ) xa n—1(Z; Xp) > ...
- =>m(X, xo)“”ﬁ(za xn)’*”x(zx X, xo)—lo ’

where 0 is an inverse system consisting of zero-objects in C (thus all the
more 0 is a zero-object in G*), i, is the morphism induced by the in-
clusion 7 and &,, 8, are defined as follows:

§ﬂ= (1A7 En.,n)! un s (Zu,ﬂ?)'-?"l (Ztnxu:w)
Ea, n{‘P] = [lp]n:l for any gl (In7 I”)'%'(Ztﬁ ma) b
en = (]-A’ aa,n) 3 ac,n: :[n(zai -Xn: ma)*”n-l(xu zg)
Oy @l = [@ "]  for any @: (I% I™, J" )+ (Zyy Ko, @) -
The diagram D will be refered to as the homotopy dzagmm of the inverse
system (Z, X, x,).
Consider the following finite subdiagrams of D;
in Zs 2n i
Dz (X, o) => 7o Zy %) —> 1a( Z, X,y 20)—> T o( X, %) 1(Z, %o)
for n =2
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and i &y 91
D,: (X, Xo)—> (Z, x0)—> 1(Z, X, %6)—>0 .

For n > 2, D, is a diagram in 6% D, is a diagram in C*
By the exactness of the diagram
taln da,n
. +D’En(X )L%n(za,]} )_—>ﬂ (Zu’Xajwa)—-'%nn—l(Xu7ma)'>
2a,
v >y 2y Xy wa)—1>0

for every aeA, the statement 3.6 of Section 1 implies

1.1. The homotopy diagram D of cmy inwerse system (Z, X, x,) i k

exact. W

More precisely

1.2. The diagram Dy is ewact in §* for n=>2 and is evact in &* for
n=1. N

Now, we apply 1.2 to prove

1.3. Let (Z, X, x,) be an inverse system of triplets of arowise connected
Hausdorff spaces and let i: X->Z be the inclusion. Take a natural number ny.
If [in] is a bimorphism in &* for n < ny and s an epzmorphasm in §* for
n = Ne+1, then mn(Z, X, x,) is a zero-object in C* for n=1,...,m+1.

Proof. Sinee [i,] is 2 bimorphism in &* for n < ny, it is a blmmphlsm
in 6% as well.

Let 2 < n < ny-+1. Consider the subdiagram D, of the homotopy
diagram for (Z, X, xo),

in n on i
Dz a( X, Xo)— ma(Z, xu)i w(Z, X, Xo)—> 7, _4(X, xo)"L Tp-1(Z 5 Xo) «

By 1.2, the diagram D, is exact in the category §*. Since [i,] is an epi-
morphism and [f, ;] is a monomorphism in G*, by the statements 2.3
and 3.7 of Section 1 it follows that

1 mu(Z, X, %) is @ zero-object in §*.
Let » = 1. Consider the diagram D, for (Z , X, %),

i 5 91
Dy X, Xo)—> 1(Z, x0)—> my(Z, X, x)—0.
By 1.2, the diagram D, is exact in the eategory C*. Since [i] is an epi-
morphism in &*, by the statement 1.9 of Section 1 it follows that
(2) n(Z, X, x,) is 2 zero object in &,

By (1) and (2), ma(Z, X, x,) is & zero object in €* for n=1, .., ng+1. &
Let us establish two consequences of the algebraic condition
w(Z, X, x,) = 0 in C*. First of them is the following
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1.4. ProrostrioN. Let (Z, X, x) = (Z,, X, 3,),7%, 4) be an in-
verse sysiem of Hausdorff tripleis over a closure-finite directed set (4, <),
n—a natural number. If ma(Z, X, x,) i8 a zero-object in C¥, then there
exists an increasing function 6: A->A such that

() day=a for aed,

(i) for any map & (I I J™) > (Zyyy Xywr Tam) 15% ~ const in
(Z,y Xy ma)(I",In,Ju M, )

Proof. Consider the identity map
12 (Z, X, x) > (Z, X, xp)
and the induced identity morphism
(1) 7 (Z, X, x0) > 7, (Z, X, x,) .
Since #.(Z, X, x,) is 2 zero-object in &%, [1,], is a zero-morphism in &*, i.e.

/\ "\i/ Im(r:')nz O¢ ‘Trn(ZaS Xa? ‘I"a) -
Thus, for any map & (I%I%J*Y—>(Z, X, 8.), &~ const in
(Z,, X,, x,). Of course, a’ can be replaced by any greater one, hence, by
Lemma 5 of [5], there exists an increasing function §: A— 4 satisfying (i)
and (ii). m
Let us notice that

L.5. If (Z,X) is an inverse sysiem of pairs of arcwise connecled Haus-
dorff spaces, then for any two threads x, and x; in X, the komotopy sysiems
wnlZ, X, x,) and m(Z, X, x;) are isomorphic (in C* for n=1 and in §*
for n>1). @

The last statement enables us—in the cese of arcwise connected
spaces— to use the symbol =,(Z, X) to denote the nth homotopy system
of (Z, X, x;) for any x, in X.

As the seeond consequence of the condition ma(Z,X,x,)=0 in &*
we get

1.6. ProposIION. Let (Z, X) = ((Z,, X,), 1%, A) be an inverse system
of pairs of arcwise connected Hausdorff spaces with 1*(X,) = X, for o' = a.
Let n be a natural number. If m(Z, X) is a zero object in C¥, then there exists
an increasing function 6: A—A satisfying the following two conditions

b

(i) bla)=a for acA,
(ii")  for every E: (I%, 1:“)—>(Z,m, yey)y 12 9E ~ const in (Z,, Xa)(”’i") .

Proof. By 1.4, there exists an increasing funetion é: 4+ 4 satisfying
(i) and (ii).
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Take a map & (I* I")~>(Zye, Xsw) and a point aeZ(I"). Since
79(X,)) = X, for every o > a, there exists a thread (#,)ecq in X, such
that a = @q- .

Notice that there exists a map

£ I7, I")—->(Zd(a), Xswy)

guch that

(1) EWJT) = a0

and

) ExE i (Zyg X ™.

Indeed, take f,¢ Z“l(m,,(,,)) ~I"™; obviously, there exists a homotopy
B J*1x I 1" such that

B(t,0) =t and h(t,1)=1;
thus the homotopy h': J" X I—>X,, defined by the formula
v W(E,8) = Eh(t, 8)

satisfies the conditions ‘
W, 0)=E() and R(t,1)=y;

ie. E[J" 1~ const in (X, ™
By theorem on extension of homotopy for polyhedra, (see [4], p. 14),
there is & map &': I™>X,, such that

W) = @y, and  E~ EI™ in (X))
by the same argument, there exists a map

&: (In, I'n)—>(Za(a)7 Xo(a))
such that

") =y, and Ex £ in (Zsayy Xa(a))m’ln)y
i.e. £ satisfies (1) and (2). By 1.4, we have
(3) 7@~ const  in (Z,, Xy,
hence, by (2),

PO%~ const  in (Z,, X)) . m

2. Inverse sequences of polyhedra. We shall use the following terminology.

First, consider any map of inverse systems over the same directed set,

f=@,f): X= (Xa;p‘;', A)"’(Ya) QZ', 4)y=17Y.
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By the definition, all the diagrams

-

e
o | Fot commute up to homotopy,
Y, «—7F,

a’

%

ie. for o' > o there exists a homotopy A%: Xown X I>X, such that
K, 0) = f,p%)x) and ¥z, 1) = ¢ f,(«). These homotopies k% will be
called connecting homotopies for the map f. i

Now, consider a system (p,f,) with g: 4> 4 being an increasing
function and f,: X, ¥, being any maps (with no assumption concerning
the diagrams). Such a system (g, f,) will be referred to as a pseudo-map
of inverse systems, in symbols (¢, f)): X———> Y.

Let ¢ De the category with polyhedral pairs as objects and with
morphisms defined as follows: the map g: (K, L)~ (XK', L') is a morphism
in § whenever g is simplicial with respect to some subdivisions of K and K.
It is convenient to identify a polrhedron K with the pair (K, ) and
thus to consider polyhedra as some objects of F. The symbol K™ denotes the
n-dimensional skeleton of K for every > 0 and denotes the empty
set for n = —1.

For any inverse system K= (K,, u¥,.4) in the category 7 let

dimK = supdim K, .
Df ged

We are going to establish two propositions coneerning maps of in-
verse systems of polyhedral pairs (2.5 and 2.6). We start by the following

2.1. LEMMA. Given a homotopy h: (I, 1™, J" Y I+(Z, X, z,) saris-
fying the condition

RI"x (1)) C X,

there exists a homotopy h': (I, 1™, J* Y x I+ (Z,X,a,) satisfying the
conditions
W(t,8) = h(t,0) for (t,8) eI"x (0)u I*"xT
and ’
(I*x (1))C X

Proof (%). Take the homotopy % and construct 2’ as follows:

nt fas 8) 71-(751,~~,fn_1;1ln—%§;8) fota<1—1s,
1y e tn3 §) = —% .
P Bty ey tyeyy 13 2(1— 1)) if 1—Js<ta<1.

*) Due to R. Rubinstein.
17 — Fundamenta Mathematicae, T. LXXX
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Evidently, h'(I"x I) C X and #'(J"* x I) = @,. The function ' is continu-
ous, since ;= 1— §s implies

i,
h(t:u ey by 1= nl ) 3) = h(byy ey tyoyy 15 8) = k(tl, ty1y 15 2(1—tn)) .

I (t,s) e "% (0), then R'(i;s)= R(t;0). Let (¢, s) e I"x I; then either
=1 or (t,s) eJ**x I; in both cases #'(t, s) = h(t, 0).
At last, h'(t;1) eh(I*x I)w I"x (1) CX for every teI™
Take a natural n. A function §: A~ A will be referred to as
n-characterisiic function of (Z, X) whenever it satisfies the conditions (i)
and (ii’) of Proposition 1.6. Then, Proposition 1.6 can be formulated as
follows:

2.2. Let (Z, X) = ((Z, X.), r%, A) be an inverse system of pairs of
arcwise connected Hausdorff spaces with 75 "X)=X, for ¢’ =a If
2n(Z, X)=0 in C*, then there emisls n-characteristic function é: A—-A
of (Z, X).

Let us prove two Lemmas concerning n-characteristic function
(2.3 and 2.4). In both of them (Z, X) is assumed to be an inverse system
of pairs of arcwise connected Hausdorff spaces, (Z, X) = (( X))y 15, A),
with +¥(X,) = X, for ¢’ > a.

2.3. Lemwa. Let n be a natural number and lét 8: A—A be n-charac-
teristic function of (Z, X). Then for every polyhedral pair (K,L) and for
every map

P (B LM X I (Zyyy Xsy)
such that
p(m,8)=p(®,0) for (x,8)el"XI
and
P, 1) e Xy for @weE™,
there exists a map
p: (B IM) x I->(%,, X,)
such that
729p (g, s) for (®,s) e E*x (0)w I"x1I,
D@, 8)=) 12" (@,28) for (z,8) e K% (0, b,
' #p(@,1)  for (z,8) e "X (E, 1),

and

P(@,1)e X, for every ze K™,
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Proof. Since §: A->A is n-characteristic function of (Z, X), hence
(1) {or every E (I~ I "> (Zsayy Xy s 49 ~ const in (Z,, Xa)”"i").
Notice that

1
(2) EK*=EK*'vI*vD, where D=0 or D= {4}, with 47, ..., 47}
i=1

being n-dimensional simplexes which Lie in K™ but not in I™

If D = O, then the existence of p is obvious. If D # @, then there exist
topological imbeddings

) & (Inyj")*(Ku)K"nl)’ j=1,..,1,
such that
(3) (I = A7 and &{I™ = 47.
Then, let us define the maps \
2;': I, I'")'*(Za(u); Xb(a))
by the formula
&0 = p(&(9), 1) -
y (1),
POE ~ const  in (Z,, X)),
i.e. there exists a homotopy
By (I Iy X I+(5,, X,)
such that
(4) ity 0) = r¥9p(&(t),1) and Rt,1)e X, for tel™

By Lemma 2.1, the homotopy h; can be assumed to satisfy the
following additional condition

6)] hi(t, 8) = hi(t,0) for every (i,8)e¢ I"xI.
Now, let us define the function
p: (B IM X I>(Z,, Xo)
by the formula

7% (1, 28) for (z,s)e K*%x<0, %),
©®) pl@,9)= 7% (@,1) for (2,8 € (E"" v LX<}, 1),
hi(E7Y @), 28—1) for (w,s) eATX L, 1), j=1,..,1.

17*
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By (4) and (5), p is continuous. By (6), since p(,s)=p(x,1) for L that
(#,8) e I"x I, we get } such tha

Bl@,8)=r"p(z,s) for (2,8 eE"X(0)wI"XI. 1 WX (0)) = B;
By (6), and | |

. POy (p,25) for (@,8) e EVIX 0,5, 2) Rz, 1), s)= kY (x, 1), 8) for {(x,1),s)e (] N AT)XI)XI .

Pz, s)= POy (p,1)  for (@,8) e B % (E, 1. Then, of course,

At Tast, by (4) and (6), ' 3) I (0) = By = (43 X {0, 1} v AT x D)x (1)..
plw,1)e X, for every wec K" B Take the map p|{Bj: Bj—Zy,; by the assumption, we have
9.4, Tmvma, Let n>=>0 and let 6: A—>A be (n-+1)-characteristic (4) p(l?,-) C Xy -

function of (Z, X). Let (K, L) be a polyhedral pair and let

The conditions (1), (3) and (4) enable us to define maps
My=(E"X DX Q)UK vIMXIvE")X{0,1}]x1I.

Dy (IOFD 1 ”
Then, for every map By I, I > (Ziggy s Tygy)

Pt My (L X I) X I) = ( Zygeyy Xoay) by the formula
such that (5) Pi(x) = ph;lz, 0)  for eI™, j=1,.,1.
P((“’: ), 1) € Xy for (("1’1 t), 1) e M,,

there exists a map

Since 6 was assumed to be (n--1)-characteristic function, we get

5 HOT. ~ const  in (Z,, XTI,
Pt (EX I, I') )X I>(Z,y X.)

i.e. there exist homotopies

such that .
(=, 1), 8) = (=, 0),5) for ((@,1),5)e Mn v (I IV X T+ (2, X,)
and sueh that
pl@,1),1)eX, for (2,1)eE"xI. (6) v;(@, 0) = 135, (x)
Proof. If B = K™ U I*, then we put p = %, Let us assume that and
1 () vi(2,1) e X, .
Et=K""uIrv | 47,
=1 Let us notice that

AL, ..., 47 being n-dimensional simplexes which lie in K™ but not in L™ N . LA

Let B; be a union of all (n--1)-dimensional faces of (47x I)xI (8) (E*X DX I= Mno 1,;)1(-17- xI)xI
with the exception of the face (47X I)X (1); i.e. and ’

By= (43X D)X (0) v (7% {0, 1} 0 A3x )X I. ‘ 9) M, AL )xI1=B; for j=1,..,1.

There exist homeomorphisms Let us define the map

hit XTI (47X D)) I i (B I, I*x I)xI->(Z,, X.)
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by the formula
(m,0),8) e Mu,

((m,t),s)e(A}”.XI)XI,
i=1,..,1.

: Aopl, 0,9 o
10 (@09 5| i, 0,8 for

By (1) and (6), if ((=,7),s)eB;, then v (2, 1), 8) = v;(y, 0)
= r¥95,(y), where hy(y,0)=(,?),s); thus, by (5), vh(, 1), 5)
= % ((z, %), s); therefore, by (2), (8) and (9), P is continuous.

By (10) and (3), we infer that p satisfies the required conditions. m

Now, let us prove '

9.5. ProposITION. Let (Z, X) = ((Za, Xa), 7%, N) be an inverse se-
quence of pairs of arcwise connected Hausdorff spaces with ¥ (X,) = X,
for a' = a, and let ny be a natural number. If nu(Z, X) is o zero-object in G
for m=1,..,n,+1, then there esists an increasing function ¢: N—-N
with the following property: for any inverse sequence in §, (K, L)
= ((Eyy Lo}y u, N) with &imK=mn,, and for every map g=(y,4,):
(K,Ly~>(Z, X) with connecting homotopies 1Y, there ewists a map
2= (yp, 7.): K~>X with connecting homotopies h%, a map k = (yp, k,):
(K, Lyx I-+(Z, X) and double homotopies

. H2+1: (‘Kwp(u—}—l)XI) va¢(u+1)XI) XI%(Z-aﬁ Xa.)
such that

(1)s ky(z, 8) = 72@)%@(93) for (@8 € Ky X (0) o Lypy X I,
(i) k@, 1) = g,() Jor  weK 4,

()t REt(e, 1) = rEOR (@, 1) for  (2,1) € Lypeyn X T,

(iv)et  HiP(z, 0), s) = kfurts (@), s), Hi(®,1), 8) = 16 kuya(@, 8)

for  meK g, sel,
(ME HiY(, 1), s)= rhg e, 1)

for (@), 8) € Eypiarny X DX (0) w (T

pplat1) X I)x 1

and

(it HiP{(w, 1), 1) =kt @, 1) Jor  (@,1) € Kppuyy X I -

or every aceN.

Proof. By 2.2, there exists 6: N~ N being n-characteristic function

of (Z, X) for n=1,...,n,+1. Let us define the function p: NN as
follows. Let ’ '

1) P, 1y, @ = g, for a=1

i
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and let
2) @ o Pong+1 *

Let us take an a e N. We are going to define six maps,

§ﬁ: K,

o X

kgt (K ppp)) Dogis) X I> (25, Xp)  for
e Ky X I>X,

B=oa, atl,

and
HH: (Kw(a+l)x I, qu:(a-{-l)x IhxI-+(Z,,X,),
satisfying (i), (ii); for f=a, a+1, and (iv)eTi-(vi)et.

A. Take an arbitrary ¢e N and arbitrary simplicial division of the
polyhedron K. We construct two finite sequences of maps

_&;‘: K;M»x%ﬂ_“(a,
and
s (Kf:ﬂa)? L) X I+(Z,

amg+1-n(@) ? 'X‘Fmai-z—w(“))

for n =0, ..., n,, satisfying for # > 0 the following two conditions:
(i) Klz,s)= Z:‘,’.’m,,‘(a;gm;(ﬂ) for
(i Kz,1) = gi=) for

and, for # > 1, the condition

(@, 8) € Koy X (0) v Lipy X I,

xe Ky,

S%ang+1-n(®) kn—l
Tong+1-5®) '

Pangr1-a@n—1
) Y x,1)  for

{(z,28) for (@,8)e —K”W—(.}i-l)x 0,5,
(i) Az, 8) =
(%,8) e E“p;;—'.-l) X {3,150

The existence of 72 and % satisfying (i)? and (i)} follows immediately
by the arcwise connectedness of Z.y,.

Take #>1 and assume that there exist g*™' and ki~ satisfying
(i)»~* and (ii)>~". Let us define

. —1
Eg: (Ko < Lipoiays Ligo) X T Zsgyp s X rngsront@)
by the formula

@) B, ) — " Ya, 8) for  (z,8) e Koy XTI,
S e | 158 @Gea(®)  for (@, 8) el xI.

By (i)**, the function k" is continuous. By (ii);™% it satisfies the con-
dition '
(4) Bi@,1) € X,

angt1-n{®

for 2ecKpovlig.
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By the theorem on extension of homotopy for polyhedm (see e.g. [4],
p. 14), there exists a homotopy

702: (Kw(ﬂ)7 wrp(u)) XI-~(Z OBypg 1~ ? X"%nau—n("))

such that

(5) BCkr

and |

(6) ka@, 0) =g fua(® T @Ky
By (3) and (5), we get

) M@, ) = kMw,0) for (=, 8) e Ly 3 I .
By (4) and (5), we get

) Foo, 1) e Koy T00 0 KRGO L.

Thus, applying Lemma 2.3, we infer that there exists a map

ﬂ
: (Kogtars Lio) X I (Z‘Vmoﬂ—n("}’ X‘szu—n(“))

such that
©) K, s) =@ o) for (@, ) e Ky X (0) U L

stmﬂ_,, (@ pp(a) X I,

de, (@ T
T Kal®y28)  for (@, < K, (a),< 0,3,

(10) k:(.’& ] 8) = 5Py v3n(@) T00 " /
om0 ky(w,1)  for  (x,8) € Koy X <3, 1)

'F’mo—n—n(“)

and

(11) Iz, 1) e X for every ze K?

Pongt1-n(®) wi{a) *

The conditions (6), (7) and (9) imply (i)2. The condition (11) enables us
to define §? by the formula

(12) (m) K”(J 1) for xeEK"

ya(a) *
By (12}, we get (ii)r. By (3), (5) and (10), we get (iii).
B. Fix an a ¢ N and consider the map

reet1),
Upglay "+ Kw(a+1)—>Kw4a)-

Bince ufZ" is a morphism in the category 7, there exist simplicial
subdivisions of K., and K, .y such that

(a-+1)
Ypew (Epgasy) C Ky for  m=0,..,n,.

©
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For these divisions we already constructed four sequences of maps,

é:: &:ﬂa k2 and &7,
satisfying the conditions (i)7-(ifi)} and (i)Z,,-(iii)?,,. Now, let us define
two sequences, :

Tat+in, .
R Ky X I X, Frgn@

and
Hi W (Ktasny X Iy Dogary X DX I (2,

Fug-ul®)?

X,

%,-.«.(G))

for n=0, ..., n,, satisfying the following three conditions:

+1, 1 —gla) wplat+1)
(iv)eFin "' n(w’ 0),5)= T:m—:(”;u k ( W(Jl (2),8)
T M@, 1), 8) = R (o s)

Ty, ng-n{%)
for xe K1y, s€l;

W HIM(@, 1), 8) = il i e, 1)

Tngn(@ ' ate)
for {{z, 1), 8} e (Hpqeny % 1) 2 {0) v { Ly X I) X I
and
(VigThm HIM (e, 1), 1) = RS2, 0 for (@, ) e Bl X I.
Let n = 0. Consider the set
M, = (B gy X 1) X (0) & [Epayny X {0, 1} v LDy X I1x T
and deﬁﬁe the map

Hervo; (Mo (Llpainy ) XI}*(Z@M(a)~ X s i)

Pl
by the formula
(13)  H(z, 1), 9)

@ JEeF g ) for {(.r z‘) s}e{K"q,(,,_an)\((O)u(L:’,“(,,M)XI)xI,

Orpg(@) " gla) 11

| RGa), 5 for (2,0, 5 € (B2 O] X T
rgg“(;;ilg_“m,s) for ((z,1), 8) € (Hpgparny 1)xI.
Applying Lemma 2.4 we infer that there exists a map
Hy % (K ey X L, Ly ey x D) X I (2, M(,,),,X%(a))
such that
1y B 0((.70 0),s) = ;::‘(‘;,“a)l {u ‘,::gfl)(m), s) for weKpnun, sel,
15)  Hy™((,1), 8) = rems il 6) for @e Koy, Sel
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and
16)  HH((z, 1), 5) = 2% ke @, 1)
for (2, 1), 8) € (Kpparn X 1) X (0) ¥ Ligain X I) X I

ie. tne conditions (iv)it>® and (v);*%° are satisfied. Moreover, we have

(17 B 2O((m,1),1) e X, for  (2,%) € Ky X I
hence, the map jiztt0 can be defined by the formula
e+ (g, 1) = H((@, 1), 1);

then, (vi)e™>? is also satisfied.

Let n > 1. Assume that there exist A2*%»~* and H*+*"! satisfying

(iv)etbr=lo (vijetint Consider the seb

M, = (an:(a-{-l)x I)x (0) v [(K, (a+1) U L patn) X IvE"x{0,1}IxI

P
and define the map

EZ“’“= (Mn; (L$Ma+1) xI) XI)">Z5¢M,,,,(«1)7 Xa:p,,o,,,,(a))
by the formula
(18)  He"(w, 1), s)

T&'é:l_n(a)h'pﬁﬁf Y, 1) for ((@,1),8) € (Kpyain X D)X (0)
V (Lpgasny X D)X I,
B (@, 1), 25) for ((@,1),8) e Epain X D)X <0, 1,
ot | HEFA (g, 1), 1) for ((@,1),8) e (Erl yx I)X <3 1,
e ey (@), 8) for ((@,1), ) € (Eppurn X ()X T,
r§¢2f2z$n+1)ka+1(w 5) for ((@,1), 8) € (Kppan X (1)) X I

By (Wetbn=l (e, ()2, ()2, (i), and (iv)etbnl, HeTLm g continuous.

By (vi)e™-"! and (18) we get

(19) H (@, 1),1) € Xppy oy For  ((@,1),1)e M.

Thus, by Lemma 2.4, there exists a map
H™ (K X I, Ltarny X I) X I~ (Z%_n(a), X, q’m—n(‘ﬁ)

such that

(20)  H(m, 1), 8) = ot H (@, 1), 8) for (@, 1), 8) € Ma

icm®
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and
(21) B (2, 8),1) e X, sl 10T (@, 1) e Kp X T

By (18) and (20), we obtain (iv)i™® and (v)2*%". The condition (21)
enables us to define A2¥%™ by the formula

(22) hgt(z, 1) = Hi™(a, 1), 1)

Thus (vi)2™" is also satisfied.
C. Now, let us define the desired maps
sy Ky, RSP and HT
by the formulae:

(23) Bl@) = 5@ (B=a,a+),
(24) k@, 8) = Pk 2, 8) (B=a, 1),
(25) (e, ) = R e, 0

and

(26) H (2, 1), } Ho™((z, 1), ).

The following implications hold:
(A(28) = ()5 ()34 (23) = (i), for = a,at;
(V)zFbme s (26) = (Ve (VI)STR™A(25)A(26) = (VD)ITH
(V)gFmmeA(VIETI A(26) = (1H)F T
At lagt
(iv):"'l’“”zx(ZG)f\t(Q:l) = (i),
and
({)g/ (i)gps A (IV)ZFEA (VI)EH = (AET! aTe connecting homotopies for 2)-

Thus the proof is complete. B

Now, we shall prove a kind of theorem on extension of homotopy
for inverse sequences of polyhedra. It concerns with extensions of maps
of inverse systems understood as follows. Given two inverse systems,
(K, L) = ((K,, L,), v%, 4) and Z=(Z,,15,4), and two pseudo-maps,

(¢, f): L--—>Z and ((p, f.): K--->Z, the pseudo-map (g, 7.) is an extension
of (@, f,) whenever f, is an extension of f, for every a e 4. If, in particular,
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f=(p,f.) is a map, then the extension f= (¢,f,) is also required to
- be a map (%).
92.6. ProPOSITION. Let (K, L) = ((Ka,La),u;', N) be an inverse se-
quence of polyhedral pairs, (Z, X) = ((Z,y X,), 7%, N) — an inverse sequence
of pairs of Hausdorff spaces. Let two maps

f=(0xf): L>Z and g=(p;0): L X
and a pseudo-map (p, k,) satisfy the condition
(1) ky(z, 0) = 7‘ﬁ’(“)]”¢(a>($) ’ ky(@,1) = g, (@) -

(1y,[): K—Z, then the map g has an
—-(Z, X) and the pseudo-map (¢, k,) has an

If the map f has an extension f
extension §=_((p, gJ): (K,L)y—
extension (p, k,) such that

(e Folw, 0) =r7f (@) and

Ey(e,1)=g.(») for wekK

ola) *
Let, moreover, a2+, ax+* and b2+ be connecting homotopies for f, f and g
respectively and let a2t C az*™, If there are double homotupies

HZ (Lpgyny X )X I Z,
satisfying the conditions

@) HY(, 0), 8)= k,(u(w),s)  and  HTY(@,1), 8)= 15" Fopa (@, 9)

and

(3) HZ“((JU; 1), 0) = TZ(“)a&(‘QT”(m, ?) and HZ—H((m’ 1), 1) = bZ‘H(.’D, B,

then (@, k) is o map, and b*T* have ewtensions b2 such that

(et B (=, 0) = guds @) and  BEMNa, 1) =12V, (@),

2.6. B3 are connecting homotopies for g.

Proof. Let f, g and (¢, k,) satisfy the condition (1) and let fC f K-Z.
Take an aeN. Since r8f,,Co@F . by theorem on extension
of homotopy for polyhedra (see [4], p. 14) together with (1), it follows

that %k, has an extension

l?}a: .K¢(a)—>Zu
such that
(4) ke, 0) = r2@F (2) for we K-

(¢) This notion of extension of maps is a particular case of the notion of extension
which was introduced by the author in [10].

icm
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Define the map

Tt (Kg(a)! L.;(u)) —+(Z,, X))
by the formula

(5) 7.(0) = Ru(z,1) .

We get two pseudo-maps (¢, J,) and (p, k) satisfying (j), for every a.
XNow, given an a ¢ N, take §,, §,.1, &, 20nd k,,. Let a2, @+ and 52**

be connecting homotopies for £, f and g, let H2*! gatisfy (2) and (3) and

let a2™* Ca@2**. We are going to extend #°** and H°™ to 5! and Ao+

satistying (jj)2** and the following two conditions:

GiET H (@, 0), 8) = E(uff ™), 5] and HiP{(z, 1), 8)=

gla) ﬁ-Hla-ﬂ(xy 8)

and

(vt HY(2, 1), 0) = r2@aygVx, 1) and 1) = Bz, 1)

Gete)

B (@, 1),
for every z e K,,,. For this purpose consider a subpolyhedron
P = (K 0y X D) % (0) W (K puy X {0, 1N X I w (Lo X ) X I
of the polyhedron (K ., % I) X I. The conditions {2), (3) and {4) enable
us to define a map
Hetl: p 7,
by the formula

fgred e, 1) for (@, 1), 8 € (Kyuuy X 1)< (0),

( 'é‘(ifl)(m)a ) for (1’ 1), ) (-Kp(a-n)X ))XI

Foril@,8)  for  ((2,1),8) € (Kpuny X (1)) %I,
( 5)

H (@, 1),8)  for  {(z,0), 8} e Ly x DIXT.

72

|z
(6) Ha-)-l((a; 1), );if

{

Since P is a retract of (K., X I) X I, the map ﬁﬁ“ can be extended
to a map
H Y (Byuyx DX 17, .
Define the map
E§+13 (Kp(w:—l)? Lp(u-}-l)) X I (ZaJ Xa)
by the formula

(7) 5§+1(m’ ] o H:“((‘”a 1), 1) .
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By (5), (6) and (7) we get (jj)2*- (7)™ By (j))i*™ (¢, §.) is a map with
connecting homotopies 5%, by (jjjit?, (¢, k) is a map; by (jv)g*t, bzt
is an extension of 527 W

3. The Whitehead Theorem for inverse sequences of polyhedra, We are
going now to prove an analogue of the Whitehead Theorem for inverse
sequences of polyhedra (3.7). Consider the category § as defined in § 2
and let

(X7 Xp) = ((-Xa; -'”a):p:': N) and (Y7 yO) = (( Ya’ ya)7 gg') N)
be two inverse sequences in the category 7. Take an ordinary map
=y, f): (X, %)~>(Y, »0)

and let £ = (1, f.): XY . By the definition of map of inverse systems,
the diagram

’

pa
X, «—X,

!ai lfa' commutes up to homotopy for every o' = a.
Y, «—Y,
@

Let us fix the sequence of homotopies k% between f,p? and ¢¥f,. The
mapping cylinder C, (rel. (k¥)) was defined in [11] as follows:
Cf“—"' (Gfap 7:/, Ny,

where
[petHa), 21] for o= (w,?) X, ;X0, D,
(¥) 4] o (ketw, 20—1)]  for 2= (x,1) € X, 1 %<4, 1,
L] for 2=ye¥,y.

Let i: X—C; and j: Y- C, be the inclusions (see [11]). By the state-
ment 1.2 of [11], the map j is a homotopy equivalence; by 1.3 of [11],
i~jf. Hence

3.1. For any natural n, the morphism [f,] is a monomorphism (epi-
morphism) if and only if [iy] is a monomorphism (epimorpkism). M

3.2. fis a homotopy equivalence if and only if i is a homotopy equiva-
lence. @

First, let us consider the particular case of f being usual. Then, all
the diagrams
X, <2 X,
fa l lfa’ are commutative , ie. f,p* = ¢°f, for ¢’ > a,

Y <—qz—,Ya,

icm®
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and the bonding maps
75 O 0,
can be defined as follows (see [10]):
[PZ(@), ] for z=(z,8)eX,xI,
A for z=ye¥,.

The mapping cylinder C, with ¢% determined by (%) will be called
usual (7).

Let us define the basic inverse sysiem K for the usual mapping
cylinder Cg

(%) 73l% 1<

K= (K, u*,N), where KQEIQXIUYu

and

’ (PF(x),t) for z=(z,0)eX, %I,
O .
bl g (y) for z=ye¥,.

Consider the sequence of natural projections
K~ 0y, e z) [z} for zeK,, aeXN.

It is evident that

3.3. The maps e, form a usual map of the basic inverse sequence K
into the usual mapping cylinder Cg,

e=(ly,¢,): K-C,. =B

We shall refer to the map e as the natural map.
Consider a map g,: K, X I->Z,. The map g, is said to be compatible
with e, whenever

gd(®,1),8) = gffoAr),s) for meX,, sel.

A pseudo-map (p, g.): KX I--—>Z is said to be compatible with ¢ whenever
g, is compatible with e, for every aeXN.

A map g = (p,g,): K—Z is said to be compatible with e whenever g, is
compatible with e, for every a and there exist connecting homotopies A
comp-tible with e,,, for every a,a’ ¢ N, o’ > a.

Notice that

() Setting in (¥): K27z, 1) = f.ps (z) for every ¢ ¢ I, one obtains bonding maps 2
different from those defined by (++) (but homotopic to). However, the statements 3.1
and 3.2 are valid for the usual mapping cylinder as well (compare 4.2 of [10]).
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3.4, If a pseudo-map (v, g,): KX I--—>2Z is compatible with e, then
it generates the pseudo-map (qp,@a): Cx I ———>Z defined by the formulg

ga(z) = gaeu;a)(z) - &8

3.5. If a map g= (v, ¢,): K—Z is compatible with e then it generates
the map g = (v, §.): Cy~Z defined by the formula

742) = gatyn(2) . B

Let us prove the following

3.6. ProposITION. Let X = (X,,p%,N) and Y = (X,, ¢, N) be two
inverse sequences in the category ¥ with all X, and ¥, being connected
and all p% being “onto®. Let ny= max(1+dim X, dim¥) and let C, be the
usual mapping eylinder-of a usual map f= (y,f.): X=Y. If n(Cp, X)
is @ zero object in C* for n=1, ..., mo-+1, then the inclusion iz X->C; is
a homotopy equivalence.

Proof. Take X and Y and let f=(1y,f) be a usual map.
Take the usnal mapping cylinder C,= (4, r¥, N) and its basic inverse
sequence K = (K,, uZ, N). By (#%), since p¥ are “onto”, we get #%(X,)
=X, for ¢’ = a. Obviously

dimK, = max(14+dimX_,dimY¥Y,) for aelN;
thus
(1) dimK = n,.
Consider a subpolyhedron I, of X,
LQE X, x{0,1}v¥,.

Sinee w2 Y(L,,,) C I, for every o, we obtain an inverse sequence (K, L)
in the category 4.

We are going to prove that i is a homotopy equivalence, i.e. there
exists a map

é=(y,6): C>X
such that '

pPa)
0, <——
Ta Cf v(a)

1
Cy, N
| .
¢,
a

(2) ic =l

icm

©

The Whitehead Theorem in the theory of shapes 255
and
¥
X, Xv(a)
(3) ci~1y |

w4
Tal Sty
a

Thus, we shall define a pseudo-map

(9, 8.2 (G, X)X I-——(C}, X)

such that

(4) 0421, 00 =r7] and Bz],1)=icls] for [eC,
and

(3) Oz, 0) = pia)  and  Bfw, 1) = Gim(®) (9.

By 3.4 and 3.5 it suffices to find a map
c=(yp,¢): K=~X
with connecting homotopies »?, and a pseudo-map

(y, 62): (K, X)X I-=>(C, X)

such that

(6) 0(, 1), 8) = 0, (), 8) for weX,,, sel,
() wi((z,1), 8) = w(fyw(@),8) for @eXy, sel,
and

(8) 6z, 0)=1"2] and Oz, L)==cfe) for zeH,,.

By (1), 7a(Cy, X) is a zero object in € for n=1, ..., dimK+1.

A. Take the natural map e=: (1y,é¢,): K—C; and its restriction
e|Y: (Y, 0)-(C}, X). By Proposition 2.5, there exist an increasing function
¢: N—N, a map

b= (p,b): Y>X
with econnecting homotopies het, a map
h= (@, h): ¥xXI=C,,
and double homotopies
H:JH—I: (Yq)(n-l—l)x I) X I- O/a. ’

() We identify [z, 0] with = for every & ¢ X,, ae N.
18 — Fundamenta Mathematicae, T. LXXX
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such that, for y € ¥y, a e N,
(9 (Y, 0) =159, (y) -and (¥, 1) = ba(y)
(10) H:+1((y7 0),s ) h, (ué’.fﬁifl) 2), 3) and Hf‘.“((il/, 1), S)= 7‘;+1hu+1(w, §)

and
(1) B2y, 1), 0) =15 e 0 0)(y)  and He(y, 1), 1) = heti(y, 1)

These maps b and k and homotopies k™' and H2* can be respectively
extended to the maps

=(p,b): L=»X and I =(p,h): LXI->C;
and homotopies
REY: Loy X I>X,  and  HY: (L X I) xI-0y,,

defined by the formulae

.

2t e, 0) for &= (z,0),
12)  H(e,10),8)= B (fyarn(@), 1), 8)  for 2= (2,1),
. H§+1((y7 1), ) for r=Y,
(13) W ) = B (e, 1), 1),

(@, 0)  for 2= (z,0),

(14) ho(2, ) = Bolfof®)y8) . for 2= (z,1),
holy s 8) for 2=y,

and

15 ! = K/ (2

(15) b)) = 1z, 1)

It is easy to check, that 2,**' are connecting homotopies for » and
(16) ho(2, 0) = 18,1 (2) .

Now, let us take in Proposition 2.6 C; for Z, e{L for f, e for f, b’ for
& I for k, ri*e,,, for @it', h+ for bt and H(*H for HeH. Since, by
(11)-(16), the eonditions (1), (2) and (3) of Proposition 2.6 are satisfied,
it follows that b’, &’ and R °** have extensions

b =(p,0): (K,L)~>(Cp, X), K'=(p,1): K~C,

icm
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and
gt (E par1yr Lq!(a-}-l)) X I-(Cy,, X,)
respectively, such that
A7) h(2,0) =1, (2) and  R(z, 1) =108.(2) (by ()
and ¢¢*! are conneeting homotopies for b".
By (12) and (13) we get
(18) @;—H((w; 1), S) = ’t’§+1(f¢(a+1;(x)7 3) for weX oy, 5€l,

ie. #2™ ig compatible with e,,.;-
B. By Proposition 2.3, there exist an increasing function n: N >N,
a map

¢ = (gn,c): K~X
with connecting homotopies wt?, and a map

k = (gn, k) (K, L)xI -+ (G, X)
such that

(19) k2, 8) = 1 (2)  for (2, 8) € Koy X (0) v Ly X I, ae N,

(20) iz, 1) =c (=) for zeK ., aeXN
and
(21) wit(z, §) = riNHei Vg, 5)  for  (@,5) € LpparnX I -

By (18) and (21), we get
(22)  wit(@, 1), 8) = wi T frasn(@), s) for (z,8) e XX,

ie. wit' is compatible with e, ..
Now, let us put

Yo N
and let the psendo-map
(v, 8): (B, X)xI--~(Cp, X)
be defined by the formmula
-r"“’)h,'?('a,(z ,2s8) . for

20,
23 <
= %z 8) 5 kfz,2s—1)  for sed}, 1)

18+
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If s= 3}, then, by (17) and (19),
10,2, 28) = 10 00(2) = Koz, 0) = Ky, 25—1),

thus 6, is continuous.
By (23), (19) and (14), we get

1R o F o) 5 28) for s € €0, 1>

Ba 01 1) 8] = ’
ll2, 1), ) b, 1) for se<h, I

== ea(fw(u)(w)7 S)J
i.e. the condition (6) is satisfied. )

By (22), the condition (7) is satisfied.

At last, by (23) together with (17) we get

O, 0) = 5[],
and by (23) together with (20) we get
Ba(z7 1) = Ga(z) ’

thus the condition (8) is also satisfied. m ]

As a consequence of 3.1, 1.3, 3.6 and 3.2 we obtain the following

3.7. TeEOREM. Let (X, x;) and (¥, y,) be two inverse sequences in the
category 8, with all the spaces being connected and all the bonding maps
being “onto”. Let n, = max (1-+ dim X, dim Y). Let fo: ma(X, x0) > ma( Y, yo)
be the morphism in S induced by a usual ordinary map f*: (X, x) = (Y, y,).
If [fa] s a bimorphism in C* for n < n, and is an epimorphism in & for
n=1ny+1, then f: XY is ¢ homotopy equivalence. B

TEEOREM 3.7 is an analogue of the Whitehead Theorem for inverse
sequences of polyhedra in the particular case of f being a usual map.

Now, we pass to the general case of an arbitrary map f. Let us prove

. 3.8. TEHEOREM. Let (X, x,) and (Y,y,) be two inverse sequences of

Findte dimension in the category T, with all the spaces being connected and
all the bonding maps being “onto”. Let fly = max (14 dim X, dim ¥).
Let fu: no(X, Xo)>wi(Y, y,) be the morphism in §* induced by a map
f‘='(1N, o)t (X, x) (Y, y,). If [fa]is o bimorphism in C* for m<<my
and is an epimorphism in §* for n = 1, then f: X = ¥ is a homotopy
equivalence.

Proof. Take f'= (1y,f): (X, x)—~(Y, y,). Since all the dingrams
10;'
X, X,

jul !f
Y‘! +.~ V:,Ya’
[}

are assumed commutative up to homotopy ,

a
«
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hence all the maps f, ean be replaced by simplicial mappings and then Oy,
are polyhedra for all @ ¢ & (see [17]). By (#), all the maps ¥ can be made
simplicial. Thus C; is an inverse sequence in §. As it was noticed in [11],
the map i is usual. At last,

max(1+ dim X, dim C)) = max(1+ dim X, max (1 + dim X, dim ¥))
=max(l+dim X, dim ¥) = 2,.
Thus, Theorem 8.7 can be applied to the map #: X C; we get the
impleation
(1)  if {i,] is & bimorphism in & for # < n, and is an epimorphism in &
for n = my+1, then i is a homotopy equivalence .

The statements 3.1 and 3.2 together with (1) complete the proof. m

4. The Whitehead Theorem in the shape theory. The notion of funda-
mental dimension intrcduced by XK. Borsuk and W. Holsztyrski in [3]
for compacta, can be analogically defined for pointed compaeta:

Fad(X, z) Emin{dimY:y\/ySh(Y, yo) = ShiX, o)} .
D E

As proved by W. Holsztynski (non published), for any compactum X
FdX = min{dimY¥: Sh¥ = 8hX}.

By a slight modification of his proof one obtains the following statement

4.1. For any pointed compactum (X, ),

Fd(X, 2) = min{dim ¥: \/th(y, Yo) = Sh(X, @)} .
N Yoe

Let us prove a statement eoncerning the notion of shape map (see [8]).

4.2, Let (X, xo) and (¥, y,) be two ANR-systems over the same closure
fimite directed set (4, <). For every cofinal map f= (g, f): (X, Jﬁ,)»( Y, _Z,,)
there emist an ANR-system (X, X,) over (4, <) and a map f= (14 f):
(X,%) = (Y, yo) such that X is cofinal to X and both f and f represent the
same shape map.

Proof. Let (X, x) = ((Xasfa), PL’,’, A)v (Y, yy) = (( Yo %) QZ', A) and
f= (@.f.). Define (X, %, and f as follows:

o~ oA~ fa >3 ~ ~ o ~ Nﬂ’___ d ’)
(X, x) = ((Xa) Ty)y Das A) , Where X = Xq:(a)a By = Byayy Po = iy

and

f=0.f), where fi=f..
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Let (X ) = ]gn(X, x,). By the assumption f is cofinal, i.e. p(4) is
cofinal with 4; so (X, %,) is cofinal with (X, x,). Thus
lim (¥, %) = (X, ) = Im(X, x) -

Let p,: (X, @) >(X,, 8), Bt (X, 5)>(Xq, B,) be the projections. Let us
define the map e: (X, xo)->(X, %;) by the formulae

e= ((P, ea) 1] 6y = 1X¢(a): X@(a)_a'fa ?
and notice that e is associated with 1y. Indeed, ¢,p,, = Pay 50 6Dy = Dy
for a eA'. The only to be proved more is that the diagram
!
(X, xo) — (Y7 yn)
e 1y commutes up to homotopy .
(X; ;0) —7_> (Yyyo)
‘We have

: fe: ((pifaga.) = ((p:fa) =f= lYf' L]
~Now, let us establish
4.3. MAIN THEOREM. Let (X, x,) and (Y, y,) be two movable pointed
continua of finite fundamental dimension and let n, = max(1-+Fd(X, z,),
Fd(Y,y)). Let far mnlX, @)y>m(XY,y,) be the homomorphism of n-th
Fundamental groups induced by a fundamenial sequence f*= {f*, (X, x,),

(Y, 90} If fais an isomorphism for m <m, and is an epimorphism for
n = no+1, then f={f*, X, ¥}, is a fundamental equivalence.

' Proof. By the assumption, Fd(X, ) < n,—1 and Fd(Y, y,) < 7.
Since each of two pointed spaces (X, z,) and (Y, 7,) can be replaced by

any pointed compactum of the same shape, Theorem 4.1 enables us to
assume that

v C dmX<n—1 and dim Y < n,.

By the Freudental Theorem (see [14], p. 158), it follows that there exist
two inverse sequences

(X, x0) = ((Xoy 2), 95, ¥)  and (¥, p) = ((T,,v,), ¢, W)
assoeciated with (X, x,) and (¥, 9,), such that )
(2) X, and ¥, are polyhedra with dim X, < n,—1 and dim ¥, < n,,

. ’
(3) p: and q; are “onto” for a,a’'ed, a’>a.

iom®
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Sinee X and Y are both connected, all the spaces X, and ¥, can be
assumed connected. Take any map f*: (X, x,)>(Y, y,) related to f".
By 4.2, one can assume that :

4) f= (l_N,fa)-

By the assumption, fn is an isomorphism in § (so all the more in C) for
n < M, and is an epimorphism in § for n = n,-+1. Thus, by 1.1 of Section 1,
applying the statement 6.5 of [13], we infer that

(8) limfy is a bimorphism in € for n < n, and is an epimorphism in
g for n == n,+1.

By Remark 6.7 of [12], since (X, 2,) and (¥, y,) are movable, they
are uniformly movable. Thus, by Corollary 6.6 of [12] it follows that

(6) [fa] is & bimorphism in & for n < ny and is an epimorphism in g
for n = ny+1.

Thus, by Theorem 3.8, fis a homotopy equivalence. Hence, by the results
of [6], fisa fundamental equivalence. ®

5, Remarks. 1. The hypothesis of Theorem 4.3 refers to a pointed
fundamental sequence, though the result is obtained for non pointed
fundamental sequence. However that theorem can be formulated without
use of pointed spaces. For this purpose, eonsider an inverse gystem of
arcwise connected spaces, X = (X,,p%, A). Since for every natural n
the nth homotopy group cf X, does not depend on the choice of a basic
point, one can define the functor w,: —§ irom the category of arcwise
connected spaces with continuous maps as morphisms into the category
of groups (or, more precisely, into the quotient category of isomorphic
types of groups). This functor generates the functor my: B — G* defined
by the formulase

ﬂn(X) = (ﬂn('Xa)y ﬂn(PZ')a A) for X= (Xa! p:r’ -A)
and
m(f) = (@ walf))  for f=(p,f): X=>Y={(¥p &' B) .

Tn a similar way we define the homotopy systems of (Z,X)
=((Z,, X,), 72, 4), for arcwise connected Z,, X, and consequently we
get the functor of relative homotopy systems. It enables us to replace
in Theorems 3.7 and 3.8 the pointed spaces and pointed maps by non
pointed ones. Then Theorem 3.8 admits the following form:

5.1. TEEoREM. Let X and Y be two inverse sequences of finite dimension
in the category T, with all the spaces being connected and all the bonding
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maps beirg “onto”. Let n, = max(1+dimX, dim ¥). Let fu: ma(X)~n,(¥)
be the mo’rphzsm in G induced by a map f= 1y, f): X= Y. If [fu] is a bi-
morphism in C* for n < n, and is an epimorphism in §° for n = g1,
then f is a homotopy equivalence. M

Consequently, the main result, Theorem 4.5, can be reformulated
as follows:

5.2. TaporeM. Let X and Y be two movable continua of finite funda-
menial dimension and let n, = max(1-+FI X, FAY). Let [fT;: 7y (X) > ai(X)
be the homomorphism of m-th limit homotopy groups induced by the shape
map [fk X~ Y. If LfY; is an isomorphism for n << n, and is an epimorphism
for m = my+1, then f is a shape equivalence. W

2. The assumption of movability in the statement 5.2 (as well as
in 4.5) is essential. Indeed, let X be a solenoid and let ¥ = {y,}. Then
[f1is a constant map, which fails to be a shape equivalence though all [f1,
are isomorphisms.

3. Theorems 5.1 and 5.2 solve one of the problems raised recently
by D. A. Edwards and R. Geoghegan ([18], Question 1). On the other
hand, their Example 2 shows that the assumption of finite fundamental

dimension in Theorems 5.1 and 5.2 (as well as in 3.8 and 4.5) is essential.-
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