

Maps and inverse systems of metric spaces

by

W. Kulpa (Katowice)

Abstract. Using methods of uniform spaces are proved some theorems giving a possibility to represent every map in the category of uniform spaces (or in the category of completely regular spaces) by a mapping between inverse systems of metrizable spaces satysfying some additional conditions.

1. Introduction. In this paper we shall prove that every continuous map $f\colon X{\to} Y$ of completely regular spaces is represented by a family of continuous maps $f_a\colon X_a{\to} Y_a$ of metric spaces. More precisely, we shall prove

THEOREM A. For every completely regular space Z there exists an inverse system S(Z) of metric spaces and there exists a dense embedding $g_Z\colon Z\to Z^*,\ Z^*=\varinjlim S(Z),$ such that if $f\colon X\to Y$ is a continuous map of completely regular spaces, then there exists a mapping $\bar{f}\colon S(X)\to S(Y)$ of inverse systems such that the diagram

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \downarrow g_X & & \downarrow g_Y & f^* = \lim_{\longleftarrow} \bar{f} \\ X^* & \xrightarrow{f^*} & Y^* & \end{array}$$

is commutative.

THEOREM B. If X is a completely regular space and $f\colon X\to X$ a continuous map, then there exists an inverse system $S_f=\{X_a,\, \pi_\beta^a,\, M\}$ of metric spaces X_a , $\dim X_a\leqslant \dim X$, $\operatorname{card} M\leqslant \operatorname{weight} X$, and there exist a dense embedding $g\colon X\to X^*$, $X^*=\lim_{f\to 0} S_f$ and a family of continuous maps $f_a\colon X_a\to X_a$, $a\in M$, inducing a mapping $\bar f\colon S_f\to S_f$ such that the diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} X \\
\downarrow g & \downarrow g \\
X^* & \xrightarrow{f^*} X^*
\end{array}$$

is commutative.

Let $S=\{X_{\alpha},\pi^{\alpha}_{\beta},M\}$ and $S'=\{Y_{\alpha'},\pi^{\alpha'}_{\beta'},M'\}$ be given inverse systems.

We say that $\bar{f}: S \to S'$ is a mapping of the systems if $f = \{\varphi, f_{\alpha'}\}$ is a family consisting of a monotone function $\varphi: M' \to M$ and of continuous maps $f_{\alpha'}: X_{\alpha(\alpha')} \to Y_{\alpha'}, \ \alpha' \in M'$, such that $\pi_{\beta'}^{\alpha'} f_{\alpha'} = f_{\beta'} \pi_{\alpha(\beta')}^{\varphi(\alpha')}$.

Every mapping $\bar{f}\colon S \to S'$ of inverse systems induces a continuous map $f^* = \lim \bar{f}\colon \lim S \to \lim S'$ of inverse limits; $f^*(\{x_a\}) = \{f_{\alpha'}(x_{\varphi(\alpha')})\}$ = $\{y_{\alpha'}\}$, $\{x_a\} \in \lim S$ and $\{y_{\alpha'}\} \in \lim S'$ (Engelking [1], p. 89).

We say that a family of continuous maps f_a : $X_a \to X_a$, $a \in M$, induces a mapping \bar{f} : $S \to S$ if $\bar{f} = \{a, f_a\}$, i.e., if $\pi_b^a f_a = f_b \pi_b^a$, $a, \beta \in M$.

An analogous definition of a mapping of systems and a family of maps inducing a mapping of systems will be used in the category of uniform spaces with uniform maps.

Theorems A and B will be derived from analogous theorems 1 and 2, proved in the category of uniform spaces.

Theorem A has a simple topological proof, how it was observed by the referee. It suffices to embed βZ in I^m and to consider an inverse system of closed subspaces of finite products of I.

2. Preliminaries. We use some symbols and notations from [2] and [3].

Let us recall that in [2] a pseudouniformity $\mathfrak U$ on a set X is a filter of coverings of X directed with respect to the star refinement.

If a pseudouniformity ${\mathfrak U}$ satisfies the axiom of separation, then ${\mathfrak U}$ is said to be a uniformity.

A pair (X, \mathcal{U}) is said to be a pseudouniform space and a uniform space, respectively.

A map $f: (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ is said to be uniform iff $f^{-1}(Q) \in \mathcal{U}$ for every $Q \in \mathcal{V}$.

Symbols $P \geq Q$ $(P \geq Q)$ mean that P is a refinement (a star refinement) of Q.

If for a pseudouniformity $\mathfrak U$ there exists a base of cardinality $\leqslant \gamma$ consisting of coverings of cardinality $\leqslant \tau$, then $\mathfrak U$ is said to be of double $weight \leqslant (\gamma, \tau)$, dweight $\mathfrak U \leqslant (\gamma, \tau)$.

If a pseudouniformity $\mathbb U$ contains a base consisting of coverings of order $\leq n+1$, then it is said to be of dimension $\leq n$, dim $\mathbb U \leq n$.

The paper is based on a fundamental lemma proved in [2] and cited in another form in [3].

LEMMA 1. Let (X, \mathbb{Q}) be a pseudouniform space. Then there exist a uniform space $(hX, h\mathbb{Q})$ and a uniform map $h: (X, \mathbb{Q}) \xrightarrow{\operatorname{onto}} (hX, h\mathbb{Q})$ such that

2. for every $P \in \mathbb{U}$ there exists a $Q \in h\mathbb{U}$ such that $h^{-1}(Q) \geq P$,

3. for every uniform map $f: (X, \mathfrak{A}) \rightarrow (Y, \mathfrak{V})$, where \mathfrak{V} is a uniformity, there exists a unique map g such that a diagram

$$(X, \mathfrak{A}) \xrightarrow{f} (Y, \mathfrak{V})$$

$$(hX, h\mathfrak{A})$$

is commutative.

The space (hX, hU) is said to be the quotient of the space (X, U) and the map $h: (X, U) \rightarrow (hX, hU)$ is said to be the quotient map.

From Condition 3 of Lemma 1 it follows that the quotient is unique up to an isomorphism.

Let $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$ be a uniform map. Then a family $f^{-1}(\mathcal{V})$ = $\{f^{-1}(Q): Q \in \mathcal{V}\}$ is a pseudouniformity contained in the uniformity \mathcal{U} .

LEMMA 2. Let $f: (X, \mathbb{Q}) \to (Y, \mathbb{Q})$ be a uniform map onto a uniform space. Then the quotient of a pseudouniform space $(X, f^{-1}(\mathbb{Q}))$ is uniformly homeomorphic with the space (Y, \mathbb{Q}) .

Proof. From Lemma 1 it follows that there exists a uniform map $g\colon (hX,hf^{-1}(\mathfrak{V}))\stackrel{\mathrm{onto}}{\longrightarrow} (Y,\mathfrak{V})$. We shall show that g is a uniform homeomorphism. Since the space $(hX,hf^{-1}(\mathfrak{V}))$ is uniform it suffices to show that for every $P\in hf^{-1}(\mathfrak{V})$ there exists a $Q\in \mathfrak{V}$ such that $g^{-1}(Q)\succeq P$. Let $P\in hf^{-1}(\mathfrak{V})$. Then $h^{-1}(P)\in f^{-1}(\mathfrak{V})$ and there exists a $Q\in \mathfrak{V}$ such that $f^{-1}(Q)=h^{-1}(P)$. Since $f=g\circ h$ and h is onto, we have $P=g^{-1}(Q)$.

LEMMA 3. Let U be a uniformity on a set X and let M be a set of pseudouniformities contained in U such that

1. the set M is directed with respect to inclusion,

2. [] M is a base for the uniformity U.

Then the space (X, \mathbb{Q}) has a uniform dense embedding into an inverse limit of a system consisting of the quotients of the spaces belonging to the set M with the maps uniquely determined by Condition 3 of Lemma 1.

Proof. Let us consider the diagram

with identity uniform maps $(X, \mathcal{U}) \to (X, a)$, $(X, \mathcal{U}) \to (X, \beta)$, $(X, a) \to (X, \beta)$ and the quotient maps h_a and h_β . From Condition 3 of Lemma 1

it follows that there exists a unique uniform map π_{β}^a such that the diagram is commutative. Thus $S = \{(h_a X, ha), \pi_{\beta}^a, \alpha, \beta \in M\}$ is an inverse system.

From Condition 2 of Lemma 1 and from Assumption 2 of Lemma 3 it follows that the maps $g_a\colon (X,\,\mathfrak{A})\xrightarrow{\mathrm{onto}} (X,\,a)\xrightarrow{\mathrm{onto}} (h_aX,\,ha)$ induce a uniform dense embedding $g\colon (X,\,\mathfrak{A})\to \lim S;\ g(x)=\{g_a(x)\}.$

3. Two theorems. A pseudouniformity is said to be metrizable iff it has a countable base.

Let $\mathfrak U$ be a uniformity on a set X. Let us consider a set M of all metrizable pseudouniformities contained in $\mathfrak U$. The set M is directed with respect to inclusion because for every pair $a, \beta \in M$ a family $a \cup \beta$ is a subbase for some metrizable pseudouniformity contained in $\mathfrak U$. We have $\bigcup M = \mathfrak U$. Thus from Lemma 3 it follows that the quotients of the spaces belonging to the set M with the maps uniquely determined by Lemma 1 form an inverse system $S(X, \mathfrak U)$ over the set M and the maps $g_a\colon (X, \mathfrak U) \to (X, a) \to (h_a X, ha)$ induce a uniform dense embedding $g_X\colon (X, \mathfrak U) \to (X^*, \mathfrak U^*) = \lim S(X, \mathfrak U); g_X(x) = \{g_a(x)\}.$

THEOREM 1. Let $f\colon (X,\,\mathfrak{A}) \to (Y,\,\mathfrak{V})$ be a uniform map of uniform spaces, where the space $(Y,\,\mathfrak{V})$ is the inverse limit of a system S of metrizable spaces. Then there exists a mapping $\bar{f}\colon S(X,\,\mathfrak{A})\to S$ of the inverse systems such that a diagram

$$(X, \mathcal{U}) \xrightarrow{f} (Y, \mathcal{V})$$

$$f^* = \lim \bar{f}$$

$$(X^*, \mathcal{U}^*)$$

is commutative.

Proof. Let $S(X, \mathbb{Q}) = \{(X_a, \alpha), \pi^a_{\beta}, M\}$ and $S = \{(Y_{\alpha'}, \alpha'), \pi^{\alpha'}_{\beta'}, M'\}$. We define a monotone function $\varphi \colon M' \to M$; for every $\alpha' \in M'$, $\varphi(\alpha')$ is a metrizable uniformity in the space $(X_{\varphi(\alpha')}, \varphi(\alpha'))$ being the quotient of the space $(X, f^{-1}\pi^{-1}_{\alpha'}(\alpha'))$.

From Lemma 1 follows the existence of uniform maps $f_{\alpha'}$: $(X_{\varphi(\alpha')}, \varphi(\alpha')) \rightarrow (Y_{\alpha'}, \alpha')$ such that the diagram

is commutative. More precisely, the diagram

is commutative. The family $\bar{f}=\{\varphi,f_{\alpha'}\}$ forms a mapping $\bar{f}\colon S(X,\mathfrak{A})\to S.$ Let $f^*=\lim \bar{f}.$ We have $f=f^*\circ g.$ Indeed,

$$f^*g(x) = f^*\{g_{\mathbf{a}}(x)\} = \{f_{\mathbf{a}'}g_{\mathbf{q}(\mathbf{a}')}(x)\} = \{\pi_{\mathbf{a}'}f(x)\} = f(x) \ .$$

Notice that Lemma 2 implies that the maps $f_{a'}$ are uniform embeddings.

THEOREM 2. Let $f: (X, \mathbb{U}) \rightarrow (X, \mathbb{U})$ be a uniform map of a uniform space and let dim $\mathbb{U} \leq n$ and dweight $\mathbb{U} \leq (\gamma, \tau)$.

Then there exist:

1. an inverse system $S = \{(X_{\alpha}, \alpha), \pi^{\alpha}_{\beta}, M\}$ such that $\dim \alpha \leq n$, dweight $\alpha \leq (\aleph_0, \tau)$ for $\alpha \in M$ and $\alpha \in M$ weight U,

2. a uniform dense embedding $g: (X, \mathfrak{A}) \rightarrow (X^*, \mathfrak{A}^*), (X^*, \mathfrak{A}^*) = \lim S$,

3. uniform maps f_a : $(X_a, a) \rightarrow (X_a, a)$ inducing a mapping \bar{f} : $S \rightarrow S$ of the system such that the diagram

$$(x, \mathcal{U}) \xrightarrow{f} (X, \mathcal{U})$$

$$\downarrow g \qquad \qquad \downarrow g \qquad \qquad f^* = \lim_{\longleftarrow} \bar{f}$$

$$(X^*, \mathcal{U}^*) \xrightarrow{f^*} (X^*, \mathcal{U}^*)$$

is commutative.

Proof. For every $P \in \mathcal{U}$ let us write

$$f^{-0}(P) = P$$
, $f^{-(m+1)}(P) = f^{-1}(f^{-m}(P))$, $m = 0, 1, ...$

Let \mathcal{B} be a base for the uniformity \mathcal{U} of cardinality $\leqslant \gamma$, consisting of coverings of cardinality $\leqslant \tau$ and of order $\leqslant n+1$ (see [3], Prop. 6). We shall show that for every $P \in \mathcal{B}$ there exists a metrizable pseudo-uniformity \mathcal{V} having a base contained in \mathcal{B} and such that $f^{-1}(\mathcal{V}) \subset \mathcal{V}$ and $P \in \mathcal{V}$. Put $W_1 = \{f^{-m}(P) \colon m = 0, 1, ...\}$. Let us assume that we have defined countable families $W_1, ..., W_{n-1}$. We choose a countable family W_n such that

(a) if $Q \in W_n$ then $f^{-1}(Q) \in \overline{W}_n$,

(b) for every pair $P_1, P_2 \in \bigcup \{W_i: i=1,...,n-1\}$ there exists a $Q \in W_n \cap \mathcal{B}$ such that $Q \succsim_* P_1$ and $Q \succsim_* P_2$.

The choice of such a family is possible because the family $\bigcup \{W_i: i=1,...,n-1\}$ is countable and \mathfrak{B} is a base for \mathfrak{A} . Let \mathfrak{V} be a pseudouniformity induced by a base $\bigcup \{W_n: n=1,2,...\}$.

Thus, we can choose a family M' of pseudouniformities such that $\mathfrak{B} \subset \bigcup M' \subset \mathfrak{A}$, card $M' = \operatorname{card} \mathfrak{B}$, and for every $a' \in M'$

(c)
$$f^{-1}(\alpha') \subset \alpha'$$
, dim $\alpha' \leq n$ and dweight $\alpha' \leq (\aleph_0, \tau)$.

Using the method as above, we may prove that for every pair $\alpha, \beta \in M'$ there exists a pseudouniformity $\gamma \supset \alpha \cup \beta$ having the property (c).

Hence, by induction, we can choose a directed set M of pseudo-uniformities such that $\mathcal{B} \subset \bigcup M \subset \mathcal{U}$, $\operatorname{card} \mathcal{B} = \operatorname{card} M$, if $\alpha \in M$ then $f^{-1}(\alpha) \subset \alpha$, $\dim \alpha \leq n$ and $\operatorname{dweight} \alpha \leq (\aleph_0, \tau)$.

Let S be an inverse system of the quotients of spaces belonging to the set M with the maps π^{α}_{β} uniquely determined by Lemma 1. The diagram

$$(X,\mathfrak{A})$$
 (X,ha) (X,ha) (X,ha) (X,ha) (X,ha) (X,ha) (X,ha) (X,ha) (X,ha)

with identity maps $(X, \mathfrak{A}) \to (X, \mathfrak{a})$, $(X, \mathfrak{A}) \to (X, \beta)$, $(X, \alpha) \to (X, \beta)$, the quotients maps h_a , h_{β} and maps π^a_{β} uniquely determined by Condition 3 of Lemma 1, is commutative.

From Lemma 1 and from the conditions $f^{-1}(a) \subset a$, $a \in M$, follows the existence of maps f_a , $a \in M$, such that the diagram

$$(X, \alpha) \xrightarrow{f} (X, \alpha)$$

$$\downarrow^{h_{\alpha}} \downarrow^{h_{\alpha}}$$

$$\downarrow^{h_{\alpha}} \downarrow^{h_{\alpha}}$$

$$\downarrow^{h_{\alpha}} \downarrow^{h_{\alpha}}$$

$$\downarrow^{h_{\alpha}} \downarrow^{h_{\alpha}}$$

is commutative.

Considering the two diagrams, we conclude that maps f_a induce a mapping $f \colon S \to S$ such that the diagram (*) is commutative, where g is a map induced by maps $g_a \colon (X, \mathfrak{A}) \to (X, a) \overset{h_a}{\to} (h_a X, h a)$.

- 4. Proof of Theorem A and Theorem B. In order to prove Theorem A and Theorem B it suffices to know some facts;
- 1. Every completely regular topological space has a finest compatible uniformity \mathfrak{U}^* .
- 2. If $f: X \to Y$ is a continuous map of completely regular spaces, then $f: (X, \mathcal{U}^*) \to (Y, \mathcal{V}^*)$ is a uniform map of the uniform spaces with the finest compatible uniformities.

- 3. $\dim X \leq n$ iff $\dim \mathcal{U}^* \leq n$ (Pasynkov [5]).
- 4. If there exists a uniformity $\mathfrak U$ compatible with the topology on the space X such that dim $\mathfrak U\leqslant n$ and dweight $\mathfrak U\leqslant (\aleph_0,\tau),\ \tau$ arbitrary, then the topological space χ is metrizable and $\dim X\leqslant n$ (Nagata [4], p. 126).

Hence, applying Theorem 1 and Theorem 2 to the finest compatible uniformities, we receive topological corollaries: Theorems A and B, without the assertion of the cardinality of the system M. In order to receive this assertion we must apply Theorem 2 to a uniformity $\mathfrak U$ of $\dim \mathfrak U \leqslant \dim X$ and weight $\mathfrak U \leqslant \operatorname{weight} X$, compatible with the topology and such that $f\colon (X,\mathfrak U) \to (X,\mathfrak U)$ is uniform. The method of proving the existence of such uniformity is the same as in the proof of Theorem 2.

References

[1] R. Engelking, Outline of General Topology, Warszawa 1968.

[2] W. Kulpa, Factorization and inverse expansion theorems for uniformities, Colloq. Math. 21 (1970), pp. 217-227.

[3] - On uniform universal spaces, Fund. Math. 69 (1970), pp. 243-251.

[4] J. Nagata, Modern Dimension Theory, Amsterdam 1965.

[5] Б. А. Пасынков, О спектральной разложимости топологических пространств, Мат. Сборник 66 (1965), pp. 35-79.

SILESIAN UNIVERSITY, Katowice

Reçu par la Rédaction le 27. 4. 1972