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Maps and inverse systems of metric spaces
by
W. Kulpa (Katowice)

Abstract. Using methods of uniform spaces are proved some theorems giving
a possibility to represent every map in the category of uniform spaces (or in the category
of completely regular spaces) by a mapping between inverse systems of metrizable
spaces satysfying some additional conditions.

1. Introduction. In this paper we shall prove that every continuous
map f: XY of completely regular spaces is represented by a family of
continuous maps f,: X,— Y, of metric spaces. More precisely, we shall
prove

THEOREM A. For every completely regular space Z there exists an in-
verse system S(Z) of metric spaces and there evists a dense embedding
gz Z—Z%, Z* = im8(Z), such that if f: XY is a continuous map of

completely regular spaces, then there emists a mapping f: 8(X)—8(¥) of
inverse systems such that the diagram

X *—f-—hY .

gxi |ay f*=1imf
v ¥ -
Xx* ->X*

I‘
18 commutative.

THEOREM B. If X is a completely regular space and f: X~ X a continu-
ous map, then there emwists an inverse system S8;= {X,,n5, M} of metric
spaces X, dimX, < dimX, card M < weightX, and there exist a dense
embedding ¢: X—~X*, X*=1mS; and a family of continuous maps

fo: X~ X,, aelM, inducing a_mappi'ng f: 8;—8; such that the diagram

x —l-x .
al Iﬂ f*=1limf
v ¢ -

‘X*.—T’)X*

i8 commutative.
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Let 8 ={X, a5, M} and 8 ={Y,, a5, M’} be given inverse
systems. :

We say that f: §—8' is a mapping of the systems if f= {p, f,} is
a family consisting of a monotone function ¢: M'~M and of continuous
maps fy: Xym—>Yo, o € M', such that mff, = Form3.

Every mapping f: §—8' of inverse systems induces a continuous
map f*=1limf: ImS->Lmg’ of inverse limits; f*({#.}) = {fu(@yun)}

= {y.}, {ma}: lim§ and {(g;} elim 8’ (Engelking [1], p. 89).

We say that a family of continuous maps f,: X,>X,, a € M, induces
a mapping f: S—8 if f={a,f.}, i.e., if n§f,=fyn5, a,f e M.

An analogous definition of a mapping of systems and a family of
maps indueing a mapping of systems will be used in the category of
uniform spaces with uniform maps.

Theorems A and B will be derived from analogous theorems 1 and 2,
proved in the category of uniform spaces.

Theorem A has a simple topological proof, how it was observed by
the referee. It suffices to embed Z in I™ and to consider an inverse system
of closed subspaces of finite products of I.

2. Preliminaries. We use some symbols and notations from [2]
and [3].

Let us recall that in [2] a pseudoun.iformity b on a set X is a filter
of coverings of X directed with respect to the star refinement.

If a pseudouniformity U satisfies the axiom of separation, then W is
said to be a uniformity.

A pair (X, W) is said to be a pseudouniform space and a uniform
space, respectively.

A map f: (X, W) (X, V) is said to be uniform iff f~1(Q) e W for
every ¢ ¢ U. . :

Symbols P & @ (P % @) mean that P is a refinement (a star re-
finement) of @.

If for a pseudouniformity U there exists a base of cardinality <y
consisting of coverings of eardinality < v, then W is said to be of double
weight < (y, 7), dweight W < (y, 7). .

If a pseudouniformity ‘U, contains a base consisting of coverings of
order << n+1, then it is said to be of dimension <, dim U < n.

) The paper is based on a fundamental lemma proved in [2] and cited
in another form in [3].

LemMmA 1. Let (X, W) be a pseudouniform space. Then there ewist

a uniform space (X, hU) and a mziform map h: (X, ‘lL)—Mit&(hX hab)
such that ,
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1. dimh%U < dim U and dweight RU < dweight U,
2. for every P e U there exists a Q ¢ kU such that h™(@) & P,
3. for every uniform map f: (X, W)=(T, V), where U is a uniformity,
there exisis a unique map g such that a diagram
(X, W) — (T, V)
\\ ,/
by P
(X, ROWL)
is commutative.
The space (hRX, hL) is said to be the quotient of the space (X, W)
and the map h: (X, W)-(AX, kL) is said to be the quotient map.
From Condition 3 of Lemma 1 it follows that the quotient is unigue
up to an isomorphism.
Let f: (X, W)—(¥, V) be a uniform map. Then a family FH)
= {f~4Q): Q ¢V} is a pseudouniformity contained in the uniformity U.
Leama 2. Let f: (X, W)—(X, V) be a uniform map onto a uniform
space. Then the quotient of a pseudouniform space (X, f7HV0)) is uniformly
homeomorphic with the space (¥, U).

Proof. From Lemma 1 it follows that there exists a uniform map
onto

g: (hX, Bf H(V))—(Y, V). We shall show that ¢ is a uniform homeo-
morphism. Since the space (hX, Rf7HU)) is uniform it suffices to show
that for every P ehf }(U) there exists a ¢ ¢ U such that gHQ) & P.
Tet Pehf (V). Then A P)ef (V) and there exists a @V such
that f~(Q) = h™}(P). Since f= g < h and & is onto, we have P = 774Q).

TEmma 3. Let U be a uniformity on a set X and let M be a set of
pseudouniformities contained in U such that

1. the set M is directed with respect to inclusion,

2. U M is a base for the uniformity U.

Then the space (X,W) has a umiform dense embedding into an
inverse limit of a system consisting of the quotients of the spaces belonging
f0 the set M with the maps uniquely determined by Condition 3 of
Lemma 1.

Proof. Let us consider the diagram

A B) — (s, 16)
O % adp
\(X; a)

(X, W) i
(1, X, ha)

with identity uniform maps (X, W)—(X, a), (X, W—~(X,p), (X,a
- (X, ) and the quotient maps %, and k. From Condition 3 of Lemma- 1
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it follows that there exists a unique uniform map =5 such that the diagram
is commutative. Thus § = {(h, X, ha), 7§, a, f ¢ M} is an inverse system.

From Condition 2 of Lemma 1 and from Assumption 2 of Lemma 3
it follows that the maps g,: (X, W) Eﬁ—°>(_X , Q) —‘Eg(ha_X , ha) induce
a uniform dense embedding ¢: (X, W) — LmS; g(») = {g,(»)}.

3. Two theorems. A pseudouniformity is said to be metrizable iff it
has a countable base.

Let U be a uniformity on a set X. Let us consider a set M of all
metrizable psendouniformities contained in “W. The set M is directed
with respect to inelusion because for every pair «, f e M a family a v g
is a subbase for some metrizable pseudouniformity contained in U. We
have | M = WU. Thus from Lemma 3 it follows that the quotients of
the spaces belonging to the set M with the maps uniquely determined
by Lemma 1 form an inverse system S(X, W) over the set M and the
maps ¢,: (X, W)= (X, a)—>(k, X, ha) induce a uniform dense embedding
gx: (X, W)—(X*, W) = lm §(X, W); gx(a) = {g.(a)}.

TarEorREM 1. Let f: (X, W)= (¥, V) be a uniform map of | uniform
spaces, where the space (¥ , V) is the inverse limit of a system S of metrizable

spaces. Then there exists a mapping f: 8(X, W)->8 of the inverse sysiems
such that a diagram

(X, W) —L> (7, V)

gx
7

, x* %*)/

i§ commutative.

Proof. Let 8(X, W)= {(X,, a), 5, M} and 8 = {( ¥y, o), ng, M'}.
We define a monotone function @: M'~M; for every o' ¢ M’, p(a') is

a metrizable uniformity in the. space (X ") bei th i
of the space (X,f 'n7%(a’)). e 9(a7)] being the quotiont

From Lemma 1 follows the existence of unifor
rm maps fo: (X, !
(Y, ') such that the diagram P ( e ¢ ))

(X, W) —(X, [z} (a) =L (T, o)
N /
N /
oc‘(d')\ /’a'

AN
N //

(Xpar» ()
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is commutative. More precisely, the diagram
1

%, W (¥, 0)
a’ I T’
\(‘ ’\ x o e ow <
o9(8') ( oa’) 7‘ iig))) (X 7;1 )
G \Lﬁﬁ’

b/
\‘(Xq;(ﬁ')! #(8)) ‘—L"(Yﬁ', 8

is commutative. The family = {p,f,} forms a mapping 78X, W)
8. Let f*=1limf We have f=f"og. Indeed,

f*g(w) :f*{ga(m)} = {fa’gqp(u’)(‘n)} = {za’f(m)} = f(w) -

Notice that Lemma 2
beddings.

TarorEM 2. Let f: (X, W)= (X, W) be a uniform map of a uniform
space and let dim W < » and dweight W < (3, 7).

Then there ewist:

1. an inverse system 8= {(X,,a), 75, M} such that dime<n,
dweight a < (8, 1) for ae M and card M = weight U,

2. a-uniform dense embedding g: (X, W) - (XF, W*), (X, W)= lim S,

3. uniform maps fi2 (X, a)>(X,, a) inducing a mapping f: 88
of the system such that the diagram

implies that the maps f, are uniform em-

(X, W) ——(X, W)
(*) ol ) %u

{ i f* = limf
(X", ) (X, W)

i'
ig commutative. :
Proof. For every P e ?U: let us write

FP)="P, [UP)=FT{THP),

Tet & be a base for the uniformity U of cardinality <y, consisting
of coverings of cardinality <t -and of order <n-+1 (see [3], Prop. 6).
We shall show that for every P <% there exists a metrizable psendo-
uniformity U having a base contained in % and such that f~H{VU)CA
and PevV. Put W= {f™P): m=0,1,:..}. Lef us assume that we
have defined countable families Wy, ..., W,—,. We choose 2 countable
family W, such that

(a) if @ ¢ Wy then f74Q) ¢ Wa,

(b) for every pair P, Pae {J {Wi i=1,..,n—1} there exists
a Qe Wy B such that Q%Pl and Q%—Pg.

m=0,1, ..
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The choice of such a family is possible because the family
J{Wi: i=1,...,n—1} is countable and $ is a base for U. Let U be
a pseudouniformity induced by a base | J{W.: n=1,2, ..}

Thus, we can choose a family M’ of pseudouniformities such that
BCUUM CUWU, card M’ = cardB, and for every o e M’

(e) fHd)C o', dima’ < n and dweighta’ < (8, T) .

Using the method as above, we may prove that for every pair
a, B € M’ there exists a psendouniformity y D a « p having the property (e).

Hence, by induction, we can. choose a directed set M of pgeudo-
uniformities such that $C JM C W, cardB = card M, if a e M then
fHa)Ca, dima<n and dweighta < (%, 7).

Let 8 be an inverse system of the quotients of spaces belonging to
the set 3/ with the maps =5 uniquely determined by Lemma 1. The diagram

ha

/(X, a) (h X, ha)

/ i
(X,%)\ { % adp

[P S

¥
N, ) (X, 1)

With.identity maps (X, W) (X, a), (X, W)>(X, B), (X, a)>(X, B), the
quotients maps ,, k; and maps =5 uniquely determined by Condition 3
~of Lemma 1, is commutative.

Fr.om Lemma 1 and from the conditions f~(a) C a, ae M, follows
the existence of maps f,, a ¢ M, such that the diagram

(X, ) —L (X, q)
hal h,

h,X, ha > h,X, ha

Ta
is commutative.

Considering the two diagrams, we c i
: , , onclude that maps f, induce
a mapping f: §—§ such that the diagram (%) is ecommutative, where ¢ is

& map induced by maps ¢,: (X, W)= (X, a)z';(haX, ha).

4. Proof of Theorem A and Theorem B. In o
: . rder to prove Th
and Theorem B it suffices to know some facts; P eorem A
1. Every completely regul i ; :
uniformity A pietely regular topological space has a finest compatible
2. If f: i i
If f: XY is a continuous map of completely regular spaces, then

F (X, W (T, U*) is a uniform ma i
: p of the unif i
finest compatible uniformities. P o1 fpnces wIth the
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3. dimX < n iff dim U* < n (Pasynkov [5]).

4. If there exists a uniformity U. compatible with the topology on
the space X such that dim U < n and dweight W < (%, 7), T arbitrary,
then the topological space y is metrizable and dimX <= (Nagata [4],
p. 126).

Hence, applying Theorem 1 and Theorem 2 to the finest compatible
uniformities, we receive topological corollaries: Theorems A and B,
without the assertion of the cardinality of the system M. In order to
receive this assertion we must apply Theorem 2 to a uniformity U of
dim U < dim X and weight U < weight X, compatible with the topology
and such that f: (X, U)— (X, W) is uniform. The method of proving
the existence of such uniformity is the same as in the proof of Theorem 2.
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