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Spaces whose connected expansions
preserve connected subsets

by
J. A. Guthrie and H. E. Stone (Pittsburgh, Penn.)

Abstract, A space is essentially comnected if every finer connected topology de-
termines the same connected subsets. This class includes the maximally connected
spaces and the connected weakly linearly orderable topological spaces (WLOTS).
A characterization of the class among WLOTS-wise connected spaces is obtained.
Essential and maximal connectedness are inherited by connected subspaces, preserved
by hereditarily quotient monotone maps, and destroyed by produets. A concluding
result is relevant to the maximally connected Hausdorff space problem: No space with
a dispersion point has a finer maximally connected topology.

§ 1. Introduction. A topology finer than a topology v is called an
ezpansion of v and a space X furnished with such a finer topology is
called an expansion of (X, 7). In this paper we study spaces X whose
connected subsets remain connected as subspaces of every expansion in
which X remains connected. We call such spaces essentially connected.

Hildebrand observed in [7] that the unit interval is essentially con-
nected in the process of constructing an intriguing connected expansion
of it. This follows already from the result of Eilenberg [5] that connected
weakly ordered spaces are essentially connected. Tanaka [9] generalized
Hildebrand’s observation as follows: For a connected, locally connected,
compact, second countable Hausdorff space X to be essentially connected,
it is mecessary and sufficient that (i) X contain no simple closed curve,
and (ii) each simple arc in X contain at most a finite number of branch points.
Our Theorem 9 gives a characterization of essential connectedness in
a large class of spaces, and inelndes the results of Tanaka and of Eilen-
berg as special cases. We also study products, mayppings, and subspaces -
of essentially connected spaces.

A connected space having no connected expansion is mazimally
connected; such SPaces have been studied in [10] and [6]. Maximal con-
nectedness is studied here as an interesting special case of essential con-
nectedness, and Theorem 11 identifies a class of spaces in which these
concepts coineide.
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Following the general terminology of Cameron [4], we call a space
and its topology strongly connecied if it has a maximally connected ex-
pansion. It is an open question whether there exist maximally connected
Hausdorff spaces other than singletons. On the other hand, we show that
a connected Hausdorff space with dispersion point is not strongly con-
nected. .

If (X, ) is a topological space and S C X, we denote by 7|8 the
subspace topology induced on § by z. The topology for X whose subbase
is 7w {8} is the simple expansion of = by 8, and is denofed =(8). The
intericr, closure, and boundary of S will be denoted by Int(S), CI(S),
and 28 respectively, if necessary with a subseript indicating with respect
to what topology these operations are being performed. Other con-
ventions and terminology will be consistent with the usage of Willard [11].

§ 2. Essential connectedness. Let ¢ be a connected subset of an
essentially connected space X. If C is either open or closed in X, the
proofs of Lemmas 1 and 2 of [6] show that every connected expansion
of ¢ is a subspace of some connected expansion of X. If now K is a con-
nected subset of ¢ and some connected expansion of ¢ disconnects XK,
then two successive simple expansions give a connected topology for ¢
which disconnects K. Then the corresponding sequence of simple ex-
pansions of X gives a connected expansion of X which disconnects K,
contradicting the essential connectedness of X.

For arbitrary connected O, CL(0) is connected, and hence essentially
connected by what we have just said. Since C is dense in C1(C), by An-
derson [1] the simple expansion of C1(C) by C is connected. The subspace
topology of C is not altered by this process, and since ¢ is now an open
subset of an essentially connected space, the argument of the preceeding

paragraph shows that (' is essentially connected. Hence we have established
the following result.

TreoREM 1. Bvery connected subspace of an essentially conmected space
8 essentially comnected,

A submaximal space is one in which every dense set is open; it is
shown in [6] and follows from [1] that every connected space has a con-
nected submeximal expansion in which a given filter of dense sets is
made open. This fact allows us to prove another suggestive result.

TEEOREM 2. Let (X, 1) be an essentially connected space, and let ¢ be
a connecled subset having at least two points. Then Int (0) # B, and if
(X, 1) is a Ty space, Int (C) is dense in (.

' Proof. .Suppose I=1Int(0)=@d. Then X—( is v-dense, and there
is a submaximal expansion pz of v in which all sets containing X'— (¢ are
open. Then € is closed and discrete as a u-subspace, and hence u-dis-
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connected. But = is essentially connected, so that O must be 4-connected.
Hence I # 0.

Now suppose (X, ) is 7). If I is not dense in €, then (—1I has
7|C-interior. But I v (X—C) is 7-dense, and there is a submaximal
expansion g in which all sets containing 7w (X— () are open. Then
O—1 is discrete as a u-subspace and has u|C-interior. Hence C contains
a u-isolated point, again contradicting the u-connectedness of C.

The following theorem gives conditions under which the inter-
section of two connected sets is connected in an essentially connected
space. We do not know whether this condition is necessary; we have no
example of an essentially connected space in which two connected sets
have disconnected intersection.

THEOREM 3. Let (X , 7) be essentially connected, and let A and B be
connected subsets of X. If A ~ B is not connected, then the components
of AnB do not form a closure preserving collection.

Proof. Suppose A ~ B is disconnected. Then 4 ~B # @, and by
Theorem 1 we may take X = A v B. Let P and @ be distinct components

~of A ~B and let # be a cluster point of each. Then Pu {r} v Q= A" is

connected, and by the distinctness of P and @, x ¢ A ~ B. For definiteness
let x e A. Then A’ ~ B has exactly two components, P and Q. Let V
= X—(Ol(P)—{w}}, and let 7' = z(V). Then 7'|B=+t|B and '|A'—P
= 7|4’— P, so that A’ v B is 7"-connected. But A’ is now 7'~ disconnected,
contradicting the essential connectedness. Hence the components of 4 ~ B
have disjoint closures. If the components of A ~ B form a closure pre-
serving family then in fact they form a discrete family, and adjoining
Cl(4 ~ B) to each of A and B gives connected sets whose intersection
is closed and has the same component structure. Hence we assume 4 n B
is closed.

Let R be : component of A— P containing @. Then A—R is con-
nected in 4.  suppose first that R is closed in A4, so that A— R is open
in 4. Let V= 8—A4)v R and let ' = ¢(V). Then BNV = (B—4)v
v (B n R) = B—(A—R), and since the components of 4 ~ B are a dis-
crete collection of closed sets, B~V e7|B. Further, R~V =ER and
(A—R) AV =@, so that B, R, and A— R are z’-connected. Since B~ B
#@ #B~n(A—R), X=BuRu(4A—R) is 7'-connected. But E is
a 7'|4 open and clesed subset of A, so that 4 is ¢’-disconnected, a ccntra-
diction. Hence R clusters in P.

If § is the component of B— P containing @, the same argument
shows that § clusters in P. Again by Theorem 1 take A = P v R and
B=PuS{S. Let V=(B—A4)u P and set ' = v(V). Then V ~Bet|B,
VAR=V ~(A—P)e|R, and 7' is a connected expansion. But V'~ 4
= Pev'|4, so that 4 is v'-disconnected. This contradiction shows that
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A ~ B cannot have two distinct components, contrary to assumption.
Hence the components of 4 ~ B cannot form a closure-preserving col-
lection.

CoROLLARY 3A. If A n B is disconnected, it must have nonempiy
interior.

Proof. If A ~ B has empty interior, it is closed and discrete in some
submaximal expansion of X. Then its components are singletons and
form a discrete collection in contradiction to Theorem 3.

We now employ Theorem 3 to show that no nontrivial product space
can be essentially connected. This situation is inhéfent in the notion of
product, and not dependent on the use of the standard product topology,
since the proof below applies equally to any topology in which every
factor X is homeomorphic to each of its products with any point from
the product of the remaining factors.

THEOREM 4. A product space is essentially connected if and only if
each factor is essentially connected and all but one is a singleton.

Proof. Suppose factors X and Y are not singletons, and let #, 4’ e X
and y,y e« Y be distinct. If neither {w,s'} nor {y,y'} is discrete, it is
easy to see that {w,s'} X {y, ¥’} is a connected but not essentially con-
nected subspace of the product. If at least one is discrete, set A
= {#} X Y) v (Xx{y}), B= ({'}x ¥)u (X x{y’}). Then 4 and B are
connected, while 4 ~ B={(z,y'), (¢'y)} is discrete. This contradicts
Theorems 1 and 3.

We now turn our attention to mapping theorems. The following
characterization of hereditarily quotient maps has independent interest.

TEROREM 5. Let f: (X, ©)~ (¥, o) be continuous. Then f is hereditarily
quotient with respect to T and o if and only if for every A CY, fis quotient
with respect o =(f~(4)) and ¢(4).

Proof. Let 8 be a saturated subset of X, let 4 = F(8). If fis a quotient
map with respect to 7(f~'(4)) and ¢(4), then f|8§ is a quotient map since
Se r( f7(A4)). Since the subspace topologies on § and f(8) are not altered
by the expansions, f|§ is quotient with respect to = and ¢. Hence fis
hereditarily quotient with respect to v and .

Conversely, let f be hereditarily quotient with respect to 7 and o,
and let 4 C Y. Clearly f is continuous with respect to 7(f7(4)) and o (4).
Let SCY with fY8)=Vu (Wmf‘l(A)) € r(f‘l(A)), where V, W er.
Then 8= f(V) v (f(W) ~A). Let V= f(V)—of(V)ea. If o edf (V) ~ 8§,
then f~(z) Q V, since f is pseudo-open. Thus f~Y(z) meets W~ Y 4),
and we conclude that § = V' u (f(W) ~A). Now §~ 4 = [f7)w fIW)]n
n4, and fHSNA)=FfYS) A YHA) = (Vu W) ~nfHA) ez|f2(4)

?
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Since f|f7'(4) is a quotient map, S~ A eo]d, so §n A=W ~4 for
some W’ eo. Thén
fMAACSn"A=WnACS, so S=TV'ov(Wnd)es(d).
Therefore f is a quotient map with respect to 7(f~*(4)} and o(4).
COROLLARY BA. The function f is hereditarily guotient with respect to
(f4)) and o(4). .
THEOREM 6. Let f be a hereditarily quotient map of X onto XY with
connected fibers. If X is essentially or mazimally connected, then so is ¥,
Proof. If X is connected, so is Y, and if C is any connected subset
of ¥, f|f~0) is a quotient map and thus f~*(C) is connected.

" Let ¢’ be a connected expangion of the topology ¢ of ¥, and sup-
pose ¢’ disconnects some o-connected ¢ C Y. If 4, B« ¢’ induce a sepa-
ration of €, set o' = (0(4))(B) and 7' = [7(f7(4))](f(B)). Then o' is
a connected expansion of o and f is hereditarily quotient with respect
to ¢" and ¢'. Since the expansion of v was made by including saturated
sets, the fibers of f are t'- connected. Thus ' is & connected expansion of =.

Now if (X, ) is maximally econnected, v" = 7 so that ¢’ = ¢. This
shows that ¢ admits no proper connected expansion, so (¥, ¢) is maximally
connected.

It (X, ) is essentially connected, then f~*(C) is z'-connected, whence
O is o'-connected, contradicting the construction of ¢’. Therefore C was
¢'’-connected in the first place, whence (Y, ¢) is essentially connected.

§ 3. A characterization theorem. Let (X, 7) be a topological space.
Tf there is a linear order < on X whose open interval topology coincides
with 7, then (X, 7) is a linearly orderable topological space (LOTS). If T is
finer than some order topology, (X, t) is a weakly linearly orderable
topological space (WLOTS). If every two points of X are contained in
some connected subspace which is a WLOTS, then (X, 7) is WLOTS-wise
connected.

We call (X, ) irreducibly conmected if every two points x,yeX
belong to a subspace [#,y] minimum with respect to being connected
and containing # and y. This is evidently equivalent to the property that
arbitrary intersections of connected sets are connected. It is known [3]
that if X is frreducibly connected, then each segment [z, y] is closed in X
and is a WLOTS. Hence every irreducibly connected space is WLOTS-wise
connected.

In order to proceed we will need the following simple result on con-
nected expansions, which has a number of important applications.

THROREM 7. Let (X, 1) be connected, V ev, p<dV, and let T’
= (Vv {p}). If p is a cluster point of V ~ C for each component C of
X—{p}, then (X, 7’) is connected.
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Proof. Since C n (Vv {p}) = C ~V, 7'|C = 7|0. Since p is a =-cluster
point of O~V it is a 7'-cluster point of ¢. Hence X is 7’- connected.

THEOREM 8. Let (X, 1) be @ WLOTS-wise connected space. If X is
essentially conmected them it is irreducibly connected.

Proof. Let ACX be a WLOTS having » and ¥ as endpoints, and
let C be any connected subset of X containing # and y. By Theorem 1
we may assume that X = 4 o 0. Suppose p e 4— 0, and let [», p) and
(p, 9] be the components of A— {p}. Since 4 is connected, p is a cluster
point of each. Since (p,y]ez|d, there is a Ver with VA4 = (p, 9]

Let v = 7(V v {p}). Then by Theorem 7, (X, z’) is connected, but
4 is 7'-disconnected, contradicting the essential connectedness of X,
Hence A C (. Then 4 is a subspace minimum with respect to being con-
nected and containing z and y. Hence X is irreducibly connected.

Not every essentially connected space is irreducibly connected
however. Let X be the disjoint sum of two copies of the real intervsl [0 21
with the two copies of [0, 1) identified. This is essentially connected {)ut
M {X—10,4): ¢ €[0, 1)} is disconnected. By modifying the neighborhoods
of the I’s a Hausdorff example may be obtained. Note, however, that
finite intersections of connected sets are connected, so this example; does
not clarify the position of Theorem 3.

To characterize essential connectedness in WLOTS-wise connected
spaces we need only combine Theorem 8 with a characterization of es-
sential connectedness in irreducibly connected spaces. For this we need
the following definitions pertaining to a connected subset ¢ of X. A bramch
of C'is a component of X— ¢ which clusters in .¢. A point p € C is a branch
point of O if it is a cluster point of some branch of (.

Tfu;:logj.fzm Szz Let (X, 7) beirreducibly connected. Then X is essentially
connected if and only if the bramches of each segment [ !
o closure-preserving family. ! 91 o X form
Proof. It is showln in [8] that each [z, y] is closed, that each com-
pone.nt of X— [m,g{] s a branch, and that each branch of [z, y] has
3 unique cluster pc{mt in [2,y]. Let B be a family of branches of [z, ¥]
and suppese ¢ e X is a cluster point of U &. Suppose 2z ¢ B, where ]3: is
a branch of I;w, y] clustering to p e[z, y]. Let B, consigt of those members
of B clustering in [, p], $, of those clustering in [p, y]. Either U B
or | By f:lusters to % hence without loss of generality let $, = $. Then
[m,p]'u[q“]&]u{z} Is connected, hence contains [p,z]. Thus (p,2] is
contm)]cllfd . some member of $; that is, B e . Therefore we mf:y as
sume that 2 € [#, y]; and again without loss of generali . :
ralit
the members of B cluster in [z, 2]. £ v e assume that
~ Let 7' = 7({z} v (X—[»,2])). If 2 is not i
, . a cluster point of gsome
member of B, then X' = [ » 21w (LU B) is +'-connected by Theorem 7,
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while [#, 2] is 7’- disconnected. This contradicts the essential connectedness
of X' and hence of X. Therefore the branches of [z, y] form a closure
preserving family.

For the converse, let z'Dt disconneet some 7-connected subset
CCX.If a, b e C are separated, then [a, b]C C is 7'-disconnected. Let V,
W be a '|[a, b] separation of [a, b] with a ¢V, b e W. Then V and W are
7’-closed, since [a, b] is v-closed.

Let F be the union of V and those branches of [a, b] which cluster
in ¥, and let & be the union of W and those branches of [a, b] which

~ cluster in W. Since each branch has a unique cluster point in [a, ],

F and @ are well-defined, disjoint, nonempty, and X =F v G. If ¢ F is
a 7'~ cluster point of 7, it is not a v'- cluster point of ¥; hence it is a 7’- cluster
point and therefore a z-cluster point of the family of branches of [a, ?]
contained in F. But the branches of [a,b] are 7-closure preserving,
a contradiction. Hence F is 7’-closed. A similar argument shows that G is
7'-closed, so that X is 7'-disconnected. Hence (X, 7) is essentially con-
nected.

Note that a connected expansion of an essentially connected space
is essentially connected. The class of spaces to which the Theorem of [9]
applies is not closed under connected expansions, and such expansions
cannot be recognized as essentially connected by a direet application
of that theorem. In contrast, if our Theorems 8 and 9 identify a space
as essentially connected, they will apply directly to any connected
expansion.

We now show that for LOTS-wise connected spaces, and particularly
for arcwise connected spaces, the condition on the branches can be re-
placed by a simpler condition.

TarorREM 10. Let (X, 7) be o LOTS-wise connected space. Then X is
essentially connected if and only if it is drreducibly connected and the branch
points in each segment are discrete.

Proof. If X is essentially connected, the branches of [, y] are closure
preserving. Since each branch has a unique cluster point in [z, y], the
branch points of [#,y] cannot cluster.

Conversely suppose the branch points of [z, y] are discrete. If the
union of a family $ of branches cluster to a point p not in the closure
of one of them, then the proof of Theorem 9 shows pe [@, y]; without
loss of generality, let $ be a family of branches of [x,; p] each clustering
in [z, p). Then the branch points associated with members of & lie in
[z, ] with ¢ < p, for they are absent from some order interval about p.
Then [%, p] ~ ([, ¢l © [ B v {p}) = [#, v {p} is disconnected, contra-
dicting the irreducible connectedness of X. Hence the branches of [z, ¥]
are closure preserving, and by Theorem 9, X is essentially connected.

7 — Fundamenta Mathematicae, T. LXXX
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§ 4. Maximal and strong connectedness. We have already observed
that maximal connectedness is a special case of essential connectedness.
We now identify a class of spaces in which the two concepts are equivalent.

A space and its topology are called principal if each point has
a minimum neighborhood, or equivalently, an arbitrary intersection of
open sets is open. Maximal connected principal topologies were charac-
terized by Thomas [10]. The two-point indiserete space is an example
of an essentially connected principal space which is not maximally con-
nected. It turns out that this is a unique anomaly.

TrmorEM 11. Apart from the indiscrete doubleton, the concepts of
essential and mazimal connecledness coincide for principal spaces.

Proof. Eliminating trivial cases, we assume X is an essentially
connected prineipal space with at least three points. Let TV, denote the
minimum neighborhood of a nonisolated point p. Suppose Vp containg
a distinet nonisolated point ¢. If @ e ¥, C Vp, isolating g and = discon-
nects {g,#} while leaving V, connected, a contradiction. Hence V,
= {p, g} = V, is indiscrete. Since X—V, cannot also be open, Vp meets Vy
for some @ ¢ X— Vp; hence ¥V, C V. Then isolating p and ¢ disconnects V,
but leaves V, connected, again contradicting essential conpnectedness.
Hence V,— {p} must consist of isolated points.

We now refer to Theorem 5 of [10]. Condition (i) is clear, while (ii)
and (iii) follow by the same proofs found in [10], since the expansions
exhibited in violation of maximal connectedness also violate essential
connectedness by discomnecting an original minimum neighborhood.
Hence X is maximally connected.

In certain other situations, essentially connected spaces can be
recognized as strongly connected. If D is a dense subspace of (X, 7),
Bourbaki [2; p. 124] defines an expansion 7’ of v to be D-maximal if it
is maximal with respeet to the properties that z'|D = z|D and D is
7’-dense in X, and observes that every topology r has D-maximal ex-

pansions. By [2; p. 139], if D is submazimal and X is D-maximal, then X
itself is submaximal.

THEOREM 12. Let X be an essentially connected space having a dense
mazimally connected subspace D. Then every D-maximal expansion of X is
magimally connected.

Proof. Since D remains dense, X remains connected, and since
maximally connected spaces are submaximal, X is submaximal by the
result quoted above. Then D is open and X— D is closed and discrete.
A connected expansion of X cannot create interior in X— D, and by

. the essential connectedness of X cannot disconnect D. By the maximal

connectedness of D, its topology is not altered; hence by the .D-maxi-
mality of X, the expansion is not proper. Hence X is maximally connected.
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It is not known whether there exist any maximally connected Haus-
dorff spaces other than singletons. We are able to show however that not
every connected Hausdorff space has a maximally connected expansion;

that is, we exhibit a large class of connected spaces which are not strongly

connected.

Observe that an important feature of our characterization of es-
sentially connected spaces is the absence of anything resembling a simple
closed curve. Since one prominent property of simple eclosed curves is
the absence of cutpoints, we begin by studying spaces having no cut-
points. Swingle [8] defined a space to be widely connected if it is con-
nected and every nonsingleton connected subspace is dense, and showed
that such spaces appear as subspaces of Euclidean spaces. Evidently
a widely connected 7, space X has no cut point. For if X— {#} is totally
disconnected and (¥, @) is a separation of X— {x}, then Fu {z} is a con-
nected subset which is neither dense nor a singleton. Thus X— {} con-
tains. a component which is dense, so X—{z} is connected.

TaEoREM 13. Let X be an essentially connected T, space. Then X is
widely connected if and only if it has no cut poinis.

Proof. We have just seen that a widely connected space has no
cut points. If X is essentially connected and without cut points, let € be
a proper closed connected set with more than one point. Then X—0is
open. Let ped(X—0). Then expanding by (X—OC)v {p} gives a con-
nected topology by Theorem 7, but disconnects C by isolating p. Hence
X is widely connected.

The T, topology obtained by adjoining the empty set to an ultra-
filter finer than the filter of cofinite sets is an example of a widely con-
nected space which is maximally connected and hence essentially con-
nected.

Tn a maximally connected space we can eount the cut points in many
situations. A space is called quasiregular if every nonempty open set
contains the closure of some nonempty open set.

TrEOREM 14. Let X be a maximally connected space. Then every non-
empty nondense open set has o out point of X in its boundary.

Proof. Let V be a nonempty nondense open set. If Vv {p} is open
for each p 8V, then CL(V) is also open; hence Vv o {p} is not open for
some p e V. If p is not a cut point, Theorem 7 allows a proper connected
expansion by V v {p}; hence p is a ecut point.

COROLLARY 14A. (i) If X is Hausdorff, X has infimitely many cut points.

(ii) If X 4s quasiregular, the set of cut poinmts is dense in X.

Proof. (i) Any finite set of points in a Hausdorff space is contained
in a nondense open set. Hence the finite set cannot include all the
cut points.

i
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(ii) If every nonempty open set V contains Cl(W) for some non-
empty open set W, then X— CI(W) is a nonempty nondense open seb
whose boundary is contained in V. Hence V contains a cut point.

CoROLLARY 14B. No widely connected Hausdorff space is mazimally
conmected. )

Proof. By Theorem 13, a widely connected Hausdorff space has
no cut points, so cannot be maximally connected by Corollary 14A.

THEEOREM 15. No connected Hausdorff space with a dispersion point is
strongly connected.

Proof. Let X be a space with dispersion point p. Then p is the only
cut point of X, and by Corollary 14A, X is not maximally connected.
But in any connected expansion of X, X—{p} remains totally discon-
nected, hence p remains the only cut point of X. Hence X has no maximally
connected -expansion.

.

References

[1] D. R. Anderson, On connected irresolvable Hausdorff spaces, Proc. Amer. Math.
Soc. 16 (1965), pp. 463—466.
[2] N. Bourbaki, Elements of mathematics, General Topology, Part 1, Reading 1966.
[3] A. E. Brouwer and H Kok, On some properties of orderable connected spaces,
" gapgorz 21 (1971) Wiskundig Seminarium des Vrije Universiteit, Amsterdam
. E. Cameron, Mawmimal and minimal topologies, Trans. A M )
160 (1971), pp. 229-248. / mer. Mah. Soo
5] 8. Exlenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), pp. 39-45.
[6] J.A. Gtuthrle, D. F. Reynolds, and H. E. Stone, Connecled Expansions of
g’opolagzes, to appear in Bull. Aust. Math. Soc.
[7] S.K.Hildebrand, 4 connected topology for the unit int l
oo 133140, pology ft it interval, Fund. Math. 61 (1967),
[8] P. M. Swingle, Two types of connected sets, Bull. A: y
e , . Amer. Math. Soec. 37 (1931),
[9] - T. Tanaka, On the connected refinements of topologies of locally connected continua,
101 g . Math. Tokushima Univ. 3 (1969), pp. 21-24. ’
. P. Thomas, Maximal connected topologies, J. A:
o 700708, pologies, J. Aust. Math. Soec. 8 (1968),
[11] 8. Willard, General Topology, Reading 1970.

DEPARTMENT OF MATHEMATICS
UENIVERSI’I‘Y OF PITTSBURGH
Pittsburgh, Pennsylvania

Eegu par la Rédaction le 25. 9. 1972

icm®

LIVRES PUBLIES PAR I’INSTITUT MATHEMATIQUE
DE L’ACADEMIE POLONAISE DES SCIENCES

J. Marcinkiewicz, Collected papers, 1964, p. VIII4- 673.
S. Banach, Oeuvres, Vol. I, 1967, p. 381.
§. Mazurkiewicz, Travaux de topologie et ses applications, 1969, p. 380.

MONOGRAFIE MATEMATYCZNE

10. 8. Saks i A. Zygmund, Funkeje analityczne, 3-éme éd., 1959, p.VIII+ 431.

20. C. Kuratowski, Topologie I, 4-éme éd., 1958, p. XII--494. :

97. K. Kuratowski i A. Mostowski, Teoria mnogosei, 2-éme éd., augmentée et
corrigée, 1966, p. 376.

98. 8. Saks and A. Zygmund, Analytie funetions, 2.8me éd., augmentée, 1965,
p. IX+4 508.

30. J. Mikusiriski, Rachunek operatoréw, 2-eme éd., 1957, p. 375.

41. TI. Rasiowa and R. Sikorski, The mathematics of metamathematics, 3-8me éd.,
corrigée, 1970, p. 520.

492, W. Sierpinski, Elementary theory of numbers, 1964, p. 480.

43. J. Szarski, Differential inequalities, 2.¢me 6d., 1967, p. 256.

44. K. Borsuk, Theory of retracts, 1967, p. 251.

46. M. Kuezma, Functional equations in a single variable, 1968, p. 383.

47. D. Przeworska-Rolewicz and 5. Rolewiez, Equations in linear spaces, 1968,
p- 380.

49. A. Alexiewicz, Analiza funkcjonalna, 1969, p. 535.

50. K. Borsuk, Multifimensional analytic geometry, 1969, p. 443.

51. R.Sikorski, Advanced calculus. Functions of several variables, 1969, p. 460.

52. W. Slebodziniski, Exterior forms and their applications, 1970, p. 427.

53. M. Erzyzanfski, Partial differential equations of second order I, 1971, p. 562.

54, M. Krzyzareki, Partial differential equations of second order II, 1971, p. 406.

55. Z. Semadern anach spaces of continuous functions I, 1971, p. 584.

56. 8. Rolewie: stric linear spaces, 1972, p. 287.

LES DERNIERS FASCICULES pss DISSERTATIONES MATHEMATICAE

CI. I. Kopoocifiska, The repairman problem, 14973, p. 45.
CII. D. J. Brown and R. Suszko, Abstract logies, 8. L. Bloom and D. J. Brown,
(Classieal abstract logics, 1973, p. 56.
CIII. E. Orlowska, Theorem-proving systems, 1973, p. 55.
CIV. E. Pleszczyiiska, Trend estimation problems in time-series analysis, 1973, p. 69.


Artur




