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The theory of surface measure ).
| By
"J. P. Schauder (Lwéw, Poland).

Notations.
V;x' (E) : plé.ne exterior lebesguian measure of set K,
measurahle 1 measurable with respect to Lebesgue's
sup | o measurs,
Limh inf (K,) : ' upper (lower) limit of sets {E,}.

= EE E'1+E+ .+ E,4... sum of sets {E}

RE

Be II B ' 3 product (greateﬁt common divisor) of
- | ‘ sets {F ¥

§ 1. Our considerations shall be carried forth in a space of
3 dimensions. This we only do in.order to avoid too muech com-
plicated formulae. Generalisations of our results with concern to
a space of any number ,n% of dimensions offer no difficulty.

For the sake of better understandig we beginn by paying some
attention to results obtained by Messrs Gross and Jansen.

According to Gross?) we call ,exterior surface measure“ any
selfunction @(F) provided it satisfies the following conditions:
I It is non negative and not identically zero nor identically - oo,
defined for every set £ in the space. Vacuous sets are of measure zero.

Il. B’ -being part ot E we have always:

D(E) < D(B)

1) Thesis presented to the University of Lwéw, october 1923,
1) Gross W: Uber das Flichenmass von Punktmengen. Monatsh, fiir Math,
und Phys XXIX Jahrg. This paper will be referred to in future as P, P,

Fundamenta Mathematicae VIIL : 1
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III. Considering a sum of an at most countable number of
sets {£}im12oc We bave:

@(E')gj‘ai(ﬂ); | S'Ei—_—:E

in=] i==] .
IV. If two sets £ and E' are of positive distance, then:
. OE+ E')= O(E)+4 D& -
V. O(k) is the lower buund of ®(B), B being any borelian
set containing k.

VI. The projection k, of the set K on the plane & is of an
exterior lebesguian plane measure not greater then @(K):

TV (B) < B(E)

According to Caratheodory 1) it is possible to distinguish with
reference to any setfunction ¥ satisfying I——-IV a class of ,mea-

‘surable T¥ sets in the following manner:

A set E is, ex definitione, measurable &, if for every set M of
finite & we bave:

(M) = M. E)+ TM—M.E).

The exterior surface measure of a set ,measurable @“ we shall
call its ,@-area®. Thus the phrase ,area @(#)“ includes the mea-
surability @ of the set E.

Borelian, sets are shown by him!) to be measurable @ with
respect to any @. Also theorems, well. known from the theory of
Lebesgue’s measure e. g.: measurability of the sum, product diffe-

rence of sets measurable .

§ 2. Given a set & in the space and a plane @. We define:

Def. A point p belonging to @ will be said to be covered at least
m-times by the projection Eg, if at least m points of A project
themselves orthogonally to @ in p.

Def. A point P belonging to L' ,projects itself at least s times
on B if at least m — 1 other points of K can be found, lying
together with P on the same perpendicular on ®.

With these definitions the following theorem subsists, demons-
trated by Gross®): If O(E) is finite, then points of © covered

- 1) Caratheodory: Vorlesungen iiber reelle Funkiionen puge 246 —258. This
book will be referred to in future as R. F.

%) F. P. page 174.
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- at least m-times-by Eg form a set E,g, twhose l-measure satisfies

the relation:

(1) | V?(E)<9—;f~’—

Thence from results:

the pointset E.q iyz"ng on O and covered an in Jinity of times by
o, is of l-measure zero. o

We conclude also from (1), that the lebesguian space measure
of £ is zero, provided ®&(E) is finite | |

§ 3. Above postulates do not yet define @ uniquely. To obtain
this we have to annex the following eondition:

VII. @y (E) is the least of all Junctions, which comply with
I—VI; the term ,least* is to be understood thus:

a setfunction @(E) being given, which fulfils I— VI, we ought
to have: | \

8,(E) < O(E)

for every k. ‘

The existence of such least @, — this of course being unique —
has been demonstrated by Gross?). Here we let bis proof follow.

We choose a cartesian system of coordinates z y 2 and decom-

pose the space in cells Og s0 that every point Plzy z) may belong
to one and only one cell O, -

T < &gy .
Do =1 n<y<thm 4kL=04+1 + 2.

rscz i

the sequences {z.} {y.} {z} satisfying the conditions:

T < &gy
Y < Yup Lk, =0 +1 +2

2 < 21

lim jr;| = oo lim e = ooplim {2)) = oo,

H_woc Tk|~0c U —ecc .
Such a partition of the space we shall call a space grating?)
and denote it by the letter S.
We introduce the following notations:

Yy F. P. page 1566 —159,

%) or space-net,
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(a) Eg the projection of set £ on the plane @ or more gene-
rally: K, . o the projection’ of E, .,  on 6.
(b) E, the set of points common to K and the cell 0,:

E,=E.0,

Consider now the set of numbers {Vf*'EQ@}, ¢ having been
fixed, taking all possible orientations of the plane @. The upper
bound of these numbers is defined uniquely for every o. Let us

~call this upper bound ¢,(E). The sum:

o(E) zz‘ge(ﬁ;) |

e=1

Let {S‘}ig,,g_‘_m‘be a sequence of gratings such that:

1% each grating S*' results from the preceding S by means
of subdivision; | , |

2° the maximum diameter of cells tends towards zero.

It can be easily shown, that the sequence.of numbers o' (l) =

=202 (E) — ¢'(E) constructed for 'the' grating s — ‘represent
e=1 R | s
a non decreasing sequence and that the setfunction @,(E) defined as:
D, (E) = lim o'(E)

i~e00

possess all demanded properties, save perhaps V,

Having thus obtained ﬁ(E), we construct without difficulties
@,(£) in the following manner: |

@, (F) is the lower bound of &,(B) for all' borelian sets
containing E. :

Dy (E) satisfies all our I—VII postulates.

§ 4 Jansen was, in defining his measure, prior to Gross?), -
- Let us call X Y Z the planes determined by the axes (y 2) (2 x)
{zy) resp, all other notations remaining unchanged.

It cin be demonstrated, that,the numbers

1) O. Jansen. Uber einige stetige Kurven, tiber Bogenlinge, linearen Inhalt
und Flﬁcheniuh&lﬁ Inaugural-Dissertation, Konigsberg 1907.
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s = YVVAE)+ Vi(By, + VAEy,
o=1
converge to a limit, independ_ently of the choice of the »funda-
mental® system of gratings {S}., s o, provided that Zyzre-
main fixed,
Jansen’s exterior measure is just this common limit J (&):

J(E) = lim §(E)

J(E) fulfils postulates I—V. Instead of VI the following pro-

perty subsists:
For every E:

)

VVIE: + VIE, ¥ VIE, << J(E)

'§ . We give here in advance a short summary of main results
of the present paper.

In the first chapter general .properties of sets measurable @
shall be investigated. In particular with th. III we find conditions
necessary aud sufficient in order that such set have a finite sur-
face ) measure. In pursuit we show, that each set £ measurable @,,
its @, area being finite, may be approximated by means of -
closed subsets F in such a manner, that @, (F) differ from @,(E)
as little as we please. An interesting property of sets with finite
@ is comprised by th. VL |

In the second chapter we introduce ,normal“ sets.

A set £ is called normal. if from every family of spheres con-
taining £ an at most enumerable number of mutually seperated
spheres can he extracted, their sum covering £ except a set of @
measure zero. N

Parts of normal sets are too normal (th. VII). A wide class of -
normal sets is pointed out by th. XVII.

At last, we generalise in this chapter a well known theorem
due to Gauss, concerning connection between volume and surface
iniegrals. This theorem will be extended to domains with normal

boundary.
Chapter III deals with surfaces:
£ == ¢ (uv)
y = T(uv)
z == E(uv)

1) resp. jansenian.
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uv ranging over some plane domain; functons @, @, X are suppo-
sed to satisfy Lipschitz's conditions. Such surfaces are always nor-
mal; the theorem of Gtauss takes here his classical form 1),

I

§ 1. We make the following assumption:

1° O(E) is finite and the set K measurable @.

Until further noticeour assumptionsaretoremain
unchanged | | |

Therefrom ensues the following theorem:

Theorem 1.%) Eg is measurable 1 for every 6.

Proof. In order to demonstrate this we construet according
with D-th. postulate a borelian set B enclosing E, whose area is
equal to the area of A:

B K, 9(B)= O(E).
Consequently the set B — & is of area zero:
OB — E)=0.
In virtue of 6 th. postulate we have a fortiori:

(1) . BB—E)y=0
On the other side:

| - Beg= £+ (B— £)
Bg being a set of Suslin (4) is measurable /. Therefore:
Lo =DBg— (B— Eg.(By — L)
1s too measurable-! (ace. to 1). ‘
Theorem IL. The poinis of O, covered by Eg at least ‘m-times,
Jorm a set measurable-l.

Proot. Let us divide the space into a series of layers of la-
1 | | |

- titude e each, by means of planes parallel to the given plane @.

For this purpose let us choose a pair of orthogonal axes lying
in @ and a third one # normal to @, ' |

1) Lichtenstein has proved this theorem for surfaces with continuous tan-
gent plane Lichtenstein. Arch, der Math w. Phbys. (3)27 (1918) page 31—37,
) Cf. P. F. page 173 ‘
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Every layer represents1) a set of points W,,, whose z,y are
arbitrary and whose 2 satisfy the relation:

h h+41
(2) G N2 '*;" h==0, + 1, + 2... 9

Let us suppose the set E to lie entirely on the side with non

negative z. This restriction is made for the while only and there
will be no difficulty to drop it.

We introduce by induction the following sets:

3

==&, W,
o Hug == projection of E,, on 6
(3,) L |
Bi=Eu4 (8 — Eyp)?

2z ]

Ez = Ekh@.m@ — Ek,@)
a={}

Generally supposing Es=* 1 be already defined for all non ne- -
gative, integer /, aund all natural A, hy. .h,_, we define now:

for h, =1
vt . Thihgeech, ___ T ke ko I :
(84 Brgtete = Bt LBy et 21,0
forh, > 1
Jmhr-—-—-l
Yhyhgesahs Ty ok u l ! I hyleg, ke
Ekihi o Lkl BBt Ek Tyttt hr——1+hr’@‘ (E;l"! | re=] —
#=zl
) ha .
— E':’ e Eyhppdyen b, 5'}"316)

The sets E,, are measurable-@, being product of twe measn-
rable sets, namely X and the horelian W,,. The area of E,, 13
finite, E,, being part of K Consequently according to the prece-
dent theorem, the sets X, are measurable-l. And since the sets

) By definition,
h=pe

?) The sum X Wiy is the whule space (for k constant),

e = 00y

) & = the totality of point: helonging to the plane &,
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Bkt aye formed from FE,q by means of operations: sum, diffe-
rence and produet, their measurableness / is secured.

(It may be easily shown, that two sets L™ and Ep** have
no common points, provided (A, h,...h,) be different from (h; ky...h;):
4) Eperte B = 0 if (hy by ... h) F= (hihs.. . B)

In fact we may immediately establish our supposition for E.
Supposing its validity for Ej™—1 we may show it to hold still for
By by diseerning two cases (a) (8).

(@) (g hy oo o)== (h; hy... h,_) that is hy=hyj hy==hgy...b,_y==bh,_,
bR

Let us suppose for instance h, < ;.
In this case we have according to (B),:

s _,’I"I 't-‘hl )l
2R T Y I CL YR T )
Ekl- r}r____lflk P g o
J-Hh'r——'] R
T T ? I Tuhgeashy g _
= E‘i‘ e A Eklhl"H"."*‘ . hr--]'*f"lri@ » (Ek | .
2]

Vhyhpeo J, ,
- Ek =1, k,n1+;.2.{-...nr_l+;.@)

b Rybiges "
C E;:lh! O, Ekl tgneclt, 1. Ek, hl+"2+"'hr'—‘]+hf' (O]

Consequently the set E¥#=-*r—1", has no common points with
B, sctact.n,_yin, o While — regarding (8) — E"#"—1* belongs entirely
0 B spaton,_yahs @ | :

() In the second case we have already:

(hy by o b)) = (B B BE).

Then sets B+ and B "= having already no common
points, this remains true concerning the sets I h—1% and F¥teet’p qb,
belonging to EM==—1 resp. to E¥isry ).

We retarn now to the demonstration of our theorem.

Let us observe the set of those points of E, which project them-
selves on O at least m times. We denote it by E.,.

1) Paragraph in vpa.ranthe.sis won't be needed for the present; property obtai-
ned therein shall be made use of during the demonstration of th, IV.
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According to our definition of E, to every point P, of it, we
can find at least m—1 other points P,, P,... P, belonging to E
and lying together with P, ou the same straight line perpendicu-
lar to "6,

As the points P, P,... P, have a positive distance from one
another, for an integer % chosen great emough (k> K). they are
contained by different layers W,, (for & constant).

~ In consequence thereof P, belongs to at least m B (B> K).

Let us observe those E,q, which contain P,, and let us arrange

them by increasing non negative indices & (k fixed),

L] h *
Pl@ € Ek,h,. @ P1@ € 'Eka"r'l-bs: AR Pl@ € Ek:.hx-i-hr%—---hm, ]
k>K ‘

while in consequence of our arrangement no set E,g with an in-

dex A less then k,, or with an index 7:

hy 4 by ... b, < h<hy-+hy+.. h by, r=12..m—1
contains P g.

The point P,y belonging to E,,g, but to neither {E, g},
it belongs to:

Teashy—1Y

J-hl—l

Buo- Jff (0 — Eio) E>K
| ‘8 |

and therefore according to (3) to:
Pige By

Further P,é belonging to Ek,v,,I +m, @ DUt to neither {&, .1, o} 10 .
it is contained by:

sehy—]

Pioe EY . Eypin o Jff (B2 — B B, 1. ) = B},

a=1

Continuing in the same manner we shall convince ourselves that:

| Py g & Bl n ' k>K
and all the more:

(5) ‘ Pige Y Epwime Az E>K

h]’fg - hm .

where the sum is to be taken over all natural A, hs ... h, and all
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integer non negative h,. This last relation holds for any & great
enough, that is to say:
(6) _ P, &€ Lim A4y

karp OO

But sinee (6) concerns any point Pyge K, we have:
(n E,, C Lim A7

Kea 00

Employing the same method, we show on the other side:

(8) Lim 47 C E,¢

k-0

Combining (7) and (8) we finally find:

|
and the measurability / of the set E,q is thus demonstrated.

Remark 1. If £ be a borelian set. it is not necessary, in order
to demonstrate th. II to assume the finiteness of @ (E). This con-
dition we have oanly used when showing measurability ! of .K,,q.
In the case of borelian K, Ko and K" are sets of Suslin (4).

Remark II 7he projection of points covering O exactly m times
s measurable-l.

We have found, that the sets E, project themselves on @
in sets measurable-l. As far as K, is concerned we cannot tell,
whether it is measurable-@, Howewer if we substract from every
set E, in a cerlain manner (which we will describe below) sets
projecting themselves on @ into sets of l-measure zero, the remai-
ning points of B, will furnish a set measurable- @, As easily seen
it comes to the same to discuss the sets K, or ¢, consistin g

of points of E projecting themselves on 6 exactly
m times.

Thus we establish:
Lemma I A set E' exists measurable-@, of such a kind, that:

1° | E'CE
Vt(E,)(P):O
20 The set D, = (E— E).e,

consists but of points projecting themselves on @ em(;'t/y wm times

3 D,, is. measurable- 0.
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Proof. Let us construct for every set e,g & borelian set b
being part of the former, so that:

(10) ‘ II'B,,,@-—- Itbﬂﬂ bmycem@

and moreover borelian sets B, consisting .of those points in the
space, whose projection on ® belongs to &,. The sets:
' D,=B,..ECe,
are measurable- @.
Evidently D, consists only of points projecting themselves on &
exactly m times. Besides that in virtue of (10).

V,(Du >='V (ene)

The set: £’ = —ZE -—~PE’ mz""' D,

m=1
is measurable-ﬂj and its projection on @ has a [-measure zero.
E’ agrees with the conditions of our lemma,
We will now employ ouor results in order to generalise a the-

orem due to Prof. Banach.

To heginn with, we give some definitions.

Let — as usually — e, denote the set of points belonging to
E and projecting themselves on @ exactly m times. Let us define
the funetion Fg (zy) in the plane @ in the following manner:

1@ ()7 y) = m ln the set emO 3
Fo(wy)=+o0 " V%@
Fo(xy)=10 out of Eg. N 1

We announce now:
Theorem IIL. a) The function Fj(xy) is summable-/.

f Fy(wy) dedy < @ (E)

Proof. It will do tu show the funetion F' (2 y) equivalent to
Fg(zy) to be summable . For this purpose let us consider the
borelian sets b, and B, defined when demonstrating the lemma.
We put:

- Fg(xy) =m in the set b,

g (2y)=0 outonbm.
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Clearly F” is equivalent to /. Moreover b,, being measurable-l we

have:
| f / Fy(wy)dedy = 3 m. 7,5,
17D ‘ ’

ma=]

We have yet to show that,z m. V, b, is finite;

m==]

According to lemma we know, that:
(11) 1° the sets 4, are projections of D, =B,.E Ce,
2° D, are measurable-® and mutually separated.

Making use of Gross theorem mentioned in the introduction,
we obtain | _
@D,
(12) AP

i

On the other hand, according to (11),:

Jo0D)=0 ;D < 0 (E)
m==1] m=
since 2 D, E

Mmex]

and finally in virtue of (11),, (12):

(18) v, <Y PWIKBE)Y) g e d
m=1 me=1|

§ 2. We return now to denotations of th. IL
Observe the set H= ¢, that is the set of all points, which
- i=1 :

project themselves on @ a finite number of times. Let us arrange,

‘on every straight line parallel to e-axis, having a non-vacuons pro-

') The necessary and also sufficient condition that “a set measurable J has
a finite (exterior) jansenian measure is: the functions F, (xy)
summable !. F,, F, F, are formed for ‘planes 2 =0
This may be proved in a similar way as th. III

y Pyly 2, Fy (zxf are
, ¥=10, z =10 resp.

"
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duct with H, the points of E by increasing z-cotrdinates:

(14) 2(P) <z2(By..< 2(P)<:.. 2(P)

Let H, denote the set of all those points of H, whose index
defined by (14) is . We state now,

Theorem IV. In case E is a borelian set and has a finite ©-
area,  H, are measurable-®.

Proof. We make the important remark, that 3- dlmensmnal (4)
sets of Suslin, having a finite exterior surface measure @ are me-
surable Q. This may be shown in & similar manner, as that in
which the l-measurability of (4) sets has been demonstrated by
Messrs Sierpifnski and Lusin 1). It is only necessary to replace the
words ,exterior“ (interior) Lebesgue’s measure by ,exterior“ (inte-
rior), surface measure 2).

H follows to be measuarahle-@.

We observe now the sets Sy'¥* consisting of exactly those
points of the space, whose projection on @ is K%+ and Whose 2-co-

" ordinate satisfies the relation:

Ay +hs+ .k A1

(15) 0<a< =

St ig an 3-dimensional A4-set. We define now:
‘B,l '}C‘hﬂ'"hr — H . S’kllhzcanh,,_
M7 are measurable-@ being A-sets of a finite .
Let us now remark, that: |

l[';tﬁa--vh, . M;:rlhlg...n‘,. = 0 | when (]11 hy... hr) # (h'l ho. .. hr)

because they rest upon Ej 7 resp. E)"-*r those being without
common points (Th. II relation (4). Let us designe by:

— yheaesali a
M, = ¥ Misair

Tnigesh

where the summing is to be taken over all non negative integer

1) M. Lusin et W. Siorpinski: Sur quelques proprietées des ensembles (A4).
Bull, de I'Acall. 1. Sciences de Cracovie. Avril 1918,

?) The interior surface meusire may be object of definition, since the exte-
rior surface measure is ,regular® in the sense of Caratheodory R. F. p. 258,
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 h, and all natural hyhy... h,. We state now, that;

fuayp

(16) Lim inf 3, =J'H.

ks OO
!n]

In order to show (16) we observe, that if the point P belongs
to H without belonging to ‘2‘ H,:

I}

| 7(17). ; ,PvajH,

s=rt1
then points P, P.. P lying together with P on the same perpen-
dicular to ® have according to the definition of H, zcoordinates

~smaller then z (P):

()< 2(P)...<z(P)<2(P).
If we choose & great enough (k> K) we achieve, that the points.

 {Pliar,2.. and P belong to distinct layers W,

h, >0 for s=2,3...r; F, e W, ipt o s==12,...7

Pe wrk- Aytlggreedptw | 0 > 0 k > K
that means: | o
Ply=Fyy=... Pge Ep"" k> K
and that:

P, g Mty s=1,2,... 7 E>K

P does not'belong to M because M contains no po-
ints. but those complying mth the relation (16), while we have:

z(l’) b+h+ ho 4w /2,—{-h2+...h,+1
21: )

The more P belongs to neither M,’:'t""'"’" = (B3 Ay b)) = (b By.ih)
since M projeets itself on E"""""""", which does not contain

Pg1) (th. II. rel. 4). Thus
Pnon .92 M v ey k> K

1117 g Jl

consequently: | |
‘ PrnonelLim M,,

k0

t - [ .._ y saalt |
) Pﬁ:}“"“ Pl@ — Pz@«.. :IJNE & E:]h" ’r‘.
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provided that P agrees with (17). Or the same result in another way:

(18) Lim inf ¥, C Y H..

k200
=]

In a similar mode we show, that:

(19) Lim inf 3, D 2}1

l-] B}

Comparing (18) apd (19):

Lim inf M, — Z'H,.

Ko 00
gom]

Consequently H, are measurable-®.

Remark I Kvery set E of finite D-area may be represented as
the sum of":

10 a set B’ measurable O, pmyectmg itself on O in a set of
I-measure zerov |

20 q sequence of sets H, measurable-@, each of them projecting
itself” on @ exactly once. ‘

To prove this, it will suffice to construet (acoordmrr to 5" po-
stulate) a borelian set B, so that:

B ( E; @(B)::(D{E)

Then H, of theor. IV, taken with respect to B agree with the
conditions. |

Remark II. For a borelian E the sets H...e, are measurable-O.

H, being measurable-@, it remains to prove the measurability
@ of ¢,. This results from the remark, that e, is a 3-dimensional
(4) set of finite Q.

We shall now prove — with respect to G‘rross D, mea-
sure — the following theorem:

Theorem V. Any set E measurable @y, of ﬁmte @, (L), may be,
with any accuracy wanted approzimated by means of closed, sets con-
tained by E. :

We shall demonstrate at first two lemmas:

Lemma II. Let D be a set of finite P-area, projecting itself
on @ exactly once. Let us choose a system of coordinales like in th. IT
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Now consider the function f(xy) — defined in Dy — whose
geometrical image is the set D), that is:

f(Pe)=2(P)
We shall demoustrate, that:
flxy) is measurable-l.

Proof. We have to evince, that for every number o the set F,
of those points belonging to @', which comply with:

z=f(ry) >a
is measurable-l. |
This takes actually place, since K, can be represented in this

manner:

Fu:’"— (D-Ra)@

where R, denotes the set of those point in the space, whereat 2> .
Now D.R, being product of two measurable-@ sets, is itself mea-
surable-® and its projection measurable L

Lemma III. If the set D complies with conditions of the prece-
ding lemma, it may be represented as the sum of a closed set F and
complementary set D— I, so ihat: f

0 V,(D-I)g==V, Dg— V, Fg<< ¢
where € is any positive number.

The proof is immediate by means of the following well known
theorem !): Every function measurable /, finiie and defined in a set
Dg measurable [, is continuous save a set, whose l-measure can he
made as small as wanted. |

Proof of th. V. Sinee for every set E of a finite @P-area a bo-
relian set can be found belonging entirely to E, whose '@-area is

equal te @ (k) it will be sufficient to prove th. V with respect to
a borelian E.

In this case @, (E)= @, (F) and we make use of the manner

in which the Gross’ measure (D has been constructed Let us
choose a space grating such that:

a(E):Ea(, (E)

(200 0L Dy (E)— o (E) s | £>0
1) R, F. page 410. th, 7.
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- We mention that ¢(E), 0,(E), E, were defined in introduction.
We choose a plane @,, o that:

€
@1) 0< 0, (B) — W, (Bo, < 2. |
According to th. IV rem. 1. E, may be obtained by 'summing resp:
(@) the sets {E4v}v=1,2..o measurable -@, each of them projecting

'~ itself on @ exactly once

8) a complementary_get, its projection on @, being of I-me-
asure zZero: |

(22) B, =j Epy+ (B — ngv)

Y =1 y=l

Vi(B,— 3 e )op=0.

Y =]

Applying lemma III to every E,, we shall find closed sets ng-
and a positive integer »,, such that: | | '

FQV C Egv

) [ . 1’9
] : &
0< Vl(wg1 ' J_E"V )@e— v, ("21 'FQ,)% <5 lemma III!

and.in virtue of (22):

Q!

VQ ~"
y €
28) 0 Vi(Bo,~ V[ 2‘ F ')@f?""’

From (23) we conclude according to (21)

. % | |
2¢
0§09v.(E)—V,( EF"' @<§5 ,
=1 S

(24:) Yo
where 2‘ Fo. C E,.

sl

Let us now choose a positive integer » great enough, so that:

@5) 0< o (B) “"2 o, (B)<e ).
. o
!) This is possible according to (20),
Fundamenta Mathematicae VIII | 2
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We have then in view. of (24). (2D)

(26) | o (E) ——ZV(ZF ) < 3e.

o=1 sux]
With account of (20), (26) and relations between sets and their
projections we may write:

o(3r)>r(n),

@7): - -
<3, (E)—~2(Do (ZF ) O(E)——-ZV( V]w ) <de
g=1 =1 o=1 =1

A4

g=1

_ Since the sets ‘2 Fea} - have no mutually common points,
o=1s

we may interchange in (27) the signs ,@“ and , 3% and we find finally:

0< B, (B) — @0(22’14’ ) <l

o-l §m=2]
r

ZZF being a closed set. q. e. d.

g=1 tam}
§ 8. One more theorem, standing rather aside!

Let B be a set-in the space and let a, b, ¢ be three numbers

such that: .
a2 ~+ B2 4= 1

Let Ej.., denote the projection of £ on the plane 6, whose
normal may have the direction cosines a b .

Using these notations we see, that the exterior l-measure of the
set Ky i3 a function of a, b, c:

V E wave) = @ (abc)
We ask: of which kind is thls function? We can, provided @ (E)

is nile, state:
Theorem IV. @ (abc) is an upper-semicontinuous junctzon
Proof. We have to demonstrate that for each sequence {a@.b.c,}
tending towards a,by¢, we have: ‘
lim sup @ (a,b,¢,) << @ (ay by o)

R OC

e ]y 0000
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On the plane @ (a,b,c,) we enclose the set By by any 2-di-
mensional domain @. Let G (abc) be the 2-dimensional domain si-
tuated on 8 (abc) and constructed thus: = .

‘we take the collection of straights, perpendicular to @ (a, b, ¢,)
and passing through G. Points common to this family of straights
and to the plane & (abc) form — by definition — the domain G (abe).

We meake the following important "remark. To every point P
of K a positive number & (P) can be associated in such a manner,

that the point P belongs to & (abc), provided that:.

|a—ag’ 4 b—by | +lc—c, < 2(P).
Let now E™ be the set of points P situated in E, whereat:
Potaser € G (@:byc) Y
for i =m,m -}—.1,... 0o

With regard to our remark and to the definition of E™ we have:

| (a) | (EMoppey < Glaibie) i=mm-+1,.00
@8) (B E"C E™t;  LimE*=F
I lim @ (B*) = @ ()
From (28)y we infer:
(29) im @ (E— E™ =0

provided that £ be the product of £ and a set measurable -@, In -
order to show this consider the family of straights perpendicular
to @ (2 b;c;) and passing through @ (a,b,c,). This family forms a 3-di-
mensional domain: W (a,b,¢). | | ‘

It is easily percevied that:

Br=E. JJ W (ab0)

i=m

and Il W a,b;¢) is measurable @ being a G

Je2ip

Proceeding from the 'identity:
. E=FE 4 (E— En

1) Pryarey the projection of P on the plane @ (abe).
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we can Wwrite: ‘
% ri . ® (| — En ‘
(P (an ba C,.) = Vf E@(anbuen) g. I/ ! Eﬂ@(nﬂbncn) + Vt (E ﬁ‘ )G)(«anuc") .

Making use of (28) (¢) and. of @ (M)>= Vi Mg — for every set
M— we can estimate ¢ (a.b,¢,) thus: ~
@ (a.b,c) <SP (E—E") + V., G (a,b,ec,).

Passing to the limit, we find according to (29):
(30) lim sup o (a,b,c,) << lim V,G(abac)= VG

n=—e00 Ny

(30) remaining valid for every domain G containing Fgupe We
have finally:
liln Sﬂp @ (a.,, bncn) g ‘V;ﬁ E@(aﬂbofu) == (p ((10 bo Co).

T OO0

IL.

& 1. Definition 1. 4 family R of spheres {K} will be said to co-
ver the set E. if to every point P belenging to £ we can associate
a sequence {K}i.1 9. contained by K, such that:

10 P’is the centre of the corresponding K (P) for i =1, 2..00
and that: ,

90 the limit of the radii of K, is zero, when i — oo,

:Definition II. A set E shall be called normal (with respect to
the set function @), if from every family covering E we may
extract a sequence {K}i_ g. endowed with the two following
properties: | | ‘

(a) | K. K. =0 ik

() | ZK, covers I excepting a set of area -0 zero.
i=1 '

We shall now prove the following theorem:

Theorem VII. 4 set E being supposed normal and of finite @
area, every measurable -@ subset of E is normal with respect to D,.

Proof. Every set normal with respect to a @ complying with
T—VI postulates, being also normal with respect to Gross’ @g- me-
asure, it will be sufficient to discuss sets normal with respect to @,.

Let E' be the subset of E, which we intend to show to be
normal. Of course, it will do to demonstrate, that from every fa-
mily Ry, covering E’ a finite number of mutually seperated sphe-
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res {K}i1,2.. can be extracted, covering a part F of E with
@, (F) as near to &; (F) as we like.

Let — according to th V — F denote a closed subset of B’
of such a kind, that:

D, (BF— F) < e,

We compléte the family R, in the following manner to a cer-
tain tamily R, covering E: for every point P of E— E’ we choose
a sequence of spheres {K}},_,, . — P their centre — having no
common points with F (this is possible in virtue of the closedness
of F) in such a way, that the radii of K; tend to zero. We annex
all those K, to R, and obtain thus a family R covering E.

The set Z being on supposition normal we may extract from R,
an at most enumerable number of spheres X, mutually separated

(=]

such, that the sum %5 K, covers E save a set of Gross’ measure

‘es=1

Zero.

Those of the extracted K, which do not belong to R, — B,
cover F except a set of @, measure zero,

A similar reasoning has been applied by Prof. Banach on another
purpose. |

Remark 1. The property of E to be normal with respect to &,
is equivalent to the existence of a posmve number K of such
a kind, that:

Jor every subset E' of E a finite number of mutually seperated

spheres {K }imia. . can be extracted from the given family R (cove-
ring E), so that:

2@0 (B.K)> .0, (E') %> 0.
i=]
From theorems V and VII results also the following theorem
VIII, which shall be announced without demonstration.
Theorem VIIL?). Let 4 be a normal set, having a finite area @ (4).
 Let us denote by Ry a famzly of spheres covering the set E(C A;
E measurable O.

Then we may choose a sequence of spheres {K Yo, s. o belonging to
Ry, so that:

) Cf. R. F. § 291,
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@[(S’KJ(A~E)]<& e>0

i=1

Ki.K,‘:::O 7-:1:]1"

@ [(;‘K)E]= o(F)

e being as small as we please.
§ 2. Let E be a set of finite @ (K) area, P any point of the space.

Let W (P,a) denote the product of E and a sphere, whose centre
be P and its radius a. W (P, a) is measurable -@ and moreover:

O[W (P o)< D (L)
Let E, denote the set of those points P 'of E, for which:
1) @ [W(Pa)]=0 |

provided that o < a (P). ,

The set E, is of zero measure @. Indeed, according to Linde-
l6f's theorem !) we may find an at most countable number of
points belonging (all) to E; so, that:

® - BC YW

i=1

W(P,a) complying with (1). The second member (2) is thus
of @- area zero and so is F,.
The numbers:

O (P,a)| = p (P,a)
WP aly=y (Pa)

are functions of P and a. In order to show some properties of
those functions we observe, that definitions of functions ,measura-
ble @“ and ,summable @“ can be transferred from the theory of
Lebesgue's integrals. All theorems of importance will, as easily
established remain precerved.

Theorem IX. For cvery K of finite @- area, the corresponding
@ (Pa) and y (Pa) are:

5 Of. R F. § 60, page 46,
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1° continuous from the right side for fired P
2° upper semi-continuous n P for constant a.
Proof. Let us commence with @ (Pa) and the first part of oup

theorem. We choose g point P constant and consider g decreasing
sequence {a,} tending to a: . .

4) Unys < @, 3 n=1,2... 00; lim a, =a.

We have to prove, that:

| lim ¢ (Pa,)=¢ (Pa).
We have: : '

lim g (Pa,) = lim &[W (P, q,)]

00 ) >0

Lim W(F,a,) = W (P,q)

as easily verified,

Consequently the @- areas of sets {W(P,a,)} tend towards the
area of W (P,q): |

im ¢ (Pa,) = @ (Pa).
In order to demonstrate the second part of our thecrem — for
@ (Pa) — we shall show, that the set E, of points, whereat:

¢ (Pa)=>a is a closed set, when P varies (a constant).

In fact let P be a limit point of B, and let {P.}1a1,2.00 be a se-

quence of points of E, tending towards P. For numbers {4,}
properly chosen we achieve: |

W(P,a) C W(Pa+4 4.); lim 4, = 0.

H—+00 .

ﬁ=],2vnm

In each point P, we have:

CSPP)=0[W (P, O[W(Pat4)
Passing to the limit we obtain:

e << B[W (Fa)] = ¢ (Pa).

Let us now in a similar way proceed with v (Pa). At first con-
P remaining constant. Let

10 do not belong to W'(Pa):
Q¢Pa) C W(P,a,) — W (P, a) while
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20 (2 (P,a,)]g belongs entirely to [W (P ale
- [2(Pale CLW (B ale-
We may of course write: ,
) W (Bya) = (Pa)+ Q(Pa) +[W (Pra)— W (Ba)— 2 (F a)l
We immediately perceive, that:
6 lm W [W(Fa)— W (P,a) — Q (Pa,)]g="0

We will now show, that:
lim V(2 (P,a,))e==0.

n~-+0C

For this purpose let us observe the relations:
1) Q(Rea)D 2{Fau);  [2(FRa)e> (2P am)le

(7,) Lim Q (P,a,)=0.

n—-0c

Yot we cannot conclude, that Lim [2 (P, a,)lg =0.

In any case each point of Lim [ (P, a,)]p is the projection of
an infinity number of points (belonging to E) and therefore accor-
ding to (T): -

(8) lim VZ [‘Q (Pa an)]@ = Vl{I‘ﬂS [‘Q (Pr an)]@ = 0}

According to (D) we have: . |
U(Pa)< T (Pa) <T(Pa)+ V[2(Pa)le+

- ® 4 V,[W(P.a,) — W (P,a) — 2 (Pa.)g

and finally with respect (6) and (8) we conclude from 9:
T (P,a) = lim ¥ (P,a,).

The upper semi-continuity of ¥'(P,a) — a being fixed — can
be demonstrated in the same manner as the upper semi-continuity
of ¢ (P,a). | -

Thus is our theorem entirely evinced.

| | . D(Pa) '
Remark: the funetion

¢(La)

fixzed P, and measurable @ for constant a.

is continuous from the right side for

In the preceding we have seeh, that the ratio W}’—j is in Bk,
defined for every a >0, E, being part of E of zero measure @.
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Let us now examine — in E—E, — the ratio %.
| ¢ (Fa)
Let D*(P) and D, (P) denote the largest and least resp. limit,

which may be obtained from f((ig, when a—» 0% P remaining fi-

xed. We announce: |
Theorem X. If E is measurable D, D(E) being diferent of zero
end finite, D*(P) and D, (P) are summable -@, |
It is sufficient to prove, that D* angd D, are measurable -@,

since their summability ensues as a consequence of their bounded-
ness.

The demonstration of this theorem may be accomplished by
means of the same classical method, which is made use of when de- _
monstrating the measurability I of nderivatives® of absolutely

continuous setfunctions 1), since — is measurable @ for constaxt a,
w .

and continuous from the right side for fixed P.

D* (D) we shall call the upper (lower) ratio of enlargement
of the set & on the plane 6.

In order to obtain further results, we suppose E normal,

Theorem XI. Let:

1° B be a normal set, of finite D, area :

2° E' a measurable subset of E, such that its projection Ey be
of ero measure -l,

then in ,almost every® ?) point P of E' is the upper ratio of
enlargement D¥, calculated with respect to E, equal to zero.

Proof, D* (P) being a funetion measurable -@ (th. X), the set
E, of those points of E’ whereat: ‘

(10) D¥*(P)>a>0 PeE’
is surely measurable -@. Let us suppose:
(11) O (Eyy=§>o.

This supposition will lead to a contradiction.

') absolutely continuous with respect to l-measure. Cf, R, F. § 436. th, II.
page 482 - 484,

?) that is except a set of @ measure zero.
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E; heing part of a normal set, is itself normal.
Let us for every point of E, .choose a sequence of sets
{W(P,a,)}ue1.00 ) in such a manner, that:

T (Pa,) .
2> D¥(P)—e(P)> o lim ¢, =0
¢(P7a") > : ( ) ( ) ! | T

g (P) being chosen small enough.
E; being normal, we can ‘extract ?) (ace. to th. VIII) a se-
quence { W (Pi, a)}ie, 2.0 80 that

W(Poa). W(Pya)=0 ik

" _' [ZW P,a)— Ej. Z‘W ai)]

im]

0 |E: —E,. Zwr(pf,a,)] =0

fe=]

7 being chosen as small as wanted.
According to (12) we have:

(14)2’1/ W (P,a) ]@>a2@W (Bl =a. w(}waa,)

fe=]l i=1 j=]

We observe that

ZV H,a‘)ggzv ¥i).Ea)@+

=1

(16)
—f-ZV[W(P{,ai) (E—E]e
S
The first part (I) in the right member in (15):
(16) . m=0

as each W(P,,a). E; projects itself on @ in a set of l-measure zero.
On the other hand according to (13),:

) W (P, a) are calculated with respect to E.
*) from {W(P,a)} complying Wlth (12).
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< Y OIW(2,a). (E— B2 = 3 [11(p, 0]
(17)

— 0. [W(P,a). B )<,

i=]1

Combining (14), (1B), (16), (17) we may write:

(18) @. 0 (j W(_Rfai)) <
w1
But the relation (18), can be written in the follovﬁng manner:
(19) & (S W (P,.a;)) = & (E)) +v& 7 ¥<t
and we obtain ﬁnally::;egarding (11), (12), (18): |
e B+¥n<n

But this is impossible, as 4 tends to zero and as a.f = 0.
Theorem XIL. Let: '

1% E be normal of a finite -@, area
2° E' be a measurable -0, subset of E
3° K project itself on @ exactly once,

then:
¥ Engz)*da=fz)*da
' Et 4

the symbol f denoting a surface integral, taken in the set £, We
El

and D, are construeted with reépect
to the set E.

R

Proof. As the particulars of the demonstration would but sligh-
tly differ from the fashion, in which an nabsolutely continuous and
additive“ setfunction is shown to be reproduced by the integral
of its ,field derivatives“, we confine ourselves to state, that the pro-

perty of our set to be normal is to be used instead of Vitalis

1 CO-
vering theorem¥.
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Theorem XIIL Let E be a normal set of finite Q?-qrea - then:
Dy=D¥=D

save a set of P-area zero we have.
Proof. Indeed, let us represent £ as the sum of:
10 sets {Qy}va1, 2.0 measurable @, projecting themselves on 6

exactly once: . | o
20 the ecmp]ementary set, measurable @, whose projection:

( ZQ) is of l-measure zero.

pel

In the set.E———ZQ\, we have with respect to-th, XI:
-

D¥==D,=0

neglecting a set of @, measure zero,
In .every one of the sets @, (acc to th, XII):

(20) R ﬂfﬂ*da-—:fD%da,
Yy : Yy

From (20) results regarding D* > D, :
D*(P)==D.(P); Pef,;»=1,2..00

- save a set of @, measure zero.
L4

*»

§ 3. Let & be any domain, £ its boundary. Let us divide the
points of the boundary into three categories:

The I* consists of those points P of the boundary, whereat the
perpendmular on @ through P contains a segment 4 B with its cen-
tre in P, such that (4P) contains points of G only and (PB) but
points exterior to @.

To the II"" category belong all those pomts, where either:

(q) ‘<_AP)—{~(PB> belongs entirely to G

or :
(/) <AB)+4-(PB> belongs entirely to the ,exterior‘ of G.
The III™ contains all remaining points of K.
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Theorem XIV. Let:
1° G be a bounded domain.
2° its boundary E be normal, of a finite @, area

30 all points of Il category belonging to E project themselves on
@ in a set of l-measure zero.

4° the function F(xyz) defined in G+ B be for almost every pair
(zy) absolutely continuous with respect to z..

b® the partial derivative ;g(x'yz) be summable L in G-+ E),
6° F(xyz) be summable & on the boundary E.

then
3 e
c Z
. E

The dot over D indicates, that we have yet to furnish D with
the sign 4 or — in the following manner;

b)=+ D(p)y

according as the point P be preceded by an uneven or even

number of points. belonging to the boundary E and lying together
with P on the same perpendicular on 6. |

Proof. Since the lebesguian space measure of E is zero, we have:

OF Wy
W fffazdxdgdaz/ffé-;dx(zydz.

G+E
According to Fubini’s theorem 8):

oF |
2) fffg—zdx_dydz.—_-—ffq)(:cy)dxdy
t4-E : ‘

Eg
where

. 21 - . .
P (ry) = f 3—5 dz for almost every point z y belonging to K.

Let us now observe the following points set situated on O (zy):
() The set (E— H),. ' |
We call to the readers mind the definitions of H, H,., en introduced, when

1) that is summable with respect to the 3-dimensional Lebesgue’s measure.
We choose the system of coiirdinates like in th, II.

) D(P) — the ,ratio of enlargement® with respect to the plane O,
) Cf. R. P, § bi4, page 621,

A%
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demonstrating th, IV, The knowledge of H,, e, and their propertioa shall bo usod
in some lines helow. H, H, e, are constructed with reapoct to the houn.
dary E,

(8) Points of @ (zy), whereat F'(xy 2) is not absolutely eontinuous

with respect to z
. ' A R .
(y) Points of @(xy), whereat f —5~£ dz does nol exist.
(6) The projection on @ of those points belongmg to &, which
are of II*® category.

The sum a -}~ 8-+ y-} d has the l-measure zero. This fo]low&
from our preceding theorems and partly from su ppomtlons of th. XIV.
Consequently a borelian jset ¢ can be found in the plane O (xy)

contmnlng a+8+y-+0 and contained hy fiy, whose l-measure
is also zero:

e+pg+y+dCeCk,
V,(e=0.

Consider those points of K, which project themselves on e,
They form a set ¢ measurable @:

Qo= V=T, (0e=0.
Therefore all conditions of th. XTI are satisfied and we conclude:

(3) DPY=0  for Pge

excepting a set, whose @)-measure is zero,
From (3). we obtain thus:

f/‘ﬁ(xy)dwdy:fﬁ’.l)da:o

and it remains to - prove:

The set ﬁme can be decomposed into sets (11;'—%'0).6,.117,,,.—
—m=12...r; r=1,2...c0. ' |

(E-L) ¢.. H, are measurable @ — gg 1mmed1ately results from
th. IV rem. I, — and “the correspondence

(E—¢).e,.H, «> [(L-—L) ¢-H)y  rand m fixed

18 one to one.
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Moreover for constant r all sets: -

(B—¢).e,. H, | m—1,2,...r
have the same projection ,: |
w,z[(E-—-e).e,.H,,,]@ m==12 . r

Besides that:

4) | jw,.—zE@—e.

Hence we can further decompose f f @ (zy) dz dy:
. E@-a

®  foenaay=3 S [o(edzay,
Eg—e recl @,

- The functjon F(xyz) being summable -@ in g (cond. 69), itis

also summable in every one of the sets-(E— )., H,_. Besides that,

the correspondence (K - ¢).¢..H, to [(B— e).¢,. H,]p being unifold,

£1) turns over into a funetion Jom(zy) defined on w, We have
for every (zy) belonging to o,: o o

(6) ‘P(w?/)=fé?dz=ﬁ2“ﬁl+fr4“»— r3'+---fn"‘fr
a8 no point of w, belongs to a+ﬂ+y+ d.
We state now that:

Every function £, (zy) is summable -7,
At first £, (zy) is measurable -l Indeed the point set, whereat:

Jm(2y) > @

can be regarded at the projection of those points of (B— ¢).e..H,
whereat:

y T

Flzyz) > a.

This last set being measurable -@, the projection is measurable /.
To prove the summability we observe, that the lebesguian integral:

(7) fflﬂm(my)ldwdy</;_ﬁ’§bda.

') regarded in (B — E) e,. H, only
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The integral / |F|.Ddo is finite, the function D being less
E

then 1. The last inequality (7) is an immediate consequence of th, XTI 1),
The said theorem enables us to state still;

(8) /fﬁm(my) dzdy':::fﬁ'.])da, 1)

@, (E—e).8, 0,

According to (6), (8) we can write:

(9) ffm(wy)d&dymf/ﬁgdxdy«—ffﬁ;dwdy+...
+f f for dz dy— f f frra dxdymj (—1)y.D.Fdo= f D.Fdo

] (E—e)Hy e, (Ht)u,

summing up (9) upon r we obtain with help of (4), (5):

ff¢(wy)dxdy=fﬁ’.1'>da. ged
' Ly

(E—F)@

IIT,

§ 1. All results hitherto obtained hold still for Jansen’s exterior
measure, with the restriction only, that theorems dealing with rela-
tions between sets and their plane projections are not of general
validity. They may be announced only with concern to planes,
drawn through axes zyz of codrdinates used in order to construct
Jansen's measure. If in particular the Jansenian measure of a given

set is independent of the system of codrdinates chosen, relating the-
orems can be generalised for any plane. ' '
It is an advanta,

ge of Jansen’s measure to be finite provided
that @ is finite. This

1s a consequence of the following relation:
1) . J(E)<80(E),

') The following theorem (whose particular cases are relations 7 and 8) results
from th. XII: M be a normal set of finite (@, area projecting itself on @ exac-

tly once. Moreover F be g funetion summable @, defined on M, Then F' re-
garded as a function f defined on Mg is summable ! and we have:

fff(wy)dwdy= | F.Dd&,

Mg %
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From (1) we may conclude: every set measurable @, its ®-mea-
sure being finite, is also measurable -J,

We shall now demonstrate a theorem referring to Jansen’s me-
asure, which will represent a generalisation of the classical formuls

f / VEG — Fdudy for regular surfaces. Let: °

10 4 be a set measurable -, on the plane of variables wv; V, 4
Jinite. A-its unifold and continuous image in the Ty =z space.

Remark I: we shall denote in general by M the image of the set M belon-
ging 4, obtained by means of the above mentioned correspondence.

20 the exterior jansenian measure J (4) be finite.
30 J(H) == flf(]l:[) MC A
be a setfunction absolutely continuous in 4 1),

Before we pass over to infer anything from our suppositions,
we define the funetion 4 (Pr), | .
Taking any point P on the plane uv as centre, we deseribe

a cirele w(Pr) of the radius r (its centre P). With A (Pr) we shall
denote the ratio:

A(Pr) = Vv2 [0 Pl 4 VA 0], 7P d w ),

rem

[4.w(Pr)|; being the projection of [A4.1w (£r)] on the ‘plane.x=03tc..
- 'We announce now; ° o

Theorem XV. () at almost every point P(u.v) the ratio:
A{P)=lim A(P) exists,

®) ffA (P)dudv = J (i)

_ M

Jor every measurable -l subset M of A.

Proof. The setfunction T (M) being absolutely continuous and
additive we have: | | |

f/Aq;dudv;:. o (M) =J (T

for every M meﬁsumble !.Ay is the ,derivative* of the setfun-
ction & (M). |

1) absolutely continuous with respect to I-measure.

Fundamenta Mathematicae VIII. , 3
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On the other side let us consider the setfunction:

20 =7y + 7D, + 7 30
For any two sets M, and M, the following relation lakes place:
3 ' QM 1)< 2 (M) + @ ()
Q (M) is also an absolutely continuous set function since we always

have:
4) | QM) T (M)=J(M).

Denoting by 4% resp. AQ the upper resp. lower ,derivative* of
Q (M) we conclude using (3) and the absolute contmulty of Q(¥M):

6) mn< [ f A5 dudo< f f tpauds "

M measurable -l
It ensues from (4):

(6) P4 almost everywhere in 4,
() and (6) give:

M2 <fngdudv<ffA$dudv<fwadudv---J(M)

We construct now in the space xyz a grating dense enough,
in order that:

ZVV’( i V) V2, = J (1) —

ym]

M, demgnmg as usually the set of pomts common to M and

‘the ¢-th cell of our grating,

Let us remark, that the sets M, — correspondlng to M on the

plane u» — are measurable I M being measurable 1, Moreover
{M.},-1.5. have no mutually common points:
. M.M,=0 g q:'

® o ZM...M

1Y) For the proof of ral._b compare R. F. § 437, § 438,
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Applymg (7), (8) to the sets {M,},1,5...c We have thus (ace. to 9):

J(M)-—E<Z.Q(Mq)<2ff4 dudv<2ffd§dudv__ |

g=1 =1

—-—ZJ( )= J(H)

g=1

and when & tends towards zero we obtain:
J () =/fﬂ§dudv=.ffmjdudv
A M

Ag = Ag*;.jA

g0 that:

almost everywhere in A.

§ 2. We suppose now 4 to be a bounded domain and 4 a sur-
face defined by means of 3 functions:

&) s=gur) y=Twur) 2=2~E(uo)

each of them being & condition de Lipschitz, that means, that to
every point (4, 7,) in the domain 4 exists a number r(y, vo) such that:

P (o —+hy vo k) — @ (s, )
2)
Vot
and similarly with respect to the remaining functions;

Surfaces 4 of this kind have been investigated by Rademacher

We assume also the correspondence A to 4 given by 1) to be
one to one.

Let us now apply our results obtained beforehand. .
Theorem XVI. The surface A has a finite Jansenian measure.

Proof. If M be any measurable -I part of 4 and M its i image on
the surface 4, we have:

@) V.M <S4u. V,M; V,(M), <4 V, M, V(M),,gzm V. M.

-Dividing the space zyz into cells O, we obtain:

i-3i)
¥ =1
(4) , .AV .Avr:O 1’:#1”
9 4,=4. 0,.

ST yhz+k3<f(uo”o)
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According to (3):

®  VP@AF VA4 @), < 1207, 4,

Summing (5) according to » we obtain regarding (4):

[5.¢]

VI, +.F.. <i2u.7,4

Yl N

and finally passing to the limit;
J(d)<<12u. V, A

Remark: In the same manner may be shown, that for every .

- measurable - subset M of 4 the following inequality subsists:

(6) JM)<<12u.V, M.

By means of (1), (6) we convince ourselves, that the function
@ (M) = J(IM) introduced in the preceding theorem is ab solutely

continuous and J(4) finite. Hence. all conditions of said theorem

are satisfied: , |
J(H) = f f A () dudo

We conclude:
MC 4,
Aceording to Rademacher it ig possible to calculate the function

A (uv). Let us infroduce the following notations:

Q) "
RS

o

Ix}

do U OE dgp]

M I = u Qu I — Ju é?zi I — 9: Ju
: gg_J o | oW o FE oF 9 P

dv’ 3 ECMET) dv’ I

It has been shown by Rademacher ), that these 3 jacobians exist,
simultaneously at almost every point of 4 and their value gives the
sTatio of enlargement of the set 4 with respect to the plane con-
sidered. For instance ; I, |_is the , ratio of enlargement“ with respect

to the plane zy:

') Rademacher: Usher totale Differenzierbarkeit, Part I, 1919. Part 1T, 1920,
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lim }71 (w (Pr) ! A)X

=1 |

at almost every point P belonging to 4 1),
Thence from and from (7) results, that almost everywhere in 4:

A(wo)= B+ T2
J (H) —__-f/l/zg-;_zg-k T du dv

/ f VR+I§+I§ dudv being independent of the choice of axes

M

zyz the same properiy subsists for J(M). We conclude that:

(1) D, (M) << J(M) 2),
- We will now demonstrate:

Theorem XVII. A is normal (with respect to J measure and
consequently also with respect to @,). '

The proof of this theorem we shall accomplish in a few steps.
I step. Let M be a set measurable l, belonging to -A. Suppose:

L >0
throughout M. ~ |
Denoting by M’ a set, whose I-measure is zero and by K (Pr). -
a sphere with its centre in P, its radius. being », we can announce:
To every point P of M— M' a number 0(P) can be assiociated
in sueh a way, that:
V. |K(Pr).M L
LIREA.H, o LI,

provided that r < ¢ (P). - . :
Indeed save a set Af/, whose ¥, M/ = 0 the following relation

~ subsists:

.V, |\w(Pr).M], :
lim zl ( 1) ]JEIII‘, PEM'—M'
Tl-wo r]?n -
1) The ratio of enlargement ] I | of 4 with respect to the pla‘ne.my i
different from the ratio of enlargement D, of 4 on the plane ay. For the
definition of | I, | we use eircles, for that of D, spheres. Vide th XVIII,
?) I shall prove in a additional note, that .J (]) =@, (Z).
%) The number x ocecuring in rek )

.
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Hence we conclude:

® e

for r, <o, (P).
Be now P a point of M———M’ Congider any sphere K (Pr), its

radivs » << 3p.0, (P).
The image of the circle w (P,' g—ﬁ) is situated entirely within

the sphere K (Pr).
Consequently:

| | o
. — e VM
V,[M.-K(Pr), < V. [w(P 3;&) ]z
ri = 9 2(..":. an

# 3u) '

We may write, since —— 3 << ¢, (P) according to (8), (9)

@

K[E-K(P")]z > ‘11|
rim Z 18u?
Thus ¢ (P) = 3p. 0, (P) satisfies the désiréd' conditions
II step. Let K be a family of spheres {K(Pr)} covermg the surface
A and M a measurable I subset of A, whereat:

(1) [LI>f;  |LI>8 |4]>8

B being > 0.

Besides that suppose that M belongs enmrely to agiven do-
main G.

We can then extmct from R a finite number of splwres {K}iay, o,
in such @ mannér, that:

K.E,=0; ifidi; i=12..n
. EC&

%;VVE (M)x + Vi) + VM), <

vac (M) +V K. (0, + VK. 30,

i=1
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Proof of II ‘step ‘We remove from the family R: .
| - 1° all spheres, which do not entirely belang to G.
2¢ those spheres K (Pr), ‘where r > o (P).

'8° spheres, whose centres P belong to M" 1),
Thus. we obtain a family (of spheres) R,.

Let us construet a family , 7% of circles cnvenng (M), by pro-
Jectmg the family R,. According to a’ Vitali’s theorem we can find -
in f an at most enumerable number of ecircles {( )X}h,,g,_m, so that:

(K)x . (K})x =0 igkd; i =1,2..00

2 V. (K)x 2, v, [(Ki)x (M)x = M.

fm] T}

‘Hence in.virtue of 1% step and (10)

oo

> V. K. Ml; > D

i=1"

But since ‘the circles ( K); are mutually separated the sphares
{K) are separated. For a #n, properly chosen we have:

K. K;=0; id=1; z,z:—:l- 2.1

(11) 2 V M]X 20 ) V(M)X

=1

In the same manner we convinee onrselves that we are able
to extract from E a finite number of spheres {Ki tmnHy S emg—l,

belonging to @, having no common points nelther mutually, nor with
the group {K, }m1 2,..n .50 that: |

K.K.=0: ig=d t,i=12...n
(12) 2‘ VK> st T @r-

At last we add a third group {K, }i_,,ﬁ_,, I mtuated enhrely wit-

- hin @, so that:

K,.K,=0; z:{:z' z,i’212

ny

@ SR> g v,

1} M’ was defined in step 1.
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Summarising (11), (12), (18) we have a fortiori:

2 V([KioJU].‘ } _‘2(_)@,75 . .Vl (J[)M

g=1

: Ztﬁ[}g.ﬂ]x; B v oo, I K =0,

20 u?
jee]
ZV[K M1, ng‘_;.rf,(ﬂ])x Bil=1,2...0
]
C‘onsequently

g0 | V3D + Vi(D+ V100 >

< ¥Vvii n,+ Vi 0, + ViK.M),
i=1 q. e d.

III step. The conditions remain unchanged (as in II* step),
We can then extract from the given family R a finite number
of spheres in such a way that:

K,.Ki_..o i =1,2...n; . ick4

i -
ZJ (M. K)Z g7 (D).
Proof of III* step. We shall demote by 4,.. the set of po-

ints ecommon to 4 and the plane z = ¢ and similarly ‘EW, 4,..
- We make the following simple remark: for an at most enume-
rable number of planes #==¢, y=1¢, 2=c resp we have:

J( ) >0;  J(4,.)>0;  J(4..)>0 resp.

In fact let we regard for instance those planes parallel to the
2=0 plane where

J (]x_*_,) >m >0,
The number -~ N, — of such planes is finite, namely:

J (4)
<@

k2]

Meking use of this prbperty we construct a space grating dense
enough, in order that:
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o

@ Vv + Va4 v, > Lo

llﬂ]

and that the walls of the cells 0, contain only subsets of 4 of
Jmeasure zero. (That is possible according to what has been
just shown). |

Denoting by m, the subset of A/, which is situated in the in-
terior of the ¢-th cell, we obtain instead of ( 14):

(1) FV Vi) + V2 tn)s + 72 mps > o I ().

ywal

We extract now from the given family R 1) — for ¢ constant —

a finite number of spheres {K;'}‘_.,,E._,,,q in such a way that they lie
entirely within the interior of ¢th cell and that:

K K} = i:f:i’; i,z":l,?.‘.n,j

(15)  ¥Vviar Ko+ Vi Ky, + V(i K=

L3

= Vit Koot Vim, Koyt Vim0 >

[E51

> 55 PGt Vit P2,

Summing (15) according to ¢ and taking (14), into account we
obtain: |

j 2 J(M.Kf) > j’ 2’ V VUKD +VIALKY) 4 VH(MKy),

y=1 e ]l ] .

ﬂ —
> s0a 7 (D).

¥ ol ’ -
The groups {K{};u:,a...,.? and {K{}.,.... are without common

points for g = ¢, as they are contained by the interior of dif-
ferent cells.

The sum of spheres {K}}, ;5.0 fulfils III step.

i, Dy

"
K|

What we have proved in the 2% gnd 3% step shows according
to theorem VII remark 1, that every set M satisfying (10) is normal,

1) according with 2nd gtep,
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Also followmg sets are in & similar way shown normal:

The Sﬂt of pomts where: lIxf>f3>0 IIH»“ﬁa |Is| 0
n o ‘ 1Il‘>ﬂf ]I,lmo lla,:«"‘ﬁ
" . | 1 | =0; 'II:'I:)@; | ;| > 8
T L8 Ihi=0 L] =0
) Con |‘I1'='""0;_, | Lyt > B | By | =0
. " 1 L1=0, |L|=0: |L|>8

And'sin,ce ‘the surface 4 1) is sum but of such sets complying
with cne of the conditions: either (10) or (10") it s, too, itself normal.
The surface 4 being normal we can apply th, XIIT and we

eonclude, that the ratio D, (P) l‘) exists in A exceptmg a set of J
measure zero. ,

Theorem XVIIL

ro+a+n

almost ever ywhere in A,

Proof. At first we have to prove that D deflned Orlglna,l]y

on 4 is also meastirable -/ as a function of uo defined in

This is an immediate consequence of the fashion in whwh D,
has been obiained — that is to sy by passing to limit with fun-
ctions upper sexmconmnuous in _A Yet, functmns semicontinuous
in A are functions of the same kind i -

We' denote B, resp B, the set of pomts belonging to 4, wherein:

(11), g pz.ii/i;% + o+ <|L|
resp. ' - o . :
1), I DVEFRFE

The sets B,, B, have’ the lebesguian J-measure zero. We shall

 demonstrate this in an indireet way.

Let us suppose the set B, to have s posltlve l-measure, B,
i8 measurable -J and of positive J mensure, because: -

J(Bl)_.ffyrﬂ dudv>fﬁ11|dudv

‘) Save a Bet of J nweasure gero. i

*) D, (P) is the ratio of ‘enlargoment at the point P of the surface A on the
plane z =0, The messure used in order to defino D, is the jansenian moasure,
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The integral f f |I|dudy is taken in the sget B,, which is
: B |

of positive l-méasure in virtne of our
B, in virtue of (11),.
Hence:

supposition -and | ] >0-in

JB)>0 | |
The projection (B,), on the plane Z can be considéred as the
image of the set ‘B, obtained by means of functions:
| T=¢ uv) y=1T/(uv)

|1;| is the ,ratio of enlargement® referring to this correspondence.
That is, we have almost everywhere in B,:

Vi[Bi.w(Pr)];
e V,[BLw@r] LB
at almost every point P belonging to B,.
And sinee |7;| is positive in the set B, and as B, is of posi-

tive l-measure, the image (B,), ought to posses a .positive /-mea-
sure. In virtne of

thesr. IV a set €, can be found "belonging

entirely to B, projecting itself on Z exactly once and such that:

V. (B), = V,(Cy), >0 ¢, C B

Consequently J((,) being not less then V,(C), is too positive,
Moreover, also the I-measure of the set C, C B, is positive,
- Indeed, if it were zero, we had also:

TC)= [ [VEFTF T dudo—o.
. |

- Taking into account, that the correspondence C, «- (G); is one

to one we obtain:
K('E:)z=ff1111dudv.
G

On the other side C, being normal we conclude according to
th- XII: | |

ICM Biblioteka Wirtualna Matematyki

E- 3

szda_—:z v,(Cy),.
. .
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But we ean turn the surface integral f / D,do intu a lebes-
Gy

guian integral:

fpzdaszvzl/13+1§+fg"dudu.
g | ¢

Finally we obtain:

‘ , 3‘.3 3= L dudoy; O 1'
quD.gVI-H-H fz/fum«d@; CB.

V.(G) > 0; IIII > 0.

But this is impossible, being in contradietion with (11),.

B, is in similar mode shown to be of I measure zero. |

§ 8. With reference to the surface A take the conditions of th
X1V a very much simplified shaps. We prove:

Lemma. Given in the space a closed Jordanian surface 8.

We will show, that in every point P of this surface, whereat the
tangent plane ewists, exists also the inward direction of the normal,
that is to say: | | o |

Two points 4 and B can be found on' the normal such, that
the segment <4 B> contains P in its interior and that one of
the segments <C A P), (PB > lies within, the other without S,

Proof. At first, we will give the definition of tangent plane. We
shall say, the tangent plane @ exists at the point P, if @ satisfies

three following conditions a, 8, y:
(¢) @ passes through the point P o
(B) {P.ja=ys.c0 be any sequence of points belonging to § and
~ tending towards P. Then the angle between PP, and the

n

3 perpendicular to @ tends w0 - .122

Tn order to explain (y) more -eagily we émploy the foﬂowing
notations; Consider any closed neighbourhood of P, (the neigbhour-
hood taken only with respect to the surface S) small enough, that

it can be representsd as an image K of a circle K, lying in the
plane 4 - the correspondence K to K being one to one.

Let us now project K on the plane 6. This projections deter-
mines a continuous ¢orrespondence »&* between K and the set ()
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By the condition (8) we are ascertained that, if we choose K
sufficiently small,.the relation: |

Tp)=PFP peK

holds for exactly one point p.

Any closed curve ¢ lying within K and containing p in its in-
terior transforms itself into a curve ¥(c), which does not pass
through P. The ,order of P with respect to @ (c) is thus uni-’
quely defined. Tt may easily be shown, that this order is indepen-
dent of the choice of-¢c (c containing k in .its interior).

We shall call the common value of this order the ,index“ at
the point P. '

(y) declares: the index at the point P ought to be an odd number.

We pass now to the proof of the announced lemma.

At first we observe, that according to (§) we can find on the
normal through P at all events a segment AB, containg P in its
interior so, that no other point of < A B> belongs to S. It remains
to show, that one of the points 4, B lies within S, the other wit-
hout S. Let us suppose, that it be not so: that, for instance both 4
and B lie inside of S. In this case, they can be joined together by
a broken line L, which does mot eut S. L+ <4 B> from a clo-
sed polygon W having with S but one common point: P.

Let us denote by ¢ the circumference of the circle K. The or-
der of P with respect to & (¢) is an odd number (cond y). The set
e can

(§— K) ¢ has a positive distance from the polygon W. W

therefore counstruct a polyhedrou II', whose vertices lie on (S—K)+¢
in such a way, that it has still a positive distance from

We mark out those vertices of II’, which belong to ¢c. Let us
arrange them io a cyc:lic\mo'de: P,P,.P,P. We complete now
the open polyhedron II' to a closed one II approximating the
surface S by adding the triangles PP Py, PP Fs ... PP, P,
PP, P,. Projecting the broken line P, P,,... PP on @ we obtain
the closed polygon T(P) T (P) T (P) U (P,) approximating
the curve ¥(c). The order of P wilh respect t0 T(PYTPR,)...
T(P,) T (P,) is equal to the order of P with respect to ¥ (e), if
we choose the triangular faces of II small enough. Then forevery

~ point @ lying on 6 sufficiently mnear to P the following pro-

~perty subsists:
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pumber of triangles: P & (F) ¥ (Pyy) ),
ygon W — by means of the transla-

tion parallel to the vector P ¢ — 80 that P arrives ¢ We can

choose the translation in such a manner, that W have in its new
h the polyhedron 1'. Tt will suf-

osition still no common points wit
fce to take the vector PQ in ifs absolute value less then the di-

gtance of W from II'.
|14 ,;penetmtes“, in its new position the closed polyhedron I7,

@ is covered by an odd
We deplace now-the pol

that means: - ‘
(@) no vertex of the polygon W belongs to I1. |
(8) no edge of the polyhedron II, has cormon points with W,

We observe now, that if the triangle LT (P) ¥ (Fy), covers the
point &, corresponding triangle PP, Ly, is ,penetrated by W and
inversely, so that the closed polygon W penetrates the elosed
polyhedron II an odd number of times. But this. is impossible in
virtue of & well known theorem of Brouwer ¥),

We have yet to investigate the -manner, in which our definition
of the tangent plane is related to the classical one. In this concern
the following theorem can easily be demonstrated:

Suppose the neighbourhood of the point P be represented by

means of 3 functions: o
s=g ) y=Two) 2=5@w); Jlu—mu)+@—u)<(F)

the values u, vy 'eorrespondihg to P
Then the tangent place at P exists, if all three functions ¢, ¥, X
posses at u,v, total differentials and if the rank of the matrix: -

dp U 2F
o sw 9z | %

\Ther_efo'r? if ayound any point Pof § the ¢ (uv), ¥ (uv), & (uv)
are & c;om.htlor'r de Lipschitz, then excepting a set of surface mea-
sure O exists on § an inward direction of the normal. -

1) we suppose also, that Q is sit har gl N

PU(RY ’ @ is situated on neither sbgment P W (P,), P ' (F))..
%) Brouwer: Beweis des n-dimensional :

t. 71, (1912) alen Jordanschen Satwes Math, Annalen
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Theorem: XIX. Given a closed Jordanian surface S of such
a kind, that around amy point P the representing Functions e, 0, E
are im ykleinen® & condition de Lipschitz. Then denoting by G the
interior of S we have:

fff d:cdydz_fcos (n2) F'd o

F being a functwn complying with conditions (£), (5), (6) of th. XIV,
and n the direction of the inward normal.

Proof. In order to prove this theorem, we have to demonstrate that:

1° the condition 3° of th. XIV is satisfied,

20 cos - (nz) =D almost every where.

In fact, consider any point on S, whereat the tangent plane
exists and ' [;|5=0. This means, that the tangent plane through P
is Dot parallel to z-axis, therefore the normal not parallel to the
plane 2z ==0.

Let us suppose, that is possible to find a sequent APB with its
centre in F, parallel to the z-axis and lying — except the voint P —
entirely within the domain G-

This supposition will lead us to a contradiction.

Let for instance <C A P) lie on the same side of the tangent
plane, as the outward normal and << BP) on that of the inward.
We choose on the outward normal a point 4’ such, that the seg-
ment <4’ P) may belong entirely to the exterior of S. Let us
now take on (P 4> points {4,}..;,... tending towards P and on
(PA’> points {4,},_y 0.0 tending also towards P. Sinee (accor-
ding to our supposition) 4, belongs to G and since A’ lies in the
exterior of S, the segment 4, 4, ought to have a point A com-
mon with S. The pomts ‘4. }iet.0..0c have P as limit point. All -

‘points {4, 7}, 1, 5. lie in the interior of acute angle A PA’. In the

interior of the acute angle 4 P4’ exists thus an infinite number
of points belonging tc S and tending towards P.

But the impossibility of this last property is an immediate con-
sequence of the properties of the tangent plaue.

In a similar way can be shown, that < 4 P) <4 (PB> does not
entirely belong to the exterior of S. ﬂ

Hence thé points P of S, whereat the segment << 4 B> lies
within G (on the outside of S) belong to the set of those points’
where |, {=0. But this last set has on the plane z =0 a projec-
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tion of Z-meaéure zero. The condition 3° of th, XIV is thus de-

monstrated. ‘,
We have yet to show that almost everywhere in S

D = cos (n 2).
From th. XVIII results at all events:
| D|=| D| = | cos (n2) | almost everywhere.

It remains only to prove, that the equation holds still with sign.
This it will suffice to prove in those points only, where D =0,
If e. g D(P)>0, then D= D and the point P is the upper end
of & segment QP parallel to z-axis and belonging entirely to G.
Then -cos (n2) must be also positive in P. This is easily seen. the

angle between PQ and the inward normal being acute,




