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Variants of the axiom of choice in set theory
with atoms

by
Ulrich Felgner (Heidelberg) and Thomas J. Jech (Amherst, N.Y.) *)

Abstract. BG is the axiomatic set theory of Bernays—Gddel, BG, denotes the
modification which allows urelements or atoms. (AC) is the axiom of choice. The paper
deals with several statements of BG,, denoted (Inj), (Proj), (MC), (A), (LW), (PW)
and it is shown that in BG,

(Inj) — (Proj) - (AC) >{MC) »(A) > (LW) ~(PW),

while none of the converse implications is provable. In BG however all these statements
are equivalent. The independence proofs use permutation models of Mostowski-Specker.
Some of the independencies have been known before.

There are two methods of consistency proofs dealing with the axiom
of choice (AC) and its variants. The method of Fraenkel and Mostowski
involves models of a set theory BG, with atoms (ef. [11], [16]). The more
Cohen’s method of forcing [2] enables to construet models of the ordinary
Bernays-Godel set theory BG without atoms.

Using a certain similarity between the permutation models of
Fraenkel and Mostowski and the generic models of Cohen, many results
were obtained for BG which had previously known for BG,. As a matter
of fact, one can apply the embedding theorem of Jech-Sochor [6], [7]
and the refinement of D. Pincus [13], [14] to transfer several of the
consistency results for BG, to BG. However not all of them can be
transferred. The statements discussed below are examples of nontransfer-
able results. Consider the following statements:

(MC) AXI0M OF MULTIPLE CHOICE. ¥or every family § of non-
empty sets there exists a function f such that f(X) is a finite non-empty
subset of X, for each X ¢ 8.

(A) ANTICHAIN PRINCIPLE. Every partially ordered set has a maxi-
mal antichain (i.e. a maximal subset of mutually incomparable elements).

(LW) Every linearly orderable seb is well-orderable.
(PW) The power-set of every well-orderable set is well-orderable.

(*) The second author acknowledges support from NSF grant PO-34191-X00-
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Notice that (MC) is the Z(oo) of [10] and the FS(1) of [1]. (A) appears
in [9]. Tn contrast to these statements which follow in BG, from (AC)
there are two statements which easily imply (AC) in the system BG0:

(Inj) InJECTION PRINCIPLE. For every proper class C and every
set s there is a one-to-one mapping from s into C.

(Proj) PROJECIION PRINCIPLE. For every proper class ¢ and every
set s there is a mapping from C onto s.

The statements (Inj) and (Proj) are formulated in the Rubing’
book [15], p. 71, where it is shown that both are equivalents of the axiom
of choice (AC). However, the axiom of foundation is used in the proof
and the question is raised whether they are equivalent to (AC) in the
system BGy.

BG is the set theory whose axioms are A, B, C and D of Gédel [4]'
The axioms of BG, are A, B, and C of [4]. Hence BG results from BG.
by adding the axiom of foundation D. We are considering the Berna;ysj
qadel set theory with classes rather than Zermelo-Fraenkel set theory ZF
since the principle (Proj) cannot be formulated in the language of ZF.

TI[EOI{:EM. In BGy, the Bernays—Gidel set theory without the amiom
of foundation, the following implications are provable, while none of the
converse implications is provable:

(Inj) - (Proj) - (AC) > (MC) + (A) ~ (LW) > (PW)
In BG, the Bernays—Godel set theory with the axiom of foundation, all these
statements are mutually equivalent. ’

Some .of the implications and nonimplications are trivial, some can
be found in the literature and some are proved here.

I. The implications. (2) Obviously (Inj) impli j
mplics (M) vy (Inj) implies (Proj) and (AC)

(b) (Proj)—(AC): Every seb is an ima,
. ge of the proper cl
all ordinals, and thus well-orderable. ' proper class On of

(e) (MC)->(A): Let (P, <) be a partially ordered set. By (MC) there

is a function F' such that for each nonem is fini
4 pty X C P, F(X) is finit
0+ F(X)C X. Let & be the following function: o F) s e and

G(X) = the set of all <-minimal elements of F(X)

G().Z) is.ﬁnite. and nonempty, and an antichain. Now we can get a maximal
antichain A in P by transfinite recursion: A = {_J 4,, where 4,= G(X)
a a ’

X ={xeP: & is imcomparable with all ae L_,JaAﬂ}.
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(a) (A)~>(LW). Let (L,<) be linearly ordered. Let
P={X,x): 0#XCL and weX},
(X,2)2(X,y) iff X=7 and ¢ <y.

By (A), (P, <)hasa maximal antichain 4; A defines a choice function
on the power set of L and so L can be well ordered.
(e) (LW)—>(PW): Let s be a well-ordered set. Then

e iff Min[{uw v)— (% n0)]€v

is a linear ordering on the power-set of s and by (LW) there is & well-
ordering on it.

This shows that all the implications listed in the theorem hold in
the system BG,. It is known that, if one adds the axiom of foundation D
to BG,, then in BG = BG,+D also (PW)—>(AQ) and (AC)->(Inj) hold
(see [15], p. 71 and p. 77). Hence in BG all these statements are equivalent.
We shall show that this is not the case in the axiom system BG,.

II. The nonimplications. We use permutation models with an in-
finite number of reflexive sets z= {=} (or wurelements, atoms, ef. [11]
and [16]). First, we deal with consequences of (AC). Here we use permu-
tation models with finite supports. Tet A be a countably infinite seb of
atoms and let G be a group of permutations of 4. Every permutation 7
of A extends to an e-automorphism of the universe. For a finite B C 4
put G(B)={nel; = leaves F pointwise fized}. A class € is symmetric
(with respect to @) if there is » finite subset K of A such that =(C) = C
for all =z ¢ G{(H). B is said to be 3 support of C. The collection of all sets
which are hereditarily symmeiric with respect to G is a model of BG,.
The classes of the model are the hereditarily symmetric classes.

(a) (MC)+(AC): This was proved by Levy in [10]. By the way, one
does mot need Levy’s comstruction (used for a stronger result) to get
(MC)+(AC); it holds also in Fraenkel’s’ model where A = {J{on, ba},

n=0
and @ is the group generated by the transpositions of {&x, ba}.

(b) (A)+»{MC): Let @ be the group of all permutations of the set 4
of atoms. Halpern proved in his thesis that (A) holds in the model
(cf. [5] or [3]). To prove that (MC) fails in the model, we show thab the
power-set of A does not have a multiple choice function. For, it F is
a funetion on 7(4) and F is a support of F, then Z = F(A— E) cannot
be a nonempty finite subset of A—B. Otherwise, there is e @G such
that nF = B, nF = F and =Z # Z, a contradiction.

(e) (PW)+ (LW): In Mostowski’s model [11], (PW) holds and (LW)
fails. As a matter of fact, (PW) holds in every permutation model. On

§ — Fundamenta Mathematicae, T. LXXIX
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the other hand, in Mostowski’s model every set can be linearly ordered
© but not every set can be well-ordered. :

(d) (LW)+>(A): We use the construction employed first by Mathias;
some properties of the model are described in Pincus’ Thesis. Let (A <;
be a countably universal homogeneous partial ordering, and let G’ be
the group of all automorphisms of (4,<). We shall need the following
properties of (4,<), cf. [8].

(i) Let (P, <) Dbe a finite partially ordered set, let P, C P and
let ¢, be an embedding of (P, <) in (4,<C). Then there is an em-
bedding e of (P, <) in (4,<) such that ¢ Ce.

(ii) If B,, B, are finite subsets of 4 and if ¢ is an isomorphism
(')fc B, and B, then there iy an automorphism sz of (4,<C) such that
2L,

FRirst we show that (4,<) does not have a maximal antichain in
the mf)del. By (i), every finite antichain in A can_ be extended and so
a m'ammal antichain would have to be infinite. On the other hand, if X is
antichain and ¥ is a support of X then X C H. For, if 2¢ F the; by (i)
and (ii) there is = ¢ G and y ¢ 4 such that < Y, e =y and n leaves B
pointwise fixed; thus x ¢ X would imply that y e X.

To show that (LW) holds in the model, we utilize the following
property of supports:

(*) If both E, and E, are supports of X then H, ~ F, is also a sup-
port of X.

(For proof of (x) we refer the reader either to [12] or to [11] where (%) is
proved and used for the group of automorphisms of the rationals.) As
a consequence, each symmetric X has a least support s(X), and the
function s is in the model. For each finite B C 4, let D(F) be, the class
ic;ftallﬂslets il of 1the model such that s (X) = H. Any function mapping D(E)
o the ordinals is in the m ; it is §

can be well ordered in theocllril)’dzima)uy, 11 supported by £ Thus D)

Now, let (L, <) be a linearly ordered set in the model. Let
8= {s(m).: weL}. We claim that § can be linearly ordered; < induces
an ordering of §. If B € 8, let Ly = D(HE) ~ L. Divide § into’ equivalehce
class.es such that F,, B, are in the same class if and only if (B,, <), (B,,<)
are isomorphic. For each equivalence class C, choose (in 1]3];(5 énivze’rse)
an HeC and a one-to-one function F¢ of Ly into ordinals; then let
Xu? EFtﬁ e g ,16’ an equivalence class}. The set W ig symriletric and

_the model, we s init

oitings ot Lo Iiamell;ave assigned to each E ¢S a finite set of well-

%E’= {:EF(;': Fc is defined on LE,
and z is an isomorphism of B’ and E}.
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Now, for each Ee S, let Qr be the finite set
Qr = {ap: F <Fr and ap is the F-least element of Lg}.

Now let gz be the <J-least element of @z. The correspondence E-—gg
constitutes a one-to-one mapping {in the model) of § into L, and so § can
De linearly ordered.

Thus the set § = {s(®): & ¢ I} is linearly ordered. Let F; be a support
of the linear ordering of S. We show that each E e 8 is a subset of E;.
Qince T = | J Lz and each Lg can be well ordered, it will follow that L can

Eef8
be well ordered. If E is not a subset of E,, then by (i) and (ii), there exists
ze@ and B # B such that #E = B', aB'=FE and a leaves E; pointwise
fixed; B e § would clearly contradict the fact that s preserves the linear
ordering of S.

To handle the statements (Inj) and (Proj) we use permutation models
with a proper class of atoms. Let A De a proper class of atoms. By a permi-
tation of A we mean a sel, a one-to-one mapping of some set SC A onto
itgelf. The produet of two permutations is defined in the obvious way:
the domain of ¢-o¢ is the union dom(p) v dom (o) and each permutation
ig supposed to be the identity outside its domain. Every permutation =
of A extends to an e-automorphism of the universe, whieh in this case
is |J U 7%8), where § ranges over subsets of A and 9(8) is the

8cd aeOn
relative von Neumann hierarchy: $%(8) =8, go+(8) = $(4%(8)) and T(S)

= |J9#(8) for a limit a.
B<a .
(e) (AQ)+>(Proj). Let @ be the group of all permutations of A.
A class C is symmetric if there is a finite subset E of A and that w(0)=C
for all 'z such that = leé,v‘es E pointwise fixed. We consider the model M
consisting of all hereditarily symmetric sets; the classes of the model
are the hereditarily symmetrie classes. Tt is easy to see that only finite
subsets of 4 are symmetrie and consequently, if X M then TO(X) ~ 4
i finite (TC(X) is the transitive clogure of X). It follows ‘that every
X ¢ 9 can be mapped one-to-one into the ordinals (in: 9R) and so M
gatisfies the axiom of choice.
To show that (Proj) fails in I, suppose that there is a function.F
in 9N which maps 4 onto w. For each n e o, let By= {ac A: Fla)= n}.
There is a finite set E of atoms such that =(F)=F whenever na = a
for all @ ¢ E. Pick m, n e 0, m # %, and @ € Bm, § € By such that Bn ~E
=B, nE=0.Let c be 2 permutatibn'oi A which interchanges & and ¥
and leaves E pointwise fixed. Then o(F)=F while F(o’(X)) + F(X),
a contradiction.
(&) (Proj)+(Inj): Let A be a proper class of atoms and let On® be
the class of all functions from o into the class On of all ordinals. We

6*
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enumerate A Dby the class of these functions: A= {a; fe On"}. For
a function f: @—On and an integer n let f|n be the sequence of the first
values of f, i.e. ftn= {f(0),f(1), oy f(n—1)>. Define, for each =,

Rn={(a;,a,): ftn=ygln}.

Each R, is an equivalence relation on 4. A permutation = of A is called
compatible with R, if for every a, be A4, (a,b) e R, implies (ma, nb) ¢ Ry.
It m < n and = is compatible with B, then = is also compatible with Ry,.
A class O is symmetric if there is a finite set ¥ and an integer » such that
70 = O for every w which leaves F pointwise fixed and is compatible
with RB,. We consider the model 9 consisting of all hereditarily sym-
metric sets; the classes of I are the hereditarily symmetric classes. The
usual proofs show that 9t is a model of BG,. The relations R, are proper
clagses of Ot. Every equivalence class of R, is itself a proper class in IR
and B, has a proper class of equivalence classes. Hence a symmetry
argument shows that if s is a set of atoms in M, then s is & finite. Thus
there is no one-to-one mapping. of w into 4 in M. This shows that (Inj)
does not hold in 9. On the other hand, every set can be well-ordered
in M and since On can be mapped onto every well-ordered set, it suffices
to show that every class of M can be mapped onto On. The class 4 has
a projection F onto On, namely ¥ (a;) = f(0) and since E, is a class of M,
F is a class of 90t too. If y is a finite sequence of ordinals of length m, say,
then similaxly A4, = {a;; f}m =y} has a symmetric map onto On too,
namely F(a,) = f(m). If € is an arbitrary proper class of I, then congider
the clags D = {TC(x) ~ 4; x e 0}. Since for every set # < I, T0(x) ~ 4
is a set of atoms in 9K, it is finite for each set z of M. As (JDC 4, | JDis
either finite or a proper class. If B = | J D is finite, then ¢ contains sets
of arbitrary large rank (in the relative von Neumann hierarchy). Hence O
can be projected onto On. If | J D is a proper class; then for some » a whole
equivalence class of R, is contained in | D. Hence there is a sequence y
of ordinals of length » such that 4,C |JD. It follows that (J.D and
therefore also C can be projected onto On by a map in the model. This
shows that (Proj) holds in .
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