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Let 75= PPy e DiyPipn o Pn (E=1,2, ;1) Mf)r(?over, let s; De
the smallest integer such that s = 1(modp;). Then it is easy to check
that the reduct (G5 im-af. .. -z™) is an n-dimensional proper
diagonal algebra. Q.e.d.
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A simpler set of axioms for polyadic algebras (%)
by
Charles Pinter (Lewisburg, Penns.)

Abstract. A new set. of axioms for polyadic algebras is given. The new axioms are
simple algebraic equations, having a clear algebraic content. From them are obtained
some fresh insights into the structure of polyadic algebras.

1. Introduction. The purpose of this paper is to present a new, simpler
set of axioms for polyadic algebras.

Polyadic algebras occupy a distinctive position in the scheme of
algebraic logic, for they enjoy important properties which fail to hold
for eylindric algebras, or even for polyadic algebras with equality. Notably,
every polyadic algebra of infinite degree i3 representable in a very strong
sense (see Daigneault and Monk [2]), and the class of all polyadic algebras
has the amalgamation property (see J. Johnson [5]). Furthermore, polyadic
algebras are, in a sense, richer structures than cylindric algebras, for
they admit arbitrary cylindrifications as well as operations S(z) for
arbitrary transformations z.

It is unfortunate that, in one respect, polyadic algebras are less
attractive to the mathematician than cylindric algebras: while the axioms
for cylindric algebras are simple algebraic equations of a familiar kind,
the axioms for polyadic algebras are more difficult to understand; two
of them, in particular, fail to have a clear algebraic content. In our main
result, we will show that these axioms may be replaced by simpler, more
conventional algebraic equations. The new equations will then be used
to obtain some fresh insights into the structure of polyadic agebras.

‘We assume the reader is acquainted with the basic papers, [3] and [4],
of Halmos. In addition to the work of Halmos, we shall use an important
result by P.-F. Jurie [6], which will be stated at the end of the next
section. : '

2. Preliminaries. We shall use common set-theoretical notation and
terminology. Small Greek letters will be used to denote transformations,

(*) The work reported in this paper was done while the author held an NSF Science
Faculty Fellowship.
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that is, functions from a set I into itself. The letter 0 is reserved to denote
any identity mapping. The letters ¢ and v are reserved to denote pro-
jections, that is, transformations = with the property that =z =7

The value of a function o at an element ¢ of its domain will be de-
noted by ai. The restriction of a function a to a subset K of its domain
will be denoted by a|K. The domain and the range of a function « will
be denoted by doma and rana, respectively.

Our notation for polyadic algebras will be essentially that of Halmos,
with two main exceptions: we shall write S, instead of 8(a), and C;
instead of ®(J).

9.1. DEFINITION. Let I be an arbitrary set. By an I-transformation
algebra we mean an algebraic system U= (4, -+, , —,0, 1, 8gert
where ¢4, +, -, —,0,1> is a Boolean algebra, and S, are unary oper-
ations which satisfy the following conditionsfor all z,y ¢ A and all a, § ¢ I™:

(Ty) Sulo+y) = S,2+ 8.9,

(Ty) B(—a) = —~8,,

(Ty) SuSﬂ = Saﬂi
(T,) 8;=24.

2.2. DEFINITION. Let I be an arbitrary set. By an I-polyadic algebra
we mean an algebraic system A =<4, -+, ,—,0,1,8,, Ot scr
where (4, +, -y, —,0,1, 8, is an I-transformation algebra, and C;
are unary operations which satisty the following conditions for all
z,yed, all a,fel’ and all J, K CI:

(Q) C,0=0,

Q) < Cyu,

(Qs) Cylz-Cry) = Cyz-Cyy,

(By) Cy= 34,

(P)) Crox = Cs0x,

(Py) 8,0y = 830; it a|I—J = p|I—d,

(Py) Cy8, = 8,0, if aja™(J) is injective.

Let A be a Boolean algebra. If the function f: 4 - A satisfies (Q,)-(Q,),
(more accurately, if f0 =0, » < fr, and f(z-fy) = fo-fy for all ©, y ¢ A),
then f is called a quantifier, or cylindrification, of A. If B is a Boolean
subalgebra of 4, then B is called a relatively complete subalgebra of A if
it satisfies the condition

(RC) for each « € 4, there is a least y « B such that y > =.

It is known that if f is a quantifier of 4 then ranf is a relatively
complete subalgebra of 4, and, conversely, if B is a relatively complete
subalgebra of 4 and fis defined by

flo) = the least y ¢ B such that y ==,

icm®

then f is a quantifier of A (see Halmos [3], § 4). We shall refer to f as the
quantifier associnted with B.

Let =<4, +, -,—,0,1,8>,.7 be an I-transformation algebra.
If e A and J C I, x is said to be J -closed if 8,& = z for every a ¢ IT such
that a]I—dJ = 4. For each J C I, the set of J-closed elements of 4 will
be denoted by E;; one verifies immediately that Ey is a Boolean sub-
algebra of A.

‘We shall make use of the following result, which is implicit in
Daigneaunlt and Monk ([2], Lemma 3.7):

2.3. LemmA. Let A be an I-iransformation algebra, and let J, K C 1.
Then

(i} J C K implies Bx C By, and

(i) B;ux = E; n Eg.

Finally, we shall need the result which follows, due to P.-F. Jurie
([6], Theorems 1 and 2):

2.4. TEROREM. (i) If =<4, +,,—,0,1,8,, Chepz,ycr 8 an
I-polyadic algebra, then the underlying transformation algebra (A, +, -,
—, 0,1, 80,71 satisfies the following conditions (2), (3):
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(J;)  For each J C1I, E; is a relatively complete subalgebra of A.

(J.) Forall J,KCI,if xeE; and y e Ex and x <y, then there is some
ze By~ Eg such that » <z<y.

(Js)  For all we I, if ala™Y(J) is injective, then every element of kerS, is
dominated by an element of kerS, m E, ;.

(ii) Conversely, if W =<A4,+, -, —,0,1,8,>,.7 is an I-transfor-
mation algebra which satisfies (J,)-(J3), and if, for each J CI, C; is the
quantifier associated with Hy, then A= <A, 4, -, —,0,1,8,, O zcil jcr
is a polyadic algebra.

3. Some properties of transformation algebras. The main purpose of
this section is to show that Conditions (J;)-(J;) of Theorem 2.4 may be
replaced by simpler conditions. This result will be needed in the sequel.

3.1. DEFINITION. If 0 e I and K C I, we will say that a is properly
injective on K if

ai = oj implies 4=74, for all ieK and all jel.

If o is properly injective on K, it is easy to see that K = a™*(a(K));
in other words,

(%) Conditions (J,)-(J,) are easily seen to be equivalent to Jurie’s Conditions (R.C.),
(Ind), and (P,), respectively. We have merely used the fact that ¢ {(I—J) = I—a'(J),
and replaced J by I—J and A; (that is, Hy_;) by E;, for every JC1I.

() In Condition (J,), “x is dominated by y” means simply y > .
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) J = o(K) implies K = a™*(J).

Furthermore, if a < I' and J C I, it is immediate that

(2) it a]a”(J) is injective, then a is properly injective on a~'(J).
(1) and (2) make it clear that (Js) may be re-stated as follows:

{J) For all ael’, if o is properly injective on K, then every element
of kerS, is domma‘ted by an element of kerS, ~ Eg.

The following simple lemma has important consequences:

3.9. LEmwa. For every aeIY, there is a projection zeI? such that
kerS, = kerS,. Furthermore, for any K C1, a is properly injective on K
iff © is properly injective on K.

Proof. It is well known that the semi-group of transformations I*
has the following property: for each o eI7, there iz some 0 e I' such
that a= afa. (A semi-group with this property is called regular; see
Clifford and Preston [1], pp. 26 and 33). Now, let 7 = fa: then v7v = Gafa
= fa =1, hence 7 is a projection. Furthermore,

8, z=0=8,82=0

Conversely, . = 8= 8,x=0.
8, 2=0 = 8z=0
=8, 8,2=10

= Syt = 8, 0=0.
Thus, kerS, = kerS,.
Finally, suppose a is properly injective on K. If i ¢ K, then
= 1] = fai = Oaj
= aflat = afaj
= qi = af
=>i=73,
hence 7 is properly injective on K.
Conversely, suppose 7 is properly injective on K. If ¢ ¢ K, then
al = af = fai= Baj
=7l = 1j
-i=j,
hence « is properly injective on K. MW

An important consequence of Lemma 3.2 ig that if the condition
a is properly injective on K = every element of ker§, is dominated
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by an element of kerS, ~ Ey holds for every o which is a projection,
then it holds for all « « IZ. Thus, (J;) is equivalent to

(J))  For all projections 7 e I, if 7 is properly injective on K then every
element of kerS, is dominated by an element of kerS, n Er.

Let 7 « I7 be a projection. By the essential domain and the essential
range of T we mean, respectively,

edmt = dom(z—¢) and ernt=ran(r—9).

Tt is easy to verify that if 7 is & projection, then edmz n ernz = @J; v maps
elements of edmz onto elements of ernz, and leaves all the elements
of I—edm~ fixed.

3.3. LmvmA. Let 7¢I be a projwtion. Then t is properly injective
on K iff K ~n(edmr v ernz) =

Proof. (i) Suppose 7 is properly injective on K; we will show that
each of the two assumptions ¢ ¢ K ~edmv, i ¢ K ~ ernt yields a contra-
diction. First, suppose i € K n edmz: then 7i # i; but i e K and v = v(vi),
so by 3.1, i = i, which is impossible. Next, suppose ¢ e K nernz: then
i = 1j where j # i. But i ¢ K and 7i = v(tj) = 7j, so by 3.1, i = j; again,
this is impossible.

(ii) Conversely, suppose K is disjoint from edmr and from ernw.
Let vi = tj, where i ¢ K; now i ¢ edmr, s0 7i = 7; thus, ¢ = 7j. But then
7j e K, 5o 7j ¢ ernt, hence zj = j. It follows that i=j. @&

Let v be a projection. We shall call v a (J, L) - projection if edmt = J
and ernt = L. By Lemma 3.3, (J;') may be written in the following form:

(J¥)  For all projections 7 ¢ I, if v is a (J, L)- projection and K ~ (J v L)
= (J, then every element of kerS, is dommated by an element
of kerS, n Eg.

We have just shown that Condition (J;) of Theorem 2.4 may be
replaced by the simpler condition (37). We shall now show that Con-
ditions (J,) and (J,) similarly admit a minor improvement. We begin
by stating a simple property of quantifiers:

3.4. Levwa. Let f and g be quantifiers of a Boolean algebra A. If
fg = gf, then ranfg= ranf ~rang, and fg is a quantifier.

Proof. Clearly fgu = gfx e ranf ~rang. Conversely, if 2 e ranf nrang
then # = fx and # = gz, hence = fo = fgu e ranfg. Finally, it is trivial
to verify directly that fg is a quantifier. M

Jurie [6] has proved the converse of this statement; in partlcular,
he has shown that if f, g, and fg are quantifiers on A4, then fg = gf. Thus,
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we make the interesting observation that two quantifiers f and g commute
iff their product is a quantifier.

3.5. LeamA, LTet =<4, +, -, —, 0,1, 8>z be a transformation
algebra in which the fcllowing conditions hold:

(J¥)  For each proper subset J C I, By is a relatively complete subalgebra of A.

(J%)  For all proper subsets J, KCI, if x e By and y <« Ex and 2<y,
then there is some z € By ~ Ex such that » <z <y.

Then (J,) and (J5) hold.
Proof. Suppose (J7) and (J;) hold; for each J CI, let C; be the
quantifier associated with E;. We prove, successively:

@) ift J,ECI, then Cy0xmeBx.

Indeed, Cxo e Bg, C;Cxa e By, and Oxe < C;COga. Thus, by (J3), there
is some z € By n Bx such that Oxw < 2 < Oy Cxz. But Oy Cxx is the least
y € By such that y > Ox#, hence 2= Oy Cxw. Thus, CsCra ¢ Hx.

@) If J,KCI, then CyCxo= CxCsa.

Indeed, CxCrw is the least y ¢ Ex such that ¥ > Cy». But by (1), CyCxz
¢ Bg, and clearly C;Cxs = Cyx; thus, CxCre < 0y Oge. Symmetrically,
CrCrx < GKGJ&?, giw'ng (2).
It follows by (2) that if J #£ @, I, then C,0;,_;= C;_;C;. Thus,
by Lemma 3.4, C;C;_, is a quantifier, and
ranC;C;_y;=ranC;~ranC;_;=H;~E;_;.

By 2.3(1i), B; ~ B;_;= E;, hence E; is a relatively complete subalgebra
of A. Thus, (J;) holds.

Now by 2.3(i), E,C E, for every JC I; thus, if we assume (J),
(Js) follows trivially. ®H ‘

. 3.6; CoROLLARY. Theorem 2.4 holds when (J1)-(J,) are replaced by

(d1)-(J3).

‘We conclude this section by deriving one more property of projections.

3.7. LeMmA. Let J be a proper subset of I. If © is any projection such
that edmz = J, then ran§, = E;.

Proof. By the definition of E;, if ze¢H, then S8, =» hence
weran,. Conversely, if z eran8,, then z= 8,#. Now if a|I—J = §,
then a7 = 7, hence 8,2 = 8,8,2 = §,,0 = 8,2 = =; thus, ¢« E,, H®H

) 4 New< axioms for polyadic algebras. Our main results are presented
in this section. The Conditions (T,)-(T,) and (Q,)-(Qs) to which we refer
below are those of Definitions 2.1 and 2.2, respectively.

: ©
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4.1. TEEOREM. (i) If W=<4,+, -, —, 0,1, 8,, Cdsert scr 18 @ DOlY-
adic algebra, then the following condition holds for all ECI and every
projection : .

(PL) If v is a (J,L)-projection, then

(a) 8,C,= Cy,

(b) C;8, =8,

(¢) Ox8,=8,C if En{Jwl)=0, and
(d) OKOI—K = OI'

(ii) Comwersely, if W= <4, +, -, —, 0,1, 8, O scr 18 an algebra
in which (Ty)-(T,) hold for all a,f eI%, and (Q,)-(Qs) and (PL) hold for
all E'CI and every projection t, then U is a polyadic algebra.

Proof. (i) If % is a polyadic algebra, then by Daigneault and Monk
(121, Lemma 4.1) ranCy = E; for each J CI; (a) and (b) of (PL) follow
immediately from this. {(¢) is an application of Axiom (Pg), and (d) is an
application of Axiom (P,).

(i) Conversely, let A= (4, +, -, —,0,1,8,, C;> 7 scr be an al-
gebra in which (T,)-(T,), (Q)-(Qs) and (PL) hold as in the statement
of this theorem. We will prove that (J,), (J,) and (J;) are satisfied and,
for each J C I, Oy is the quantifier associated with E;. It will follow by
Theorem 2.4 that U is a polyadic algebra.

First, we will show that
(1) for each JCI, ranCr= K.

‘We consider three cases:

Case 1. J = @. We note that § is a (0, @)-projection, hence by
Lemma 3.7, B, =ranS;. But by (a) and (b) of (PL), ran8;=ran(,,
go ranC, = E,.

Case 2. J # 0,1. If L= {k} CI—J, then there exists a (J, L)-pro-
jection 7, and by (a) and (b), ran§, = ran C;. By Lemma 3.7, ran§, = E;,
hence Ey=ranCy.

Case 3. J = I. For any non-empty K C I, we have, by (d),

Or=Crlrx=Cr x0g-
Thus, by Lemma 3.4, Case 2 above, and Lemma 2.3(ii),
ran0;=ranCx nranC; g = Br n Br_g= By,

and C; is a quantifier. This finishes the proof of (1).
‘We are able to conclude from (1) that for each J C I, By is a relatively
complete subalgebra of 4, and that O is the quantifier associated with Ei.
From (1), we immediately derive

(2) for each JCI, if yekH;, then Cy=y.
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To prove (J,), we again consider three cases:

Case l.JnKE=0,JuK #I If L={kCI—(Jv K), then there
exists a (J, L) -projection 7. Now suppose = « By, y ¢ Ex, and # < y; then
by (2) and the additivity of Uk,

<0< Oy =19.
We will prove that (J,) holds with 2 = Cxw. Clearly, Cxw e Ex; on the
other hand, = Sz, so by (ec),
Cgo= Cx82=8,CroecE,;.
Thus, Cxx e By ~ Bk, and therefore (J,) is satisfied.

Case 2. JnE=@, Ju K=1 In this case, K = I—J. Now it
zeBr, y ¢ g, and » <y, then, as in the preceding case, we have

e< O < Ogy=1y.
But = Cyz; so by (d) and (1),
Cxao=0Cr_0=0_;0;86=0Cmel;=FE;,~nFEg.

Case 3. J n K # @. Again, suppose z ¢ Hy, ye Fx, and 2 <y. By
2.3(i), y € Ex_;; consequently, we have

zeBy;, yelg ;, 2<y, and Jn(K—J)=0.
It follows by Cases 1 and 2, above, that # < Ox_;» <y, and
CxyweBynEBy ;=Eyyx = Ejg=BnBg.

Thus, (J,) is satisfied.

Finally, we prove (J3): let « be a (J,L)-projection and suppose
that K ~(Jw L)=0@. Let ekerS,, that is, §,52=0. Now x < Cru;
furthermore, by (¢), 8,0gr= CxS,2=0, 50 OzzwckerS, " Er. M
) 42 TemoreM. Lei = (4, +, -, —,0,1,8,, C;>,. 2 ycr be an algebra
in-which (T,)-(T,) and (PL) hold as in 4.1(i). Furthermore, assuwme that
(B1) Ox(z+y) = Cxa+ Oky,
and

(B2) < Ok,

for adl KC I and all w,y € A. Then, for each E C I, Ox is a quantifier of A.

Proof. By part (1) of the proof of 4.1, Cxx € Fx, and by (B2),
Cx2 > . Furthermore, if y ¢ Hx and y > &, then by (B1), Cxo < Cky;
but by part (2) of the proof of 4.1, Cxy =1y, so Cgz <y. This proves
that Czz is the least element of Fx which dominates . Thus, Fx is

e ©
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a relatively complete subalgebra of 4, and Cg is the quantifier associated
with Ex. B

We may combine Theorems 4.1 and 4.2 as follows:

4.3. TEmorEM. (i) If =<4, +, -, —, 0,1, 8,, Crdacrr,ser 8 poly-
adic algebra, its operations satisfy (T,)-(T,), (B)-(B2), and (PL).

(ii) Conversely, if U=<A,+, ,—,0,1,8,, Crleertjcr 18 an al-
gebra in which (Ty)-(Ty), (B1)-(B2), and (PL) hold for all a,feI’, all
K CI, and all projections T, then U is a polyadic algebra.

In conclusion, we offer the following, alternative way of defining
a polyadic algebra:

An I-polyadic algebra is an algebraic system =<4, 4, -, —, 0,
1, 8,y Cdger,sor such that {4, +, -, —, 0,1, 8>, is a transformation
algebra, and C; are unary operations which satisfy the following condi-
tions for all K C I, all projections r, and all #,y ¢ A: if v i3 a (J, L)-pro-
jection, then

(PA,)) Crlz+y)= Cgz+ Ogy,

(PA,) o< Oga,

(PAy) 8.C;= G,

(PA) C;8.= S,

(PA,) CxS,=8,Cg if En(JVL)=0,

(PAy) CxCrx= Oy

Remark. It is worth noting that in the preceding set of conditions,
(PA,)-(PA;) are assumed to hold for proper subsets J, K CI; thus,
only (PA,) states any property of C;. Assuming all of the preceding con-
dition except (PA,), it can be shown thatforallJ, KC I, €, C;_; = OgC; g,
and 0, C;_; is a quantifier. Thus, ¢; may be regarded as a defined, rather
than a primitive, operation, and (PA;) can be taken as its definition.

5, Conclusion. The results of the 1ast two sections allow us to make some
interesting observations regarding the structure of polyadic algebras.

First, we note that conditions (PA,)-(PA,) say nothing about oper-
ations §, where o is not a projection. To put it another way: Axioms
(T,)-(T,), which describe the transformation strueture of a polyadic
algebra, state properties of all the operations §,, for all ¢ ¢ I¥; by contrast,
Conditions (PA,)-(PA,), which describe the quantifier structure and its
connections with the transformation structure, state properties of quanti-
fiers and only those operations S, where « is a projection. Thus, the
relationships between quantifiers and arbitrary operations S, can be
deduced from the relationships between quantifiers and those S, where a
is a projection.


Artur


232 C. Pinter

This fact is even more apparent in Corollary 3.6. Indeed, we have
already seen, Lemma 3.7, that for each proper subset J CI, B, = ran§,
for any projection = whose essential domain is equal to J. Thus, (J7)-(J;)
are statements describing the properties of the sets ranS, and ker8, for all
projections 7 e I*. Consequently, if % is a polyadic algebra, then the
quantifier structure of %, as well as the connections between the quantifier

structure and the transformation structure of 9, may be described entirely

in terms of the sets ran g, and ker 8, for all projections v ¢ IZ. These, then,’

are the chief structural components of every polyadic algebra.
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Locating cones and Hilbert cubes
in hyperspaces

by
Sam B. Nadler, Jr. (*) (Charlotte, N. C.)

Abstract. Let X be a metric continuum. Let O(X) denote the space of all non-
empty subcontinua of X. It is shown that if X is decomposable, then (¢ (X) coutains
a 2-cell. This result is then used in several ways. For example, a characterization of
hereditary indecomposability is obtained answering a question of B. J. Ball in a strong
way. Also, for certain X, n-cells are located in C(X) where they were not known to
be previously, and necessary conditions are obtained in order that the cone over X be
homeomorphic to C(X). A general result, which locates Hilbert cubes in € (X), is proved
and then applied to show that certain classes of continua X have the property that O (X)
contains a Hilbert cube or the cone over X. Some unsolved problems are stated.

Key words and phrases. Chainable, circle-like, composant, decompos-
able continuum, dimension, indecomposable continuum, local dendrite,
multicoherence degree, order of a point, ramification point, segment
(in the sense of Kelley), upper semicontinuous decomposition.

1. Intreduction. A continuwum is a nonempty compact connected
metric space. The term nondegenerate will be used to mean that a space
has more than one point. A continuum is said to be decomposable if and
only if it is the union of two £ its proper subcontinua, indecomposable if
and only if it is not decomposable, and hereditarily indecomposable it and
only if each of its subcontinua is indecomposable. For definitions not
given in this paper, we refer the reader to the texts listed in the references.

The hyperspace of a continuum X will mean, thronghout this paper,
the space of all (nonempty) subcontinua of X with the. topology induced
by the Hausdorff metric H (see [7] or [10, p. 47]); it is denoted by C(X).
Recognizing when and where (C(X) contains the cone over X or over
other continua has proved to be useful information (see [12]). Much
work has been done, especially recently (see [2], [15], and [17]), relating
the space C(X) and the cone over X. For example, J. T. Rogers, Jr. [15]
investigated necessary conditions in order that O(X) be homeomorphic
in a “nice way” to the cone over X. We note that, in [2] and [15], the

(*) The author expresses his appreciation to Tulane University for lending him
office space during the summer that this manuseript was prepared.
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