to F. Hence for some n, $s_j \cap \cap_{i=1}^n \left(h_1 \cup \cdots \cup h_i \right) \in X_n$. (Otherwise $h_1 \cup \cdots \cup h_j$ would already be in F.) Let $s_j' = s_j \cap \cap_{i=1}^n \left(h_1 \cup \cdots \cup h_i \right)$.

Let $d_n = \cup_{a_n}$. For each a, $m \in d_n$, $s_m \cap d_n \in X^n$ for infinitely many r's. Hence if F_n is generated by d_n and F, F_n obeys the induction hypothesis.

However, if $X^n \in X^r$, $d_n \cap \cap_{i=1}^n X_i$ is contained in the union of finitely many d_n's for $j < n$. By the contrapositive of D, $d_n \cap \cap_{i=1}^n X_i$. Hence if q contains d_n, $q \in X^n$. Finally, let q be the unique ultrafilter containing F_n for every α, and $q \in X^n$. Then the only relative types of q are the p^n_α.

References

DEPARTMENT OF MATHEMATICS
REEDS COLLEGE, OREGON

Reçu par la Rédaction le 5. 4. 1972

Almost continuous functions on I^a

by

Kenneth R. Kellum (Birmingham, Ala.)

Abstract. Suppose n and m are positive integers and let I denote the closed unit interval $[0,1]$. It is proved that there exists a pair of almost continuous functions $f: I^m \to I^n$ and $g: I^n \to I^m$ such that the composed map $gf: I^m \to I^n$ has no fixed point and is not almost continuous. The function f is a dense subset of I^{2n}.

The main purpose of this paper is to give a partial answer to a question posed by J. Stallings [2]. Unless otherwise stated, all functions considered have domain and range I^a where I denotes the closed unit interval, $[0,1]$, and a is a positive integer. No distinction is made between a function and its graph. If each open set containing the function f also contains a continuous function with the same domain as f, then f is said to be almost continuous. Stallings introduced almost continuity in order to prove a generalization of the Brouwer fixed point theorem. He asked the following question. "Under what conditions is it true that if $f: X \to Y$ is almost continuous and $g: Y \to Z$ is almost continuous, then the composed map $gf: X \to Z$ is almost continuous?" In the present paper it is shown that there exists a pair of almost continuous functions $f: I^m \to I^n$ and $g: I^n \to I^m$ such that gf has no fixed point. Since each almost continuous function on I^n has a fixed point, it follows that gf is not almost continuous.

Suppose $f: A \to B$. The statement that the subset C of $A \times B$ is a blocking set of f in $A \times B$ means that C is closed relative to $A \times B$, C contains no point of f and C intersects g whenever g is a continuous function with domain A and range being a subset of B. If no proper subset of C is a blocking set of f in $A \times B$, C is said to be a minimal blocking set of f in $A \times B$. If the set C is a minimal blocking set of some function $g: A \to B$, then C is said to be a minimal blocking set in $A \times B$.

Suppose D is a subset of $A \times B$. Then $p_A(D)$ will denote the projection of D into A and $p_B(D)$ will denote the projection of D into B. If K is a subset of $p_A(D)$, then D/K denotes the part of D with A-projection K.

Theorem 1. Suppose $f: I^m \to I^n$ is not almost continuous. (To simplify notation, we denote I^m by A and I^n by B.) Then there exists a minimal blocking set C of f in $A \times B$. Further, $p_A(C)$ is a non-degenerate continuum and $p_B(C) = B$.
Proof. The proof that there exists a minimal blocking set of \(f \) in \(A \times B \) is essentially the same as that given for a more restricted case in [1], and is omitted. Assume that \(p_A(C) = U \cap V \) where \(U \) and \(V \) are closed and \(U \cap V = \emptyset \). Then \(C \setminus U \) and \(C \setminus V \) are closed proper subsets of \(C \). By the minimality of \(C \), there exist continuous functions \(g : A \to B \) and \(g_1 : A \to B \) such that \(g \cap C \setminus U = \emptyset \) and \(g_1 \cap C \setminus V = \emptyset \). Using a Urysohn function, it is easy to construct a continuous function \(h : A \to B \) such that \(h \cap C \setminus V = g_1 \cap C \setminus U \). Then \(h \cap C \setminus U = \emptyset \), a contradiction. Thus \(p_A(C) \) is a constant. That \(p_A(C) \) is non-degenerate is obvious. That \(p_A(C) = B \) follows from the fact that \(C \) intersects each constant function from \(A \) to \(B \). This completes the proof.

Theorem 2. Suppose \(n \) and \(m \) are positive integers. There exist almost continuous functions \(f : I^n \to I^m \) and \(g : I^m \to I^n \) such that \(g \circ f \) has no fixed point.

Proof. Again, we simplify notation by letting \(A = I^n \) and \(B = I^m \). Denote by \(\theta \) the set to which the subset \(C \) of \(A \times B \) belongs if and only if \(C \) is closed and both \(p_A(C) \) and \(p_B(C) \) have cardinality \(\theta \). Then the set \(\theta \) also has cardinality \(\theta \). There exists a well-ordering \(C_1, C_2, \ldots, C_{\kappa}, \ldots, C_n, \ldots \) of \(\theta \) such that if \(C \) is in \(\theta \), the set of elements of \(C \) whose \(\theta \)-cardinality less than \(C \) for each \(C \) in \(\theta \) we define \(x_n, y_n, f(x_n), f(y_n) \), and \(g(f(x_n)), g(f(y_n)) \) such that \(x_n \neq g(f(x_n)) = g(f(y_n)) \). If \(g(f(x_n)) \) is in \(C_n \) and \(g(f(y_n)) \) is in \(C_m \). Choose a point \((x_1, y_1) \) in \(C_1 \). Let \(f(x_1) = y_1 \) and let \(g(y_1) = x_1 \). Now, let \((x_1, y_1) \) be a point in \(C_1 \), where \(y_1 \neq x_1 \). Let \(z_1 \) be in \(A \setminus \{x_1, y_1\} \). Let \(f(z_1) = y_1 \) and \(g(y_1) = x_1 \).

Suppose that \(C_\kappa \) is in \(\theta \) and assume that \(x_\kappa, y_\kappa, f(x_\kappa), f(y_\kappa) \), and \(g(f(x_\kappa)) \) exist and have the desired properties for each \(C_\kappa \) which precedes \(C_\kappa \). Denote by \(M \) the set to which \(x_\kappa \) belongs if and only if \(x_\kappa = f(x_\kappa) \). If \(x_\kappa \) is in \(M \), simply choose \(y_\kappa \) in \(A \) such that \(g(y_\kappa) \neq x_\kappa \). Then \(y_\kappa \neq g(f(y_\kappa)) \) is in \(C_\kappa \) and \(x_\kappa \neq g(f(y_\kappa)) \). Now, let \((x_\kappa, y_\kappa) \) be in \(C_\kappa \), where \(y_\kappa \) is \(\neq \) in \(M \). Let \(z_\kappa \) be in \(A \setminus \{x_\kappa, y_\kappa\} \). Let \(f(z_\kappa) = y_\kappa \) and \(g(y_\kappa) = z_\kappa \).

Thus, by induction, \(x_\kappa, y_\kappa, f(x_\kappa), f(y_\kappa) \), \(g(f(x_\kappa)) \), and \(g(f(y_\kappa)) \) exist and have the desired properties for each \(C_\kappa \) in \(\theta \). Let \(N \) be the set to which \(x_\kappa \) belongs if \(\kappa \) only if \(x_\kappa \) is \(\neq \) in \(M \). In case \(x_\kappa \) is in \(A \setminus N \), let \(f(x_\kappa) \) be in \(f(N) \) where \(g(f(x_\kappa)) \neq x_\kappa \). Let \(y_\kappa \) be in \(B \), and choose \(x_\kappa \) in \(A \) such that \(f(x_\kappa) \neq x_\kappa \). Let \(D \) be a non-degenerate continuum in \(A \) containing \(x \). Denote by \(S \) the line segment with end-points \(P \) and \((x, y) \), where \(P \) is the mid-point of the line segment joining \((x, y) \) and \((x, f(x)) \). Then \(S \setminus \{D \setminus (x, y)\} \) is in \(\theta \) and contains a point \((x, f(x)) \) of \(f(N) \). Since \((x, f(x)) \) is not in \(S \), \(f(x) = y_\kappa \), so \(f(N) = B \) and the above induction defines \(g(f(y_\kappa)) \) for each \(y_\kappa \) in \(B \).

If \(C \) is a minimal blocking set in \(A \times B \), by Theorem 1, \(C \) is in \(\theta \) and contains a point of \(f \). Thus \(f \) is almost continuous. Clearly, \(g(f) \) has no fixed point, and the proof is completed.

Note that each of the functions \(f \) and \(g \) defined in Theorem 2 is a dense subset of \(I^m \). This generalizes the result of Example 2 of [1].

We now make two additional definitions in order to pose some questions. The function \(f \) is said to be of Baire Class 1 if \(f \) is the pointwise limit of a sequence of continuous functions. The function \(f \) is said to be a connectivity function if \(f \) is connected whenever \(f \) is a connectivity function of the set of \(f \). Suppose \(f : I^m \to I^n \). If \(n = 1 \) and \(f \) is almost continuous, then \(f \) is a connectivity function. If \(n > 1 \) and \(f \) is a connectivity function, then \(f \) is almost continuous [2].

Question 1. To what extent can the results of Theorem 2 be extended to connectivity functions?

Question 2. What are the relationships of functions of Baire Class 1 to connectivity functions and almost continuous functions? Specifically, if \(f : I^m \to I^n \) is a connectivity function, under what conditions is \(f \) of Baire Class 1? Also, if \(f : I^n \to I^m \) is a connectivity function, is \(f \) almost continuous? (*)

References

MILES COLLEGE

Reçu par la Rédaction le 27. 4. 1972

(*) A note should be added to the effect that the last part of Question 2 has been answered by J. B. Brown in a paper recently submitted to Fund. Math.