A type of βN with \aleph_0 relative types

by

R. C. Solomon (London)

Abstract. βN is the space of ultrafilters on N, the integers. If $p, q \in \beta N - N$, and φ is a homeomorphism from βN into $\beta N - N$ such that $\varphi(p) = q$, then write $p < q$. Question: How many distinct (up to isomorphism) predecessors can an ultrafilter have in this ordering? It has been shown that there are ultrafilters with 2^{\aleph_0} predecessors and (assuming the continuum hypothesis) for every $n < \omega$ there are ultrafilters with n predecessors. This paper gives a construction of an ultrafilter with \aleph_0 predecessors, assuming the continuum hypothesis.

1. Introduction. βN is the space of all ultrafilters on N, the integers. Its topology is generated by clopen sets of the form $W(E) = \{ q : E \in q \}$ for each $E \subseteq N$.

We identify $w \in N$ with the principal ultrafilter generated by w.

Let $N^* = \beta N - N$. N^* is the space of all non-principal ultrafilters on N.

If π is a permutation of N, and $p \in N^*$, write $\pi(p) = \{ \pi(a) : a \in p \}$. This is also an ultrafilter, isomorphic to p. Put $p^\pi = \{ q : \pi(p) = q \}$ for some permutation π. p^π is called the type of p.

If φ is a homeomorphism of βN into N^*, and $p \not\in N$, $\varphi(p) = q$, then p^π is called a relative type of $\varphi(p)$.

In [2], Z. Frolik showed that every type of N^* has at most 2^{\aleph_0} relative types.

The continuum hypothesis implies that for every finite n there are types with precisely n relative types. If a type has no relative types, it is called minimal.

In [4], A. K. and E. Steiner showed that there is a type with exactly 2^{\aleph_0} relative types. They stated at the end of the paper that they did not know if a type could have precisely \aleph_0 relative types. This paper gives a construction of one such, assuming the continuum hypothesis.

2. Preliminaries. We will use X, Y, Z etc., with or without superscripts such as X^* etc., to denote countable subsets of N^*. The nth member of X is written X_n.

If X is a countable subset of N^*, we say X is discrete if there are sets $(c_n)_{n=\omega}$ such that $c_n \subseteq X_n$ and $n \neq m$ implies $c_n \cap c_m = \emptyset$.
If X is a countable discrete subset of N^*, and $p \in N^*$, write

$$\Sigma(X, p) = \{a \in V: a \in X \in p\}.$$

If $q \in X$, (the closure of X, write

$$\Omega(X, q) = \{a \in X: \exists b \in X, a \in b \in X\}.$$

Say $q > p$ if there is a countable discrete set X such that $q = \Sigma(X, p)$. We also put $q^+ > p^+$ whenever $q > p$.

The basic facts we shall need in the following lemmas.

Lemma 1. If $X \cup Y$ is discrete and countable and $p \in \bar{X} \cap \bar{Y}$, then $p \in \bar{X} \cap \bar{Y}$.

2. $\Sigma(X, p)$ and $\Omega(X, p)$ are ultrafilters, and $\Sigma(X, \Omega(X, p)) = p$, and $\Omega(X, \Sigma(X, p)) = p$.

3. $q > p$ iff $q^+ > p^+$ is a relative type of q^+.

4. If $X \cup Y = \emptyset$, and $p \in \bar{X} \cap \bar{Y}$, then there are subsequences $X' \subset X$, $Y' \subset Y$, and either $X' \subset Y'$ or $Y' \subset X'$.

5. $q > p$ iff there are countable discrete sequences X and Y such that $\Sigma(X, p) = \Sigma(Y, q)$ and $X \cup Y = \emptyset$.

6. \triangleright is a total ordering on $(p^+, q^+) < q^+$.

7. A type p^+ is minimal iff for no countable discrete set X does $p \in \bar{X} \cap X$.

The proofs are in [1] and [3].

3. Theorem. Assuming the continuum hypothesis, there is an ultrafilter q^+ such that q^+ has precisely κ relative types.

Proof. Let a^*_m, $n, m \in \omega$, be infinite subsets of ω such that

i) $a^*_m \cap a^*_n = \emptyset$ for $m \neq n$.

ii) $\bigcup_{x \in a^*_m} a^*_x$ is an infinite subset of ω.

iii) $a^*_m = \bigcup_{x \in a^*_m} a^*_x$, where $f_m(a)$ is an infinite subset of ω.

(i.e. $(a^*_m)_{m \in \omega}$ is a partition of ω, and $(a^*_m)_{m \in \omega}$ is coarser than $(a^*_m)_{m \in \omega}$.

Now let X^*_m be minimal types s.t. $a^*_m \in X^*_m$ for all m.

We will define X^*_m for all m. Suppose we have defined X^*_m for some m and all n. Let X^*_m be minimal types such that $f_m(a) \in X^*_m$, and let $X^*_m = \Sigma(X^*_m, X^*_m)$.

Thus we can define X^*_m for all m. From the construction, $a^*_m \in X^*_m$, and $X^*_m \subset X^*_m \subset X^*_m$.

Our aim is to construct an ultrafilter $q \in \bar{X}^*_m$; such that if $p_0 = \Omega(X^*_m, q)$, then the only relative types of q^+ are the p^*_n.

First state a few facts about the construction:

A type p^+ of βX with κ_1 relative types

A) $q = p_0 \succ p_1 \succ ... \succ p_\alpha \succ ...$

B) $p_\alpha = \Sigma(X^*_\alpha, p_{\alpha+1})$.

C) If $p_\alpha \succ p_\beta \succ p_{\alpha+1}$, then either $p^\alpha = p^\alpha_\beta$ or $p^\alpha = p^\alpha_{\alpha+1}$.

D) If $p_\alpha \succ p$, then for infinitely many $r, a \in X^*_\alpha$.

E) If $p_\alpha \succ p$ for all n, then there is a p' and a countable discrete set $X' \subset X^*_\alpha$ such that $q \in X'$ and $p_\alpha \succ p'$ for all n and $p' = \Omega(X', q)$.

Proofs. A, B, C and D are routine applications of the Lemma.

To prove E, assume $q = \Sigma(X, p)$, where we can assume that $X \subset X^*_\alpha$.

Let $X = Y \cup Z$, where $Y \subset \bigcap X^*_n$ and $Z \cup Y = \emptyset$.

1) $q \in Y$. Let Y be made discrete by $(\epsilon_n)_{n \in \omega}$. Let $Y' = (X^*_n; \epsilon_n \in X^*_n)$.

2) $q \in Z$. Let Z be made discrete by $(\epsilon_n)_{n \in \omega}$. Let $Z = (X^*_n; \epsilon \in X^*_n \cap X^*_n)$.

In both cases it is routine to check that X' is a countable discrete set such that $q \in X'$, and for each n, there is $X'' \subset X^*_n$, s.t. $q \in X''$, and $X'' \subset X^*_n$.

So if we let $p' = \Omega(X', q)$, then $p_\alpha \succ p'$ for all n.

From the facts C and D above, to ensure that the only relative types of q^+ are the p^*_n, it suffices to show that for every countable discrete subset $X \subset \bigcup X^*_n$, either $q \notin X$ or else $q \in X^* \cap X^*$ for some n.

Enumerate (C.F.) the countable discrete subsets of $\bigcup X^*_n$ as $\langle X^*_n \rangle_{n \in \omega}$.

At each stage p_0 we will add a set d_α to q, s.t. either $d_\alpha \in X^*_n$ for any n, or else for some fixed n, $d_\alpha = (a^*_m)_{m \in \omega}$. The first case will ensure that $q \in X^*_n$, and the second that $q \in X^*_n \cap X^*_n$. In the latter case $(\Omega(X^*_n, q))^{-1} = p^*_n$.

Induction Hypothesis. At each stage we will construct a filter F_α s.t. for $a \in F_\alpha$, and any $n, (m : \epsilon_m \in X^*_n)$ is infinite.

Stage 0. Let $d_0 = \emptyset$.

Stage a. Suppose we have constructed d_α, and F_α for $\beta < a$. Let $\bigcup F_\beta$ generate a filter F. F is countably generated, so assume it is generated by $(\epsilon_n)_{n \in \omega}$ where $\epsilon_n \subseteq \omega$.

For each n, write $h_\alpha = \bigcup (a^*_m \cap X^*_n)$.

Case 1. For some n, the filter generated by h_α and F obeys the induction hypothesis. Then let $d_\alpha = h_\alpha$.

Case 2. Otherwise. Define sets a^*_n as follows: h_α cannot be added to F. So for some n, $e_1 \cap a^*_n \in X^*_n$ and $X^*_n \subseteq X^*_n$. Let $a^*_n = a^*_n \cap e_1$.

Suppose we have defined a_i for $i < \beta$. $h_\alpha \subset \bigcup_{i < \beta} h_i$ cannot be added

...
to F. Hence for some n, $e_j \cap a_m^*(h_1 \cup \ldots \cup h_j) \in X^m_n$. (Otherwise $h_1 \cup \ldots \cup h_j$ would already be in F). Let $e_j = e_j \cap a_m^*(h_1 \cup \ldots \cup h_j)$.

Let $d_n = \bigcup_{m \leq n} e_m$. For each a_n, $e_n \cap d_n$ is X_n for infinitely many r's. Hence if F_a is generated by d_n and F, F_a obeys the induction hypothesis.

However, if $X_n \subseteq X$, $d_n \cap a_n$ is contained in the union of finitely many a_j^*'s, for $j \neq n$. By the contrapositive of D, $d_n \cap a_n \subseteq X_n$. Hence if q contains d_n, $q \subseteq X$.

Finally, let q be the unique ultrafilter containing F_a for every a, and $q \subseteq X$. Then the only relative types of q' are the p_n.

References

Almost continuous functions on I^n

by

Kenneth R. Kellum (Birmingham, Ala.)

Abstract. Suppose n and m are positive integers and let I denote the closed unit interval $[0, 1]$. It is proved that there exists a pair of almost continuous functions $f: I^n \to I^m$ and $g: I^m \to I^n$ such that the composed map $gf: I^n \to I^n$ has no fixed point and is not almost continuous. The function f is a dense subset of I^{*+m}.

The main purpose of this paper is to give a partial answer to a question posed by J. Stallings [2]. Unless otherwise stated, all functions considered have domain and range I^n where I denotes the closed unit interval, $[0, 1]$, and n is a positive integer. No distinction is made between a function and its graph. If each open set containing the function f also contains a continuous function with the same domain as f, then f is said to be almost continuous. Stallings introduced almost continuity in order to prove a generalization of the Brouwer fixed point theorem. He asked the following question. "Under what conditions is it true that if $f: X \to Y$ is almost continuous and $g: Y \to Z$ is almost continuous, then the composed map $gf: X \to Z$ is almost continuous?" In the present paper it is shown that there exists a pair of almost continuous functions $f: I^n \to I^m$ and $g: I^m \to I^n$ such that gf has no fixed point. Since each almost continuous function on I^n has a fixed point, it follows that gf is not almost continuous.

Suppose $f: A \to B$. The statement that the subset C of $A \times B$ is a blocking set of f in $A \times B$ means that C is closed relative to $A \times B$, C contains no point of f and C intersects g whenever g is a continuous function with domain A and range being a subset of B. If no proper subset of C is a blocking set of f in $A \times B$, C is said to be a minimal blocking set of f in $A \times B$. If the set C is a minimal blocking set of some function $g: A \to B$, then C is said to be a minimal blocking set in $A \times B$.

Suppose D is a subset of $A \times B$. Then $p_a(D)$ will denote the projection of D into A and $p_b(D)$ will denote the projection of D into B. If K is a subset of $p_a(D)$, then D/K denotes the partition of D with A-projection K.

Theorem 1. Suppose $f: I^n \to I^m$ is not almost continuous. (To simplify notation, we denote I^n by A and I^m by B.) Then there exists a minimal blocking set C of f in $A \times B$. Further, $p_a(C)$ is a non-degenerate continuum and $p_b(C) = B$.