Grouplike Menger algebras

by

H. L. Skala (Chicago, Ill.)

Abstract. This paper generalizes the concept of group to include sets with \(n \)-ary operations. An \(n \)-place Menger algebra is a set \(A \) with an \((n+1) \)-ary operation \(o \) satisfying the superassociative law: \(o(o(a_0, a_1, ..., a_n), b_1, ..., b_n) = o(a_0, o(a_1, b_1, ..., b_n), ..., o(a_n, b_1, ..., b_n)) \). \(A \) is said to be grouplike if for any sequence \(a_0, a_1, ..., a_n, b \) of elements from \(A \) there exist unique elements \(x_0, x_1, ..., x_n \) of \(A \) such that \(o(a_0, a_1, ..., a_n, x_i) = b \) for \(i = 0, 1, ..., n \). It is proved that there exist \(n \)-place grouplike Menger algebras of every finite order if \(n \) is odd; if \(n \) is even there exist grouplike Menger algebras of every order not of the form \(2p \) where \(p \) is an odd prime. There exist no \(2 \)-place grouplike Menger algebras of order \(2p \). Alternate conditions for a Menger algebra to be grouplike are presented. The existence of grouplike subalgebras is also studied.

The study of functions of many variables gives rise to a natural extension of the concept of associativity for \(n \)-ary operations. An \(n \)-place function \(f \) over a set \(S \) is any mapping of \(S^n = S \times ... \times S \) (the cross product of \(S \) with itself \(n \) times) into \(S \). If \(f_1, f_2, ..., f_n \) are \(n \)-place functions over \(S \), the composite \(f = f_1 \circ f_2 \circ ... \circ f_n \) is defined in the usual way:

\[
(f_1 \circ f_2 \circ ... \circ f_n)(a_1, ..., a_n) = f_n(f_{n-1}(f_{n-2}(... (f_2(f_1(a_1, ..., a_n) = a_n))))
\]

for each \(n \)-tuple \((a_1, ..., a_n) \) from \(S^n \). If \(g_1, ..., g_n \) are also \(n \)-place functions over \(S \) then it is easily verified that

\[
(f_1 \circ f_2 \circ ... \circ f_n)(g_1, ..., g_n) = f_n(f_{n-1}(f_{n-2}(... (f_2(f_1(g_1, ..., g_n) = g_n)) \).
\]

For the case \(n = 1 \), Equation (1) reduces to the associative law for transformations of a set into itself.

A set \(A \) of \(n \)-place functions is said to be an algebra of functions if the composite of any \(n+1 \) functions from \(A \) is also in \(A \). Such algebras have been extensively studied in [1]-[12]. Generalizing the above concepts we define an \(n \)-place Menger algebra to be a set \(A \) with an \((n+1)\)-ary operation \(o \) satisfying what has been called the superassociative law:

\[
o(o(o(a_0, a_1, ..., a_n), a'_1, ..., a'_n), a'_0) = o(o(a_0, o(a_1, a'_1, ..., a'_n), a'_0), ..., o(a_n, a'_1, ..., a'_n)),
\]

for any elements \(a_i, a'_j, i = 0, 1, ..., n, j = 1, ..., n \), from \(A \). The case \(n = 1 \) in just the ordinary associative law and hence any \(1 \)-place Menger algebra is a semigroup.
It follows immediately from Equation (1) that any algebra of functions is a Menger algebra. Conversely, it was shown by Dikker (cf. [2]) that any Menger algebra is isomorphic to an algebra of functions over some set. Hence, in particular, any semigroup is isomorphic to a set of transformations over some set.

In this paper we study Menger algebras which satisfy certain solvability criteria, thus extending the group concept to include sets with n-ary operations.

An n-place Menger algebra is said to be grouplike if for any sequence \(a_0, a_1, \ldots, a_n \) of elements from \(A \) there exist unique elements \(x_0, x_1, \ldots, x_n \) in \(A \) such that

\[
(3) \quad o(a_0, \ldots, a_{r-1}, x_r, a_{r+1}, \ldots, a_n) = b \quad \text{for} \quad i = 0, 1, \ldots, n.
\]

Thus any 1-place grouplike Menger algebra is a group.

Some examples of grouplike Menger algebras are the following:

(i) The set of all n-place functions \(f_i \) over the reals defined by \(f_i(x_1, \ldots, x_n) = (x_1 + \ldots + x_n + i)/n \) for each real number \(r \).

(ii) The set \(I_{n+1} \) of integers modulo \(2k+1 \) with the \((2n+1)\)-ary operation \(o(t_0, t_1, \ldots, t_{2n}) = t_{0} - t_{1} + \ldots + t_{2n-1} + 2t_{2n} \pmod{2k+1} \).

(iii) The set \(I_{2k} \) of integers modulo \(2k \) with the 2-ary operation \(o(t_0, t_1, \ldots, t_{2n}) = t_{0} + t_{1} + \ldots + t_{2n-1} \pmod{2k} \).

Theorem 1. An n-place Menger algebra \(A \) is grouplike if and only if \(A \) contains an element \(e \) (called the identity of \(A \)) such that

\[
(3a) \quad o(e, x, \ldots, x) = x = o(x, e, \ldots, e) \quad \text{for each} \quad x \in A;
\]

and

\[
(3b) \quad \text{for any sequence} \quad a_0, a_1, \ldots, a_n \quad \text{of elements of} \quad A, \quad \text{there exist unique elements} \quad x_0, x_1, \ldots, x_n \quad \text{such that}
\]

\[
o(a_0, a_1, \ldots, a_{r-1}, x_r, a_{r+1}, \ldots, a_n) = e \quad \text{for} \quad i = 0, 1, \ldots, n.
\]

First suppose \(A \) is grouplike. Let \(a \) be any element of \(A \) and let \(e \) be the element of \(A \) such that \(o(e, a, a) = a \). For any element \(x \) in \(A \), there exists an element \(y \) such that \(o(x, y, a) = x \). Hence
\[
x = o(x, y, a, a, a).
\]

To prove the second equality of Condition (3a), choose elements \(y_0, \ldots, y_n \) such that \(o(x, y_0, \ldots, y_n) = e \). Then
\[
o(x, y_1, \ldots, y_n) = o(x, o(x, y_1, \ldots, y_n), y_0) = e.
\]

Therefore by the unique solvability criterion \(x \) must equal \(o(e, a, a, \ldots, a) \) and Condition (3a) follows. Clearly Condition (3b) is satisfied.

Conversely suppose \(A \) is a Menger algebra satisfying Conditions (3a) and (3b). Let \(a_0, a_1, \ldots, a_n, b \) be any sequence of elements from \(A \). We first prove there exists a unique element \(x \) such that \(o(a_0, a_1, \ldots, a_n) = b \). By Condition (3b) there exist elements \(b_1, \ldots, b_n \) such that \(o(b_1, b_2, \ldots, b_n) = e \).

Let \(x \) be the element such that \(o(x_0, o(a_0, b_1, \ldots, b_n), \ldots, o(a_n, b_1, \ldots, b_n)) = e \). The left-hand side of this equality is just \(o(o(x_0, a_1, \ldots, a_n, b_1, \ldots, b_n)) \) and it follows from the uniqueness stipulation in Condition (3b) that \(o(x_0, a_1, \ldots, a_n, b_1, \ldots, b_n)) = e \). Then also
\[
o(x_0, o(a_0, b_1, \ldots, b_n), \ldots, o(a_n, b_1, \ldots, b_n)) = e.
\]

Again, the uniqueness stipulation of Condition (3b) implies that \(x_0 = x \).

For \(i = 1, \ldots, n \), let \(y_0 \) be the element of \(A \) such that
\[
o(a_0, o(a_1, b_1, \ldots, b_n), \ldots, y_0) = o(a_0, b_1, \ldots, b_n)) = e.
\]

By the above, there exist elements \(x \) such that \(o(x_0, b_1, \ldots, b_n)) = y_0 \), whence
\[
e = o(a_0, o(a_1, b_1, \ldots, b_n), \ldots, o(x, b_1, \ldots, b_n), \ldots, o(a_n, b_1, \ldots, b_n))
\]

And by the uniqueness stipulation in Condition (3b), \(o(a_0, a_1, \ldots, a_n, a_0) = b \). If also \(o(a_0, a_1, \ldots, a_n, a_0) = b \) for another element \(x' \), then
\[
o(x', b_1, \ldots, b_n, a_0) = o(x', b_1, \ldots, b_n), \ldots, o(a_n, b_1, \ldots, b_n))
\]

We remark that the uniqueness stipulations of Conditions (3a) and (3b) cannot be dropped. For example, the set of integers is a 2-place Menger algebra if we define
\[
o(i, j, k) = \begin{cases}
i + \frac{1}{2}(j + k), & \text{if } j + k \text{ is even}, \\
i + \frac{1}{2}(j + k - 1), & \text{if } j + k \text{ is odd}.
\end{cases}
\]

Clearly 0 is the identity of this algebra and the equality \(o(i, j, k) = m \) always has a solution if \(m \) and two of the three integers \(i, j, k \) are given. But \(o(0, 0, 0) = o(0, 1, 0) = 0 \). We prove however the following

Theorem 2. A finite Menger algebra \(A \) is grouplike if

\[
(3') \quad \text{for any sequence} \quad a_0, a_1, \ldots, a_n \quad \text{of elements of} \quad A, \quad \text{there exist elements} \quad x_0, x_1, \ldots, x_n \quad \text{such that} \quad b = o(a_0, a_1, \ldots, a_n, x_0, a_1, \ldots, a_n); \quad \text{or if} \quad \text{Condition (3a); and the following condition holds:}
\]

\[
(3b') \quad \text{for any sequence} \quad a_0, a_1, \ldots, a_n \quad \text{of elements of} \quad A, \quad \text{there exist elements} \quad x_0, x_1, \ldots, x_n \quad \text{such that} \quad e = o(a_0, a_1, \ldots, a_n, x_0, a_1, \ldots, a_n).
\]
Let \(A = \{ a_1, ..., a_n \} \). By Condition (3a) there exist elements \(c_i, i = 1, ..., b, j = 0, 1, ..., n \) such that \(o(a_1, ..., a_j, c_i, c_{i+1}, ..., a_n) = x_j \) for \(x \neq t \), \(c_i \neq c_j \) for \(i \neq j \). Thus \(A = \{ c_1, ..., c_n \} \) for each \(j \) and it follows that the elements postulated in Condition (3a) are unique.

Now suppose \(A \) satisfies Conditions (3a) and (3b). We first show that for every \(x \in A \) \(o(x, a_1, ..., a_n) = o(x, a_2, ..., a_n) \) for \(x \neq y \). For equality holds. By Condition (3b) there exists an element \(a' \) such that \(o(a', a_1, ..., a_n) = 0 \). But then

\[
x = o(x, a_1, ..., a_n) = o(x, a', a_1, ..., a_n) = 0 = o(x, y, a_1, ..., a_n) = o(x, y, a, ..., a_n) = o(x, a, ...) = 0,
\]

whence \(x = y \).

We now prove that Condition (3b) holds. Let \(a_1, a_2, ..., a_b \) be elements from \(A \). By Condition (3b) there exists an element \(y \) such that \(o(y_1, a_1, ..., a_b) = 0 \). Hence

\[
b = o(b, a_1, ..., a_b) = o(b, y_1, a_1, ..., a_b) = 0 = o(b, y_1, 0, a_1, ..., a_b) = 0 = o(b, y_1, a_1, ..., a_b) = 0.
\]

Hence there exists an element \(x_0 \) such that \(x_0 = o(b, y_1, a_1, ..., a_b) \) such that \(o(x_0, a_1, ..., a_b) = b \).

For \(i > 0 \) let \(y_i \) be the element of \(A \) such that \(e = o(b, y_i, a_1, ..., a_b) \). By Condition (3b) there exists an element \(a \) such that

\[
e = o(b, a_1, ..., a_b) = 0 = o(b, a_1, ..., a_b, a, ..., a) = 0 = o(b, a_1, ..., a_b, a, ..., a) = 0.
\]

On the grouplike Menger algebra \(A \) we define a binary operation \(* \) by \(a * b = o(b, a_1, ..., a_b) \). It is easily verified, that since the operation \(o \) is associative, it is associative. By Condition (3a), \(a * e = e * a = a \) and hence \(a \) is an identity of \(A \) with respect to \(* \). Condition (3b) implies the existence of left inverses, whence \(A \), with the operation \(* \), is a group, which we call the diagonal group of \(A \) and denote by \(A^* \). By direct calculation one easily shows that

\[
o(a * b, c_1, ..., c_n) = a * [o(b, c_1, ..., c_n)]
\]

for any elements \(a, b, c_1, ..., c_n \) from \(A \).

Theorem 3. For any sequence \(a_1, ..., a_n \) of elements from a grouplike Menger algebra \(A \) there exists an element \(a \) such that \(o(a, a_1, ..., a_n) = x * a \) for every \(x \in A \).
Since
\[o(e, e \cdot b^{-1}, a_1, \ldots, a_{n-1}) \neq o(e, e, a_1, \ldots, a_{n-1}) \text{ for } b \neq e, \]
it follows that
\[\varphi(a_1 \cdot b, \ldots, a_{n-1} \cdot b) \neq o(e, e, a_1, \ldots, a_{n-1}) \cdot b = \varphi(a_1, \ldots, a_{n-1}) \cdot b. \]
Conversely suppose the finite group \(G \) satisfies the conditions of the theorem. We define the \((n-1)\)-ary operation as follows:
\[o(a_0, a_1, \ldots, a_n) = o(a_0, a_1^{-1}, \ldots, a_n^{-1})a_1. \]
It is easily verified by direct calculation that the operation \(o \) is super-associative. Now let \(b \) be any element of \(A \). Then the equality
\[b = o(a_0, a_1, \ldots, a_n) = a_0 \varphi(a_0 a_1^{-1}, \ldots, a_n a_1^{-1}) a_1 \]
is satisfied for \(x_0 = a_0 a_1^{-1}[\varphi(a_0 a_1^{-1}, \ldots, a_n a_1^{-1})]^{-1} \). Because \(G \) is finite, in order to prove there exist unique elements \(x_1, \ldots, x_n \) from \(G \) such that
\[o(a_0, a_1, \ldots, a_n) = b \text{ it suffices to show that} \]
\[\varphi(a_0 x_1, \ldots, a_0 x_n) \neq \varphi(a_0 y_1, \ldots, a_0 y_n) \]
and
\[\varphi(a_0 x_1^{-1}, \ldots, a_0 x_n^{-1}) \neq \varphi(a_0 y_1^{-1}, \ldots, a_0 y_n^{-1}) \]
for \(x \neq y \). The second inequality follows immediately from Condition (5b). In order to verify the first inequality we suppose
\[\varphi(a_0 x_1, \ldots, a_0 x_n) = \varphi(a_0 y_1, \ldots, a_0 y_n) \].
Setting \(a_i = a_i x_i \) we obtain
\[\varphi(a_0, \ldots, a_n) z y = \varphi(a_0, \ldots, a_n) z y \]
and it follows from Condition (5c) that \(xy^{-1} = e \), that is \(x = y \). Hence \(G \) with the operation defined above is a grouplike Menger algebra. Moreover, since \(a \cdot b = o(a, b, \ldots, b) = o(a \cdot e, e, \ldots, e) b = ab \) by Condition (5a), it follows that \(G \) is isomorphic to the diagonal group of the above defined Menger algebra.

Theorem 5. If \(G \) is a finite group and \(n \) an odd integer, there exists an \(n \)-place grouplike Menger algebra whose diagonal group is isomorphic to \(G \); if \(n \) is even and the order of \(G \) odd, there exists an \(n \)-place grouplike Menger algebra whose diagonal group is isomorphic to \(G \).

For \(n = 2m+1 \), we define \(\varphi(a_1, \ldots, a_n) = a_1 a_2^{-1} \cdots a_{n-1} a_n \). For \(n = 2m \) and the order of \(G \) odd, we define \(\varphi(a_1, \ldots, a_{2m}) = a_1 a_2^{-1} \cdots a_{2m-1} a_{2m} \). The maps \(\varphi \) are easily seen to satisfy the conditions of Theorem 4.

If both \(n \) and the order of \(G \) is even there need not exist \(n \)-place grouplike Menger algebras whose diagonal group is isomorphic to \(G \). For example the cyclic groups of even order and the dihedral groups of order twice an odd integer cannot be the diagonal group of any \(2 \)-place grouplike Menger algebra. In order to show this let \(G \) be one of the above groups and assume there is a map \(\varphi \) satisfying the conditions of Theorem 4. Hence \(\varphi(a) \neq \varphi(b) \) for \(a \neq b \) and \(\varphi(ab) \neq \varphi(a)b \neq e \).

Setting \(c = ab \), we obtain from the second condition that \(\varphi(c) = \varphi(ab) = \varphi(a) \varphi(b) = \varphi(c) \). Hence the set \(\{ \varphi(x) : x \in G \} \) and \(\{ \varphi(x) \varphi^{-1} : x \in G \} \) are both equal to \(G \) itself. Hence if \(G = \{ a_1, \ldots, a_{2k} \} \), the product \(a_1 a_{2k} \cdot a_1 a_{2k} \neq a_1 \) in some order. But since \(G = \{ \varphi(x) : x \in G \} = \{ x^2 : x \in G \} \) must therefore equal the product in some order of all the elements of \(G \) taken twice. If \(G \) is the cyclic group of order \(2k \) it is generated by, say, \(a_1 \). The product of all the elements of \(G \) is therefore \(a_1^k \), while the product of all the elements of \(G \) taken twice is \(a_1^{2k} = e \). If \(G \) is the dihedral group of order \(2k \), where \(k \) is odd, let \(a_1 \) and \(a_2 \) be its generators such that \(a_1^2 = e = a_2^2 \). We write every element of \(G \) in the form \(a_1^i a_2^j \) where \(0 \leq i < k \) and \(0 \leq j < k/2 \). Since \(k \) is odd the product of all the elements of \(G \) in any order is of the form \(a_1^i a_2^j \) for some integer \(i \); but the product of all elements of \(G \) taken twice and in any order is of the form \(a_1^i a_2^j \) for some integer \(j \). Hence neither of the above groups can be the diagonal group of a grouplike Menger algebra.

Since the only groups of order \(2p \) where \(p \) is a prime are the cyclic and the dihedral group, it follows that there exist no \(2 \)-place Menger algebras of order \(2p \), where \(p \) is an odd prime.

There do exist \(2 \)-place grouplike Menger algebras of every other order, however. First, let \(H_k \) denote the group of order \(2^n \) in which every element has order \(2 \). Hence \(H_k \) is generated by \(k \) elements, say, \(a_1, \ldots, a_k \). We define the sequence \(x_1, x_2, \ldots, x_{k-1} \) of elements from \(H_k \) in the following manner: \(x_i = a_i \) for \(i = 1, \ldots, k \) and \(x_i = x_{i-k} x_{i+1} \) for \(i > k \). The elements \(x_i \) are all distinct and unequal the identity. Moreover, for \(k > 1 \), the map \(\varphi(e) = e, \varphi(a_i) = x_{i+1}, \varphi(a_{i-1}) = x_i \) satisfies the conditions of Theorem 4. Hence there exists a \(2 \)-place grouplike Menger algebra of order \(2^k \) for every integer \(k > 1 \).

If \(A \) and \(B \) are \(n \)-place grouplike Menger algebras then the direct product \(A \cdot B \) is also an \(n \)-place grouplike Menger algebra with the operation
\[o(a_1, b_1, \ldots, a_n, b_n) = o(a_1, \ldots, a_n, b_1, \ldots, b_n). \]
Hence, since there exists \(2 \)-place grouplike Menger algebras of every odd order and of order \(2^k \) for \(k > 1 \), there exist \(2 \)-place grouplike Menger algebras of order \(2^{2m} \) where \(m \) is odd and \(k > 1 \).

Let \(A \) be an \(n \)-place grouplike Menger algebra of order \(m \). We show there exists an \((n+2)\)-place grouplike Menger algebra of order \(m \). Let \(\varphi \) be the map of Theorem 4 associated with the \(n \)-place algebra. The map
\[\varphi(a_1, a_2, \ldots, a_{n+1}) = a_1 a_2 \cdots a_{n+1} \]
is easily seen to satisfy the conditions
ditions of Theorem 4. And it follows by induction that there exist n-place grouplike Menger algebras of every order $2^k m$, where $k > 1$. Summarizing these results we obtain the following

Theorem 6. There exist n-place grouplike Menger algebras of every finite order if n is odd; if n is even there exist grouplike Menger algebras of every order not of the form $2p$ where p is an odd prime. There exist no 2-place grouplike Menger algebras of order 2p.

The existence of even place grouplike Menger algebras of order 2p for the place number greater than 2 is as yet undecided.

A subset B of a Menger algebra A is called a subalgebra if it is closed with respect to the operation \cdot on A.

Theorem 7. Any finite subalgebra of a grouplike Menger algebra is also grouplike.

Let B be a finite subalgebra of a grouplike Menger algebra A. Then

$$o(b_1, ..., b_{n-1}, x, b_{n+1}, ..., b) \neq o(b_1, ..., b_{n-1}, y, b_{n+1}, ..., b)$$

for $x \neq y$ since A is grouplike. Thus

$$o(b_1, ..., b_{n-1}, x, b_{n+1}, ..., b): x \in B)$$

equals B for each i and hence Condition (3') is satisfied and B is grouplike.

Theorem 8. The order of any subalgebra B of a finite grouplike Menger algebra A divides the order of A.

It is easily shown that B^* is a subgroup of A^*. Hence the order of B^* divides the order of A^*. But A^* and A, and, respectively, B^* and B have the same order.

Any grouplike Menger algebra of prime order therefore has no subalgebras. A composite order, however, does not guarantee the existence of subalgebras. For example the 2-place algebra H_2 of order 2k defined above has no subalgebras. The following 2-place grouplike Menger algebra of order 15 also has no subalgebras. Its diagonal group is the set of integers modulo 15 and we denote its elements by 0 through 14, and define the algebra by means of the map of Theorem 4:

$$
\begin{align*}
\varphi(0) &= 0, & \varphi(5) &= 11, & \varphi(10) &= 2, \\
\varphi(1) &= 3, & \varphi(6) &= 14, & \varphi(11) &= 8, \\
\varphi(2) &= 5, & \varphi(7) &= 1, & \varphi(12) &= 13, \\
\varphi(3) &= 7, & \varphi(8) &= 6, & \varphi(13) &= 12, \\
\varphi(4) &= 9, & \varphi(9) &= 4, & \varphi(14) &= 10.
\end{align*}
$$

References
