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On positions of sets in spaces

by

Karol Borsuk (Warszawa)

Abstract. The notion of position Pos(X, 4) of a set 4 in a space X is introduced
in order to exhibit the most important, global similarities and differences between the
placements of different sets in different spaces. In particular, it is shown that for every
plane continuum 4 with the first Betti number equal to 1 there exists in the Euclidean
3-space E® a continnum A homeomorphic to 4 and such that its position in E* is the
same as the position in E® of an arbitrarily given polygonal knot K.

§ 1. Introduction. One says that a subset 4 of a space X has in X
the same topological position as a set B in a space Y if there exists a homeo-
morphism % of X onto Y such that A(4)= B.

This concept has a purely qualitative character and it does not
allow us to discover any similarity between two different positions.
However, from the intuitive point of view, one can observe some simi-
larities between the position of 4 in X and that of B in ¥, even if 4 is
not homeomorphic to B. For instance, if 4 is a geometric circle lying in
the Euclidean 3-space X = E® and B is a geometric torus lying in ¥ = E?,
then it seems reasonable to consider the position of 4 in X as similar to
the position of B in ¥. In some sense we can also speak about similar
knots tied on a simple closed curve 4 (in E?) and on a set BCE?
homeomorphic to a geometric torus. More generally, it seems possible
to speak in ma  cases about the position of 4 in X being more or
less complicated an that of B in Y and to classify the positions into
some classes, ju as one clagssifies the (mefrizable) spaces into classes
called shapes (see [2], p. 131 and [3], p. 80).

In order to obtain such a classification, it seems to be reasonable
to use some notions of the theory of shape. However, the situation is now
more delicate, because in the theory of shape we can always assume
that the space X in question is a closed subset of an AR(IN)-space M.
But if 4 is not a closed subset of X, then it is not closed in M either,
and thus we are confronted with a situation in which it is difficult to
operate with the notion of a fundamental sequence, basic for the theory
of shape. Thus, instead of this notion, we use here a more general notion
of a weak fundamental sequence (abbreviated to W-sequence).
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§ 2. W-sequences. Let X be an arbitrary subset of a space M ¢ AR (M)
and let ¥ be an arbitrary subset of a space N ¢ AR (). By a W-sequence
from X to Y in M, N we understand a system consisting of sets X, Y,
M, N and of a sequence of maps

f}c: M->N, Ek=1,2,..

’

satisfying the following condition:

(2.1)  For every compacium CC X there is a compactum D C Y such that
i Jfor every neighbourhood V of D (in N) there is a neighbourhood [
of O (in M) such that fi/U ~f,. /U in V for almost all F.

We denote this W-sequence by {f,, X,Y} a,vy Or shortly by f, and
we write j X+Yin M,N. Every compactum D satisfying (2.1) is said
to be _f— assigned to the compactum C.

It is clear that if X and ¥ are compacta, then the W- sequences
]_‘: XY in M, N are the same as the fundamental sequences.

A W-sequence F={fis X, T}y is said to be generated by a map
fi XX if fi(z) = flx) for every point x e X and for k= 1,2, .. It is
?lear that there exist W-sequences generated by a given map f: XY
if and ouly if there exists a map 7 of the closure X of X in M into the
closure Y of ¥ in N satisfying the condition F(@) = f(x) for every point
@< X. In particular, if X = ¥ and M — N and if 4 denotes the identity
map of M onto itself, then {i, X, X}ar, 2 18 & W-sequence generated by
the identity map of X onto itself. We denote this W-sequence by 4
and we call it the identity W-sequence for X in M. T

It f={fi, X,¥}; 5 and 9=19x, Y, Z}y p are W-sequences, then

one can easily see that {gf,, X, Z}) » is a W -
. L, -sequence; we denote it
by _g_f and call it the composition of f and of g. H

§ 3. Homotopy of J¥-sequences. Two T7- sequences f = {f,, X, ¥}, »

and J'= {fe» X, T,y are said to be homotopic (notation: f ~ 1) if for

every compactum € C X there is & compactum D hat for
neighbourhood ¥ of D (in pactum D C ¥ such that for every

such that ) there is a neighbourhood U of ¢ (in M)

(3.1 HWUf/U in V' for almost all % .

Every compactum D satistying
signed to the compactum (.
It is clear that

this ‘condition is said to be (£, f")-as-

(3.2)  The relation of homotopy for W-

) sequences 1 1 ;
and transitive, q 18 reflexive, symmetric
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Two W-sequences f= {f,, X, ¥}, yand ¢ = {9z, X, Y}y, ave said
to be associated if fi(x) = gi(®) for every point 2 e X. Just as for funda-
mental sequences, one proves that

(3.3) Two associated W-sequences are homotopic.

Moreover, one easily proves that

(34) Iff,f'*X-Yin M,Nandg,g: Y—>Z in N, P are W-sequences,
then the homotopies f~f' and g~g' imply the homotopy gf= g’f "\

Repeating the proof given for fundamental sequences in [1], p. 242,
one eagily shows that

(8.8) TFvery W-sequence f: X—Y in M, N induces a homomorphism
bitH Hn(X,QI)—>Hn(_Y,9I) for n=10,1,.. and for every abelian
?}raup A. The homomorphism [y depends covariantly on f. If f~f’,
then fu=fu- If = 1ix ., then fy is the identity isomorphism.

§ 4. Pointed W-sequences. If (X, #,) is an arbitrary pointed subset
of a space M < AR(MM) and (¥,y,) is an arbitrary pointed subset of
a space N ¢ AR (), then by a pointed W-sequence from (X, z,) to (Y, yo}
in M, N we understand the system consisting of (X, x,), (¥, ¥,), M, N
and of a sequence of maps

fur (M, )= (N, ¥o) k=1,2,..,
satisfying the condition:

(4.1) For every pointed compactum (C, ) C (X, x,) there is a pointed
compactum (D, y,) C (Y, y,) such that for every neighbourhood V
of D (in N) there is & neighbourhood U of C (in M) satisfying the
condition fi/(T, %) =fr (U, 2} in (V,yo) for almost all k.

‘We denote this pointed W-sequence by {fy, (X, %), (¥, ¥o)}ar, x> OF
shortly by f, and we write f: (X, ) > (¥, ,) in M, V. Every compactum Ir
satisfying (4.1) is said to be f-assigned to the compactum C.

It is clear that if {fx, (X, %), (¥, ¥s)}ar,x is 2 pointed W-sequence,
then {f, X, ¥}, y is a W-sequence and that every pointed fundamental
sequence is a pointed W-sequence. Moreover, if X, ¥ are compacta, then
the mnotion of the pointed W-sequence is the same as the notion of the
pointed fundamental sequence.

If (X, 2) = (Y, y,) and M = N, and if i: MM denotes the identity
map, then {i, (X, ), (X, %)}y, 2 I8 said to be the ddentity pointed
W-sequence for (X, a,) in M. It will be denoted by iy, 4, u-
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The definition of the composition of W-sequences can be transferred
directly to pointed W-sequences.
Two pointed W-sequences

f= {jka (X, @), (Y, ?/o)}M,N and f’ = {fléy (X, @), (Y, %)}M,N

are said to be homotopic (notation: f~f’) if for every compactum ¢C X
there is a compactum DC Y (Whieil is said to be (_ f, j ") - assigned to C)
such that for every neighbourhood V of D (in N) there is a neighbour-
hood U of C (in M) satisfying the condition

{4.2) Ty m) =fif(U, m) in (V,y,) for almost all % ..

It is clear that this relation is reflexive, symmetric and transitive and
that if we replace, in the composition gf of two pointed W-sequences,

Jby f'~f and g by ¢'~g, then gf’ ~gf.
One easﬂy “shows (by repeatmg the proof given in [1], p. 252 for
pointed, fundamental sequences) that

{4.3)  Every pointed W-sequence I: (X, 2)>(Y,y) in M, N induces
a homomorphism f* of the n-th fundamental group mwa(X, x,) into
the n-th fundamental group mu(Y, y,). This homomorphism depends

covariantly on f and if f f’ then f f If f=tdx w001 them
f is the zdmtzty womorphzsm. B

§ 5. W-equivalence and W-domination. Let X, Y be arbitrary sets
lying in spaces M, N ¢ AR(I) respectively. The sets X, Y are said to
be W-equivalent in M, N (notation: X Y in M, W) if there exist two

W-sequences f= {f,, X, Y}y, g= {gk, Y, X}y 4 satisfying the follow-
ing conditions:

(5.1) _!Z_f‘:ix,m and fg iy .
If we assume only that f, g satisfy the condition
{5.2) Jo~iv
then we say that X W-dominates ¥ in M, N and we write X : /- Y in
M, N, or Y< Xin M, N.

One ea,sﬂy sees that
{5.3) IfX%Yz'n M, N, then X%Y'm M, N.

{5.4) IfX% Yin M,N and Y%Z in N, P, then X ~ Z in M, P.
w
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B35 IfX<Yin M,Nand Y<Z in N, P, then X< Z in M, P.
w w w

(5.6) If X is a retract of ¥ and Y is a closed subset of a space N « AR (M),
then X% Y in N, N.

Replacing in the definitions of the -equivalence and of the W-domi-
nation the sets X, ¥ by pointed sets (X, %), (¥, 9,) and the W-sequences
f, g by pointed W-sequences and the condition (5.1) by the condition

W 2ixanry  J92hzumw
and the condition (5.2) by the condition
S92 57,0,

respectively, one gets the notion of the W-equivalence in M, N of (X, «,)
with (Y, y,) (nofation: (X, x,) = (Y, y,) in M, N), or the notion of the

W-domination in M, N of (X, x,) over (Y, v,) (notation: (X, ,) % (X, vo)
in M,N, or (Y,,) % (X, x) in M,N) respectively. It is clear that
(X, x) %(Y,yu) in M,XN implies X% Y in M,N and that (X, )
% (Y,4,) in M, N implies X% Y in M,N.

If there exist spaces M, N ¢ AR (M) containing X and ¥ respectively
and such that X% Y in M, N (or (X, x) % (Y, 9, in M, N), then we

say that X is pseudo-dominated by ¥ and we write X % Y (or that (X, @)
is pseudo-dominated by (X, y,) and we write (X, a,) % (Y, 9,)). If the
spaces M, N can be selected so that X = Y in M,N (or that
(X, @) = (Y,y,) in M,N), then we say that X and Y (or (X, z) and
(¥, y,) are pseudo-equivalent and we write X = Y (or (X, @) = (Y, 9,)
respectively).

(5.7) TEEOREM. If X = Y then the homology groups of X are iso-
morphic to the corresponding homology groups of Y.

Proof. Since X = ¥, there exist spaces M, N ¢ AR(I) containing X
and Y respectively and such that there are W-sequences f: XY in M,N
and g Y—-»X in N, M such that gf ~ 'LXM and fg = iy, - Then (3.5)
and (5.1) imply that the eomposmlons gh,f,,Z and fmgh, of the homo-
morphisms fr;: Ha(X, A)—~H,(Y, A) and of I Ho(Y, %)~ Ha(X, U) are

identity- momorphlsms
By the same argument one gets

(5.8) THEorREM. If X 5 Y, then each homology group of X 'is am
r-image of the corresponding homology group of X.
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(5.9) CoroLLARY. If X % Y, then each homology group of X is a direct
factor of the corresponding homology group of Y.

Similarly, using (4.3), one gets:

(5.10) TeEOREM. If (X, x) = (Y,9,), then the fundamental group
na(X , @) 48 isomorphic to the fundamental group mn(Y,y,) for n=1,2, ..,

(5.11) THEOREM. If (X, @) S (Y, ), then the group mo(X, z,) is an
r-image of the group mn(Y, y,) for n=1,2, ..

§ 6. Homotopy similarity and /¥-similarity of pairs. Let A be an arbitrary
sul.)set of a space X and let B be an arbitrary subset of a space Y. The
pairs (X, 4) and (¥, B) are said to be homotopically similar (notation:
(X, A4) ;(Y,B)) if there exist two maps i

ffX->Y, ¢ ¥Y-X
such that

(6.1) f(4)CB, f(X\4)CY\B, g(BYCA, ¢g(I\B)CX 4
and that

gflA~iqin A, fy/B~ipin B,

(6.2)
INENA) ~ig 4 0 XINA,  fgf(TB) ~ip 5 in T\B.

(nomI;c' és eIe;r that if A has in X the same topological position as Bin ¥
‘ ion: ,‘A) = (Y, B)), then (X, 4) ;—;(Y, B), but not conversely.
Fo; xllélstancfa, if X, Y are disks, 4 is an arc lying in the boundary of X
:,1,5 . consists of only one point b lying on the boundary of ¥, then one
y sees. that (X, 4) ;(Y,B) but the relation (X, 4) « (Y, B) does

not hold. It i impli i
is clear that (X, 4) o (Y, B) implies that 4 and X\A are

11‘1;);;01;01)1ca,lly quiva,lent to B and to Y\B respectively. However, it is
er e};roblmuggtp whether the concept of the homotopy sim.i’larity
furnishes a sufficient base for a classification of pair;
point of view of their most conspi rope ('X’ “loquste to
tho noads of e pacir o nspicuous, global properties, adequate to
Thus let us replace this conce
: t b imilarit
based on the notion of the W—secmgnce.y HiOTED congapt of smilarity,
Consider an arbitrary subset 4 of a
of a space ¥ and assume that X , Y
;L[ s N e AR(TV) respectively. Let us say
in M’.N (notation: (X, 4)
of maps:

space X and an arbitrary subset B
are closed subsets of two spaces
e : that (A?, A), (Y, B) are W-similar
o (Y, B) in M, N) if there exist two sequences

6.3) fi M>N  and g NoM, k=192
H

) vee
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such that
f'= {fkiA:B}M,N; _._f” = {fkyx\A; Y\B}M,N$

(6.4) -~ " :
g = {98, By Aty 2y 9" = {9k, YN\B, X A}y 3, are W-sequences
and that
9f 2ians 9T 2xaa,n
(6.5) ™ oy

f'9' gy, I =iwmy-
It is clear that
(6.6) (X, 4) (Y, B) in M, N implies that 4 =B in M,N and
A = Y\B in M,N.

In the special case when A = B =@, the pairs (X, 4), (¥, B) are
considered as identical with X and ¥ respectively, and then the relation
X =(X,0) «;(Y,@) = Y in M, N is the same as the relation X = Y
in M,N.

Let us prove that the relation (X, 4) - (Y,B) in M, N does not
depend on the choice of spaces M, N « AR (M) containing X, ¥ as closed
subsets respectively. That is, let us prove the following

(6.7) TumorEM. Let A be a subset of a space X and let B be a subset
of & space Y. Asswme that X is a closed subset of a space M ¢ AR(M) and
also @ closed subset of another space M! e AR(M), and that ¥ is o closed
subset of a space N ¢« AR(M) and also a closed subset of a space N’ € AR(IM).
If (X, 4) An—;(Y,B) in M, N, then (X, A) ;(Y,B) in M',N'.

Proof. Since M, M’', N, N’ « AR(I), there exist four maps
a: MM, o: M'>M, f§: NN, p~ N'->N

such that a(z)= o’(x) = ¢ for every point ze X and Bly)=B'y) =¥
for every point ye ¥. It is clear that setting ar= o, a,=dy fr="45,
Bp=p for k=1,2, ..., one gets for every set HC M ~ M’ and for every
set KC N ~ N’ the following W-sequences:

apg = {og, H, Hlpg, 50 5 Eéz = {ag; H, H}zp 5
ﬁx = {fr, K, K}N,N’7 éj'g: = {ﬂ;ci K, K}N’,N .
It follows by (3.3) that

. ’ R

(6.8) EHE:EI ~ gy OO = lEous
. . + .

BxBx ~ iy Brbr =lmxN-


Artur


148 K. Borsuk

Now let us assume that (X, 4) oot (Y, B)in M, N, that is that there

exist two sequences of maps fr: M—N and gy N>M, k=1,2
satisfying (6.4) and (6.5). Setting T

Je=Bfea’y  Go=agep for k=1,2,..,
we infer by § 3 that
_f’ = {fu 4, B}y, n =_513f’211 ’
9=y By A, 10 = 0.y B,
_f” = {fk’ X4, Y\B}M',z;" = Brnf "oy,
9" ={Gx, T\B, X\A}y, o = ax 49" Br5

are W-sequences. Moreover, (6.5), (6.8) and (3.4) imply that

rplr 1

o Ry ’ ’
v ad PrsBraf ax a4~ ax a9 a4 = Bx\a%xaa X Txo,ars

= ﬁY\Bf”EIX\ a " al ~ﬁ f" 111 ~ , .
A ad Prie ¥ Brpf 9 Brs 2 Brusbrs ¥ iyg -

It follows that (X, 4) ;(Y, B) in M’, N'. Thus Theorem (6.7) is
proved.
Theorem (6.7) allows us in the sequel to omit in the relation “«s”
w

the words “in M, N”, that is to write (X, 4) — (¥, B) instead of -
w

(X,4) ~(¥,B)in M, .
Let us observe that

(6.9) If (X, 4) = (Y, B) then (X, 4) —~ (X, B).

w
In fact, i “— i

. xct, .lf (.X’A) = (¥, B), then there exist maps f: X—>¥ and
g 7 Xs:rdsfy};ng (6.1).a,nd (6.2). Let M, N < AR(M) be spaces con-
taining respectively as closed subsets. Then there exist maps

J: Ms¥ y g NoM

such that f(#) = f(z) for e i g

poin 30 Settng o Svery point z ¢ X and g(y) = g(y) for every

J and gz =g for k=
W-sequences and one eas g 7.1’ %, ..., one gets two
satisfiod. easily sees that the conditions (6.4) and (6.5) are
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§ 7. Position of a set 4 in a space X. It is clear that the relation “‘;”
is reflexive and symmetric. Let us show that it is also transitive, that
is let us prove the following )

(7.1) TEeorEM. If (X, A4) Ju—;(Y,B) and (Y, B) A;(Z, 0), then
(X, 4) = (Z, 0).

Proof. Consider space M,N,P ¢ AR(I) containing X, _Y, Z as
closed subsets respectively. Assume that (X, A) —~(Y,B) and (Y, B)

w

;,—;(Z , (). Then there exist sequences of maps fy: M—>N, gr: N—>M,
k=1,2,.. such that f, ¢, f", g", given by the formulas (6.4), are
W-sequences satisfying conditions (6.5). Moreover, there exist sequences
of maps ¢x: NP, yx: P->N, k=1,2, ... such that the formulas

ZI = {¢xs B, C}n,p» ﬂ' = {¥%, C, Blp, v

9" = {gxy YNB, Z\Cly,p, ¥ ={ps, Z\C; Y Blpy
define W-sequences satisfying the conditions

Y¢ ~ipn, o'y ~igp,

(7.2) s L -

’r

1 N rr_ 1! ,
Y@ =ilypny @Y =lzcp-

Then
Z’ = {pufus 4y Clap = f'_ " ¥ = {gy¥x, O, Alp = !_J’z' ’
l" = {ufus A, IO}y, p= ftf” ’ 8" = {g3 9 ZNC, XA}p 3 =g''y"

are W-sequences. Moreover, we infer by (6.5), (7.2) and (3.4) that
¥y =gy =gf" =i,
and similarly that
2 2 igp, By 2 ixams XY Zizor-
Hence (X, 4) o (Z, C) and Theorem (7.1) is proved.

It follows by Theorem (7.1) that the collection of all pairs (X, 4),
where 4 is a subset of a space X, decomposes into disjoint classes of
pairs, where (X, A) and (X', A’) belong to one of these classes if and
only if (X, A4) - (X', A’). The class containing (X, 4) will be denoted

by Pos(X, A) and called the position of the set A in the space X. Thus
Pos(X, 4) = Pos(Y, B) means that (X, 4) = (Y, B).

A direct consequence of this definition is that

(7.3) If Pos(X, A) = Pos(Y, B), then A _;_, B and XNA = Y\B.
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Exampie. A map f of a space X into another space ¥ is said to be
Tomologically trivial if there exists a compactum D CY such that
fly)~0 in D for every true cycle y lying in X .

Consider in the space E* a geometric circle 4 and a trefoil B. Let us
recall the following two well-known facts:

(7.4)  Every homologically trivial map ¢: A—>ENA is null-homotopic.

{7.6)  There evists a map p: A—>E™B which is homologically trivial,
but it is mot null-homotopic.

Now let us show that Pos(E? A) # Pos(E? B). Otherwige there
exist two W -sequences

f=1{f B4, ENBlgg, 9= {gi BB, B A} s

satisfying the relations
7.6) g]f ~ gy and f_g ~ fpag -

Let w: A->FE*B be a map satisfying (7.5) and let D C E™B be
a compactum such that
(1.7 w{y)~0in D for every true cycle y lying in A.
Sinee g is a W-sequence, there exists a compactum € C E*\A such that
(7.8) gi(D)C C  for almost all &,

and that the map gpy: A —E® assigns to every true cycle v lying in 4
a true cycle gip(y)~0 in C. Hence the map gi: 4—>E™\A given by the
formula g,(x) = g,y(z) for every point x e A, is homologically trivial and

we infer by (7.4) that
(1.9) g is null-homotopic.

Since f i? a W-sequence, there exists a compactum D C E*\B such
that fi{C)C D for almost all . One infers by (7.8) and (7.9) that

(7.10)  For almost oll % the map frgey: A—>F® is null-homotopic in D.

But the second of the relations (7.6) implies that for almost all k
the mapf'kgk/D is homotopic in E*\B to the map ¢/D. It follows that
P Jegey in BB, and we infer by (7.10) that the map y is null-homotopic
in E™B, contrary to (7.5). Thus the supposition that Pos(E%, A)
= Pos(E® B) leads to a contradiction; hence Pos(E?, A) # POS(ES,’B).

(7.11) Remark. The following example i
\ ‘ ple shows that in general the
relations (X, 4) ;(Y,B) and (4, 4,) ;(B,BD) do not imply the re-
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lation (X, 4,) = (Y,B,). Let X=Y = E? and let 4 = B be the annulus
consisting of all points (z, y) ¢ E* satisfying the inequality 1 < #®+ 2 < 9.
Tet C denote the circle given in E* by the equation 2*+ 42 = 4 and let
p=(%,0), g= (%, 0). Setting 4= C v (p), By = C v (), one can readily
see that (4, 4y) > (B, B,), whence also (4, 4,) - (B, B,). However,
(E?, A,) and (B, B,) are not W-similar, because for each component of
the set B4, the first Betti number is positive and E*\B, contains a com-
ponent with the first Betti number vanishing.

(7.12) Remark. It follows by (7.3) and by Theorem (5.7) that
Pos(X, A) = Pos(Y, B) implies that all homology groups of A are
isomorphic to the corresponding groups of B, and all homology groups
of XA are isomorphic to the corresponding groups of ¥Y\B. The follow-
ing problems remain open:

Does Pos(X, A) = Pos(¥Y, B) imply that oll homology groups of X are
isomorphic to the corresponding groups of X¥?

Does Pos(X, A) = Pos(¥,B) imply that there are points acA,
beB, 1,¢ XNA, yo¢ Y B such that zi(4, a) ~7a(B,b) and an(XNA4, )
~mu(Y\B,y,) for every n=1,2, ..

§ 8. Similar decreasing sequences of sets. Let 4, D 4,0 ... be a sequence
of subsets of a space X and let B; D B,D ... be a sequence of subsets of
another space Y. These sequences are said to be similar (in X, Y) if there
exists a sequence of homeomorphisms

fk: .X'o—nb—:Y, k=1,2,...

satisfying the following conditions:

{8.1) fx(dx) = Br for k=1,2,..,
(8.2) " fyAx=fu/Ar in By for every k<
(8.3) Fel(XNAp) = fi(XNAx)  for every k<.

A sequence Z,, Z,, ... of subsets of a space Z is said to be strongly
decreasing i Z if Z,, les in the interior Zy of- Zy (interior relative to
the space Z) for every k=1,2, ...

Let us prove the following

(8.4) TEEOREM. Let X, Y be two homeomorphic ANR(IN)-spaces, let
{4y} be a sequence, strongly decreasing (in X), of compacta lying in X and
let {Bx} be a sequence of subsets of ¥ similar to {4} (in X, Y). Then

oo oo
Pos(X, ) 4x) = Pos(Y, [ Bx).
k=1 k=1
11 — Fundamenta Mathematicae, T. LXXIX
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Proof. We may assume that X is a closed subset of a space M e AR ()

and Y is a closed subset of a space N ¢ AR(I). Setting
=(¥x<0, 1)) v (Fx (1)),

one readily sees that 17 and N are contractible ANR (I)-spaces, and
hence AR(I)-spaces. Let us identify each point & ¢ X with the point

= (Xx<0, 1)) v (M x (1),

(z,0) e I and each.point y ¢ ¥ with the point (y, 0) e N. Hence X is

a closed subset of I and ¥ is a closed subset of N.
Since {By} is similar to {44} (in X, ¥), we infer that {By} is a strongly
decreasing (in Y) sequence of compacta. Setting:

-A=mA’C7 Bszk;

k=1

. 1
Ak:AkX<0.,k—;i>, Bk><<0 74—!—1> for k—=1,2,..,

one rAeadjly‘ sees that the sets Ay are neighbourhoods of the compactum A
(in M) shrinking to A and the sets By are neighbourhoods of the com-
pactum B {in ¥) shrinking o B.

Let fur XY, k=1,2,.., be a sequence of homeomorphisms
satisfying the conditions (8.1) 1 (8 2) and (8.3), and let g = f;* for every
k=1,2,.. Since X is closed in M and N ¢« AR(IM), there exists a map
i;i M:hl\; E;mh that fi(x) = fe(w) for every point # e X. Similarly one

ers that there exists a map gx: N—M such that gi(y) =
point y € Y. Setting P = auly) for every

fu@) = fle)  for every point Z = (z, 1) e I,
9y) = gx(y)  for every point y = (y, 1) N,

one gets maps fx: N and §e: N> If we reeall th
e co
and (8.3), then we infer' that rilttions (82)

05 If k<t ton Fdemii e in B CE and iiB oi B
in Aijk, Foldr 2fuldx in ByCBy and Gu/Bx ~ /B

(8.6) If k<K, then f,(2) fk, (@) for every & = (1, 1) with ¢ XAy and
(i) = G(d) for every § = (y, ) with y ¢ TNBy.

) aJn(}ol(lisxde;:‘ 2 nehlghbonrhood V of the set B in the space IV. Then there
index %, such that B, CV. Setting U/ = 4_, we get
U of the set 4 in i and we infer by (8.5) thk;t fet a nelghbouthont

fk/U‘:fko/U in BkoCV for every k> k, .
Hence ' = {f¢, 4, B}z 4 is a W-sequence.

icm
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~ Tn order to prove that [ = {f;, X\A, T \B}j 5 is 2 W-sequence,

consider a compactum € C XA. Since the sequence {4y} shrinks to A,

there exists an index %, such that 0 C X4y, Let- @ denote the subset

of M consisting of all points %= (x,1) with o eX A, . Then G is
a neighbourhood of C in I and we infer by (8.6) that

(8.7) 746 = fr|G = for every k<

Setting D = = f,(0), we geb a compactum D C ¥\B. If Visa nelghbour—
hood of D in the space N, then there is a neighbourhood UC@of Cin
the space If such that Frdl ) CV. It follows by (8. 7). that f,/U = Tl T
for every % > k,, and consequently Ful O = frsa/ U in 7 for almost all %.
Hence f is a W-sequence.
By an analogous argument one proves that g = {gx, B, A}z, 5 and
{gk, Y B, XA}y i are W-sequences. Moreover

_!}_J} {gkfk’A A}, L4,31

7§ = G B Blics = in s

_&_f = {Gufrs XA, D AYgr 5 = ixxua,ﬁ{

f 7= = {Fuf> 1B, I\Blg, & = ix\n > r

because §ifx(z) = grfr(x) = o for every point # ¢ X and fkgk(y)_ Y fm
every point y e Y. Hence (X, A4) t—»(Y B) in i1, ¥ and consequently

Pos(X, A) = Pos(Y, B).

(8.8) ProsrEM. Does Theorem (8.4) remain true zf we omit the hypothe-
sis that X, Y e ANR(IN)?

Tet us illustrate Theorem (8.4) by the following )

(8.9) ExamprE. Let A denole the circle defmed as the set of all pomts
&= (&, Lo, 3) € B® satisfying the equations:
m%""mg =4 and #=0,
and let Ay denote, for k= 1,2, ..., the torus consisting of all points x e B®

with o(@, A) < 1fk. Then A ={) Ag.
k-1
If B is an arbitrary continuum with py(B) =1, lying in the plane 7,

then there exists in B? a strongly decreasing sequence of topologlcal
annuli {B;} such that B = ﬁ B;. Assume that H? is a subset of E®defined

by the equation z, = 0. Let Bk denote the set of all points (#;, @, %3) € E®
such that (m,, @, 0) e B and —1/k <@ < < 1fk. Tt is clear that {By} is

11>
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a strongly decreasing (in E°) sequence of compacta such that (Q% Bi=B "

» . k=1
Moreover, one easily sees that there exists a homeomorphism

h: BBNA —— E™\B
onto

such that for every k=1,2, ..., h maps the boundary Az of Ay onto
the boundary By of Bi and that there is a homeomorphism

hx: Ay — B
onto

such that he(z) = h(z) for every point e Ayx.
Setting, for every k=1,2,...,

fe(@) = h(x) for every point ze Ay,
fofw) = h(z) for every point we F\Ay,

we get a sequence of homeomorphisms fz: E"—t—>E3 satisfying (for X = B%)
. onto
the conditions (8.1), (8.2) and (8.3). It follows that

(8.9) T kéik’, B —1 ~ f— . —
gy, 2filBy in Ay and i [ENBy)

Now let us consider a simple closed polygonal curve K lying in E°.

Then there exists a homeomorphism ¢ mapping the torus A, onto a set

FCE® so that g(4) = K. Setting
g(®) = fg~(z)  for every point zeT,
we get a homeomorphism §: 7B, such that
. g(z) = hy‘l(a;j for every point e T,
where T denotes the boundary of T. Setting
Ay=g(4y) and By= By for k=1,2,..,
we get two strongly decreasing sequences {Ak}, {E;,} of compacta lyiné;

in F* and such that 4, = g(4,) = T = §~(B,) = B,. Moreover,

00
A= dy=g(a) = 8=\ Be=j
Ql r=g(d)=K and B=km1 By=g7YB).
Now let us set, for every k= 1,2,
ey

ik(m) = gfi'§(x)  for every point z T ,
Fiz) = for every point @ ¢ B*\T.
These formulas define a map fy: B> B, because if z e T, then
7i§(2) = gh™hg ™ z) = a.
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Moreover, one easily sees that fr is a homeomorphism and that
fk(ﬁk) = ﬂ;l.{lg'l(Bk) = gfi'(By) = g{dy) = fik .
Finally, if ¥ < k', then §(Bx) = §g~*(Bx) = B and we infer by (8.10)
that
FuBs 27uiBe w A and F(ENBi) = el (BB -
Tt follows that {4} and {By} are strongly decreasing sequences of
compacta similar (in B® E?®) and we infer by Theorem (8.4) that

Pos(F®, K) = Pos(E, B).

Since the set B = §~*(B) is homeomorphic 0 B, we have shown that
for any simple closed polygonal curve K lying in E®* and for any plane
continuum B with p,(B) =1 there exists a set B C E* homeomorphic
to B and such that Pos(E% B) = Pos(F?, K). Thus, from the intuitive
point of view, one may say that on every plane continuwm B with py(B)=1
one can tie a knot similar to the given polygonal knot.

§ 9. Positions of continua in the plane. As an application of Theorem
(8.4), let us prove the following )

(9.1) TuorEM. Let A, B be two continua lying in the plane B2, Then
Pos(F?, A) = Pos(E*, B) if and only if Sh(4) = Sh(B).

Proof. If Pos(E?, A)= Pos(E* B), then (7.3) implies that Sh(4)
= Sh(B). It remains to prove the converse. We limit ourselves to the
case where the number of components of the set B4 and the number
of components of the set FE>\B are infinite.

Tet us arrange the components of the set E™A into a sequence
Gy, Gy, ..., and the components of the set BB into a sequence Hy, H, ...
such that G, and H, are unbounded, and that G # Gy, Hy = Hyfor i # j.
By a k-perforated disk we understand a subcompactum of P with the
boundary being the union of k+1 disjoint simple closed curves. One can
easily see that for every k=1,2,... here exist two k-perforated disks: A
with the boundary being the union of simple closed curves Cp oy Og, 17 -+ Cr
and B; with the boundary being the union of simple closed curves
Dy os Diry o3 D satistying the following conditions:

(9.2) 0, :CG; and D, ;CH; for i=0,1,..,k.
(9.3)  The sequences {Ax} and {Bx} are strongly decreasing and A = [ Ag,
-] k=1
B=) B:.

k=1
One readily sees that- there exists a sequence of homeomorphisms

fi BB, k=1,2, .,
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preserving the given orientation of E* and such that

(9.4) FelOpd) =Dy for | i=0,1,..,k
and

(9.5) fend(BNAR) = fi(BNAy)  for k=1,2,..
- It follows that

(9.6)  flde) =By for k=1,2,..

and that

(9.7) feldx = fulAx in By for k<K

The relations (9.6), (9.7) and (9.5) are the same as the relations (8.1),
(8.2) and (8.3). Thus it suffices to apply Theorem (8.4) in order to infer
that Pos(E?, 4) = Pos(E*, B).

§ 10. Position and Cartesian product. Let us prove the following
(10.1) TaEOREM. If Pos(X, 4) = Pos(¥, B) and if Shw(X) = Shw(T),
then Pos(Xx X, A xX)= Pos(¥Yx ¥, BxT).

Proof. Assume that X, ¥, X Y are closed subsets of spaces
M, N, i, ¥ e AR(TV) 1espect1vely By our hypotheses there exist four
sequences of maps: fi: M >N, gi: N=>M, fu: M> N, gu: NN
(k=1,2,..) such that

fr= {fk{A:B}M,Ns 9 ={o B, A}NM9
(10.2) = { X A, TNB}y v 9" ={gpy I\B, X\A}y 4,
J =X, Dusy ad §= ,X}&,ﬁ

are W-sequences

such that

(10.3) 9F 2 i, F9 =ipgn,

(10.4) 9T 2ixiamy "9 ~irny,

(10.5) if ~iza, Ti~ip5.
Let us set:

(10.6) e, 2) = (fk(m),fk(:ij) for every point (z,2) e Mx M,
vy, ¥) = (g(y); 9x())  for every point (y,7) e Nx ¥ .
Then

75 MXM—»N’xN and  yp: NXN->MxH for k=1,2,.

Let us show that ¢’ = {gx, AxX, Bx 1}
Mx i Nxf 18 2 W-sequence
Consider a compactum (fC 4 xX. Then there exist ).; compactum CC A
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and a compactum € C X such that € C ¢x €. Since f " and f are W-se-
quences, there is a compactum DCB and a compactum DC T such
that for every ne1ghb0urhood V of D (in N) and for every naighbour-
hood ¥ of D (in V) there is a neighbourhood U of € (in M) and a neighbour-
hood U of § (in M) such that

10.7) U < fisd U in V and foJU = F,02|U in V jor almost all k.

Let W be a mneighbourhood {(in N X N) of the compactum Dx D.
Then V and ¥ can be selected so that V'x¥ C W. Setting U= Ux T,
we get a neighbourhood of ¢ (in M x M) and we infer by (10.6) and
(10.7) that

9 U = @)U in VXV CW  for almost all k.
Hence ¢’ is a W-sequence. Similarly one shows that

Q_/’ = {"Pk! B X f’ AXX}Nxﬁ,MxIC{ 3
2" = {‘pk’ (X\A) XX) (Y\B) X YMxﬁl,Nxfif and
P = {yps ( (Y\B)x ¥, (X\A)XX}N,:NA Mxdr  are W-sequences .

Let us prove that lpqp '—_AXX M i

Consider a compactum CCAxZX. Then there is a compactum
0 C A and a compactum § C X such that ' C ¢'x 0. By (10.3) and (10.5)
there is a compactum D CA and a compaectum DCX sueh that for
every neighbourhood ¥ of D (in M) and for every neighbourhood VotD
(in M) there is a neighbourhood U of D {in M) and a neighbourhood 1}
of D (in M) such that

(10.8) gufe/U=~4Uin¥V and el U ~ /0 in 7 for almost all .

Let W be a neighbourhood (in M xM) of the compa.ctum ox0.
Then ¥V and ¥ may be selected so that VxV CW. Setting U = UxT,
we geb a neighbourhood of J (in M x M) and we infer by (10.6) and (10.8)
that

e/ U ~ /T in VXV C W for almost all k.
Hence ¢’ ~ 14, % uxjr- Similarly one shows (using (10.4), (10.5) and.
(10.6)) that -

s » “ ~ Il 1 A
Y ipyeg,nxi PP 2 hix ayx X, bt and "y’ 2ip\px 2, NxF -

Since X x X is closed in M x M and Y x ¥ is closed in NXN, we
infer that Pos(X¥xX,AxX)=Pos(¥Yx¥,Bx¥) and the proof of
Theorem (10.1) is finished.

(10.9) ProprEM. Is it true that if Pos (X, A) # Pos (Y, B) and
Pos(X, A) = Pos(¥, B), then Pos(X x X, AxAy= Pos(¥ XY, BxB)t
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On essential cluster sets
by
S. N. Mukhopadhyay (Vancouver)

Abstract. Let f be a real function defined in the open half plane H bounded by
a line L. The fine cluster set of f at a point % in T, designated by W(f, x), is the set of
all y such that for every &> 0, » is a point of positive lower density for the set
F @y~ &, y+ ¢£)}. The fine cluster set of f at x in the direction 6, designated by W,(f, =, 8),
is defined analogously by restricting f on a line Ly(x) in H emanating from =z and making
angle § with L. It is shown that each of the sets {a: = ¢ I; Wolf %, 8) ¢ Wy(f, 2)} and
{6: 6€(0,7m); Wyf,,6) ¢ W(f,®)} is of measure zero when f is measurable and is
of the first category when f is continuous, and some consequences are studied.

1. In a recent paper [3] Goffman and Sledd have obtained certain
interesting relations between the total essential cluster sets and the
directional essential cluster sets. They have proved that if a measurable
function f is defined in the upper half plane above the z-axis and if § is
a direction then except a set of points x of measure zero the essential cluster
set of f at o is a subset of the essential cluster set of f at # in the direction 6.
If further f is continuous then this exceptional set is also of the first
category. Regarding the ordinary cluster sets there is an analogous
result [2]. In this paper we study further properties of these sebs by
weakening the density conditions. We have defined the fine cluster sets
and obtained certain relations between the fine cluster sets, essential
cluster sets and ordinary cluster sets.

2. The function f is taken to be defined in the open half plane H
above a line L, which, in particular may be taken to be the z-axis. The
point on the line L, viz (x,0), will be denoted simply by « while any
other point in H will be denoted by p. u(4) and u*(4) will denote the
Lebesgue measure and the Lebesgue outer meagure, respectively, for the
set 4, linear or planar, according as A is linear or planar, which will be
clear from the context. For § > 0, Sy(#) will denote the set of all points- P
in H, whose distance, |p— |, from # is less than §. For 0 < 6 < 7, Ly()
denotes the half ray in H, in the direction 6, terminating at x and Lz, k)
is the open line segment in H in the direction 6, of length k, and having
@ a8 one of its end points. ’
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