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All x,-dense sets of reals can be isomorphic

by
James E. Baumgartner (Hanover, N. H.)

Abstract. A non-empty set 4 of real numbers without endpoints is %,-dense if
between every two members of A there are exactly ¥, members of 4. The proposition
that all &, -dense sets of reals ave order-isomorphic is shown to be relatively consistent
with ZFC+ 2% =1w,.

0. Introduction. If x is an infinite cardinal, let us call a set A of real
numbers without end points x»-dense if A has power » and between every
two distinet members of 4 there are exactly » members of A.

Consider the following assertion:

(¥)  All s,-dense sets of reals are order-isomorphie.

Proposition () can be regarded as an extension of Cantor’s famous
theorem on the rationals, which asserts in particular that all x,-dense
sets of reals are isomorphic.

Using a diagonalization argument (see [9]), Sierpinski showed that
there exists a collection of 2% mutually non-isomorphic sets of reals,
each of which has power 2%. Tt follows from this that (x) fails very badly
if the continuum hypothesis (CH) is true. Essentially the same argnment
can be used to produce a model of ZFC (Zermelo-Fraenkel set theory
plus the axiom of choice) in which CH is false and (*) still fails very badly.
(One starts with a model of ZFC+ CH and blows up the continuum with
Cohen reals. See [3] for a description of this method of forcing.)

Nevertheless (#) is relatively consistent with ZFC, and it is the pur-
pose of this paper to give the proof.

The results in this paper were announced in [2].

1. Notation and terminology. Our set-theoretical usage is standard.
If % is a set then |x| is the cardinality of . Since we assume the axiom
of choice throughout, cardinals may be identified with initial ordinals.
Therefore we may make statements like “a << 2%, where « is an ordinal.

If P is a partial ordering and p, ¢« P, then p and g are compalible
if there exists r e P with p, ¢ < r; otherwise p and g are incompatible.
P has the countable chain condition if every set of pairwise incompatible
elements of P is countable.
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Let A and B be ordered sets with order types ¢ and y respectively,
We write ¢ <v to mean that A is order-isomorphic to a subset of B,
The order type of the set of all real numbers is denoted by 2.

A class C of order types is well quasi-ordered by < if for any sequence g,
7 < w, of types in C there exist ¢ and j such that << j and ¢; < gy. '

2. Statement of results. We prove the relative consistency of (x) in
two steps: .

THEOREM 1. Assume CH. Suppose A and B are R _dense sets of reals.
Then there exist sequences (A,: o< 2% and (B,: a < 2% satisfying
(i) A= J {4, a< 2%} and B= | {B,: a<< 2},
(i) 4, nAg=B, " By=0 if a # p.
(iii) 4, and B, are countable and dense in A amd B respectively.
(iv) Let P be the set of all finite, (one-one) order-preserving functions p
mapping A into B which satisfy the restriction that x e A, iff p(x) e B, for

all e domain p. Let P be partially ordered by rinclusion. Then P has the
countable chain condition.

. THEOREM 2. It is relatively consistent with ZXC that () holds and
M =, .

Theorem 1 is proved by combining a diagonalization argument
similar to Sierpinski’s with a back-and-forth argument similar to Cantor’s.
No knowledge of the theory of forcing and Boolean-valued models for
set theory is presupposed. Such knowledge is, however, presupposed for
the proof of Theorem 2.

It is easy to see that if (x) holds, then there is an order type ¢ (namely
the type of the ,-dense set) such that for all uncountable types y, if
<< 1 then ¢ <y. In the terminology of [1], the set {p} is a basis for
{p: » < 4 and y is uncountable}. Thus Theorem 2 yields also the relative
consistency of the assertion that {y: vy <1 and v is uncountable} has
a finite basis.

We also wish to mention an unpublished result obtained recently
by Laver. Let M be the class of order types obtained by closing the
set {0, 1} under the following operations:

(1) well-ordered sums,

(2) conversely well-ordered sums,

(3) arbitrary countable sums.

Laver proved in [5] that the class M is well quasi-ordered by <.

Now 1{313 M7 be the class of types obtained by closing {0,1} under the
operations (1), (2), (3) and

(4) s,-powered real sums.
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By combining the methods of [5] with the methods of this paper,
Laver has proved the relative consistency of the assertion that M* is
well quasi-ordered by <.

We conclude this section with two open questions.

1. Is it consistent to have all ,-dense sets of reals isomorphie?
The answer would be yes if Theorem 1 is true without the assumption
of CH.

2. The proof of Theorem 2 can easily be extended to show the con-
sistency of Martin’s axiom (see [6] and [11]) together with (#). Does (%)
follow from Martin’s axiom +-2% > x?

3. Proof of Theorem 1. By replacing 4 and B with isomorphic images,
if necessary, we may assume that both A and B are dense in the reals.
Let = {rx s: r and s are rational intervals (ie., closed intervals with
rational end points)}. We say that #x s and r'x s’ are separated if r ~ v’
—s~s =0, Let § be the set of all finite, pairwise separated subsets
of I. Let P’ be the set of all finite, order-preserving functions mapping A
into B. Given ze®, let P(x)= {p ¢ P': |p| = |z} and [p ni|=1 for every
i ex}. Clearly for every p ¢ P’ there are many ¢ 8§ such that p € P(x).

Let ¢d,: a< 2% enumerate {d: for some & e 8§, @ is a countable sub-
set of P(x)}. For each a, let x,¢8 be such that d,C P(x,) and let
¢,= {peP': Vrel if pePx) then P{x) ~ d, # 0}. Intuitively, ¢, is the
closure of d,. Note that if U is an uncountable subset of P(«) for some
x ¢S, then there exists a< 2% such that d,C UC¢,. Let {a;: a< 2%e
and <b,: a< 2% enumerate 4 and B respectively, and let (ra: n < o)
enumerate the set of rational intervals.

The construction of the 4, and B, takes place by transiinite recursion.
Let us assume that we have constructed 4, and B, for all g < a. Sup-
pose a is even (if a is odd we reverse the roles of A and B). We will define
sequences (kg 7 < o) and {y,: n<< o) of members of 4 and B re-
spectively such that for all #, Ky cd N ra and 1, ¢ B ~7,. The defi-
nition will be made in the order ky, ks ks Ly obc. At the end we will
let 4, = {kp,: #<< 0} and B, = {l,: n < w}. Let k. be the least member
of the sequence {a,: a<< 9%, not yet in some A,;. Now suppose that we
have already defined %,,. We will show how to define 1,,. (The passage
from I, to k., is similar.) For each m <7, each § < a, each i ez, and
each p in the already-constructed part of P, let X, 0= {leB: P
U {{Fs D} €6 and (Ko, 1) € i} if this set is countable; otherwise let
X, . =0. Let 1,, be any element of

(B ~ra)—{( UBISU U meﬁi) .
B<a m,p,B,1

mppi

This completes: the construction.

8 — Fundamenta Mathematicae, T. LXXIX
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Assertions (i), (ii) and (iii) of Theorem 1 are clear. We must check
assertion (iv). Suppose U is an uncountable collection’ of pairwise in-
compatible members of P. We may assume that [p|=mn for all pe U
and that = is the smallest possible number for which there exists such
a collection all of whose members have power n. An eagy argument using
the fact that each 4, and B, is countable shows that we may also assume
that for all p,qe U, if p # g then domain p ~ domain g = range p
~range ¢= 0. Since § is countable we may assume that UC P() for
some z ¢ S. Finally, we may assume that a< 2% and 4, ez, are such
that d,C UCe, and for all p e U the last-constructed member of p is
in 4,, and the some coordinate of that member is last constructed, say
the second coordinate. Let Q = {p—i,: p ¢ U}. Let A’ = A— | domain p.

nedg

LevMa (a) Assume n= 1. Then for all a e A’ {b < B: {(a, b)} e ¢,} is
countable.

(b) Assume n >1. Then there are only countably many q €@ with the
property that for some a e A’y {be B: g {(a, b)} € c,} is uncountable.

Proof. We define sets K,, K,Cc, as follows. Suppose p ¢, and
P i, = {(a, b)}. We put p ¢ K, (K,) if and only if for allz € §, if p e P (%)
then there exist p’ € d, ~ P(z), &' ¢ A and b’ « B such that p’ ~iy= {(a’, b")}
and o' < a (o' >a). Olearly if pec,, p ~ip={(a,d)} and a A’ then
either p e K; or p ¢ K, (or both).

(a) If part (a) is false, then there exist ae A’ and by, b, ¢ B such
that {(a,d)}, {(a,b)} e K, or {(a,b)}, {(a,by)}e K,. Assume for con-
creteness that {(a, b))}, {(@, b,)} € K, and b, < b,. Let s; and s, be rational
intervalg such that s, n8, = 0, b, €8, and b, €8,. Let 7 be a rational interval
containing a. Since {(a, b,)} ¢ K; we can find {(a;, by)} € d, ~ (r X 8;) such
that & < a. Now let » be a rational interval containing & but not a;.
Sinee {(a, b,)} ¢ K, there exists {(a;, b;)} € d, ~ (7' X 8;) such that a, < a.
But then a, < a; and b; < b,. Hence {(a;, b;)} and {(a,, b;)} are compatible,
contradicting the fact that both are members of U. This establishes part (a).

(b) Suppose i, = X §. If part (b) is false, then there exist disjoint
rational intervals s,?C sy, je{l,2} and uncountable ' C@ such that
for each ge@’ there are @y A’ and b, b, e B such that b < b,, b, €3,
byet and qu {(ag, b))}, gv {(ag, b,)} € K;. We assume for concreteness
that § = 1. Since @’ is an uncountable subset of P’ all of whose members
have power n—1, it follows from the minimality of n that there exist
q,) 2 €@’ such that ¢, # ¢, and ¢, and ¢, are compatible. Since by as-
sumption on U domain ¢, ~ domain ¢, = range ¢, ~range ¢, = 0, we can
find #,,2,¢8 such that ¢ e P(m), ¢,e P(x,), every member of =, is
separated from every member of z, and for each ¢ e x, U , there exists
i’ em, such that ¢C4'. Then any member of P(z,) is compatible with

iom®
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any member of P(x,). We may assume that a, < a,,. Of course ryxsC i,
80 @y = @y {ryX s} ¢ 8. Since for some be B, g, v {{a,, b)} « P(«]) there
is some p, ed, ~ P(x;), some a; e A and some b;eB such that p, ni,
= {(a;, b7)} and @, < a,,. Now let r be a rational interval around a, small
enough so that a; ¢ 7 and rxtCi,. Let o3 = 2, v {rx{}. Since for some
beB, g, {(a,,b)} « Px;) there exist pyed, ~ P(x}), ayc A and bie B
so that p, N iy = {(as, )} and @, < a,. But then a; < a; and b; < b;.
Since every member of P{z,) is compatible with every member of P(x,),
it follows that p, is compatible with p,, a contradiction since p,, p, e U.
This establishes part (b), and completes the proof of the lemma.

It follows from the lemma, and from the fact that domain p, »
~ domain p, = range p, ~ range p, = 0 for all p,, p, ¢ U, that there exist
geQ, ae A’ and b e B such that gu {(a,d)} « U, a and b are constructed
after stage a (*), and for all a' ¢ A’ {b'e B: g {{a’,b")} e ¢} is count-
able (of course if # = 1 then g =0). Say & = kg, and b = I, for § even
(the other case is similar) and greater than a. Of course m < n since by
assumption b is the last-constructed coordinate of (a, b). But then
b = lg, € Xy, Which is countable, and this contradiets the definition
of l,,. Hence P satisfies the countable chain condition and the proof
is complete.

4. Proof of Theorem 2. We assume that the reader is familiar with the
theory of forcing and generic sets, the theory of Boolean-valued models
for set theory, and the relationship between them. Suitable references
are [10], [7] and [8].

Assume that 2% =y, and 2§t =, in V, the universe of all sets.
Suppose 4 and B are ,-dense sets of reals. If we let 3, be the complete
Boolean algebra associated with the partial ordering P of Theorem 1,
then it follows immediately from Theorem 1 that % has the countable
chain condition (i.e., every chain is countable) and that in V3P the state-
ment “4 and B are isomorphic” is Boolean valid. Furthermore, since
IP|=s, we have |Bpl= 5, 50 “oe — x and 2% = x,” is also Boolean
valid in V&, :

Of course, the above argument could be repeated inside y®r for
any A’ and B’ for which the statement “A’ and B’ are x;-dense sets of
reals” is Boolean valid. Using the methods of Solovay and Tennen-
baum [11], this process can be iterated x, times to obtain a Boolean
universe V3 in which the statement “2% = x, and (*)” is Boolean valid.
Hence if ZFC-L-2¥ = s + 2% — g, is consistent, then so is ZFC+ o
= 8, (*). By results of Godel 4], if ZF is consistent, so is ZFC4 2%
= §,+ 2% = x,. This completes the proof.

(*) This is the only place in the proof where the continuum hypothesis is required.
8*
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A positional characterization of the
(n—1)-dimensional Sierpinski curve in § (n#4)

by
J. W. Cannon (*) (Madison, Wis.)

Abstract. Let X be a compact metric continuum which can be embedded in the
n-sphere 8%, say by a map h: X 8", in such a manner that the components of §"—h(X)
form a null sequence T, Us, ... satisfying the following conditions: (1) §"—U; is an
n-eell for each 1, (2) CLU; ~ C1U; = @ if i # j (Cl denotes closure), and (3) e J Uy = 8.
Then X is ealled an (n—1)-dimensional Sierpiiski curve. A beautiful theorem of
G. T. Whyburn [11] states that, for » = 2, there is precisely one (n—1)-dimensional
Sierpifiski curve X up to homeomorphism and that properties (1), (2), and (3) are
satisfied for each embedding h: X -8 We observe in this note that recent developments
in the topology of manifolds allow one to extend Whyburn's result directly to higher
dimensions (n # 4).

Conventions. In all proofs we shall assume that n=3 or n > 5.
Our manifolds will have no boundary. If X is an (n—1)-dimensional
Sierpifiski curve and h: X — 8™ an embedding of the type ensured by that
fact, then kh(X) will be called an S-curve; ie., an S-curve is a nicely
embedded Sierpifiski curve. We assume the reader is thoroughly familiar
with [11] and simply indicate the alterations necessary in higher di-
mensions.

The recent developments alluded to in the first paragraph ave the
following.

Axnurus TegorEM [7]. Let U be o connected open subset of a topo-
logical n-manifold M (n # 4) and let B and B’ be two locally flat n-cells
in U. Then there is a homeomorphism h: MM, fizved outside U, such
that h(B) = B'. ;

APPROXIMATION THEOREM FOR CELLULAR MAPS [2][10]. Let f: M —+N
denote a proper cellular map of n-manifolds (n # 4) and {U,} an f-satu-
rated open covering of M (i.., ff(U,) = U, for each index o). Then
there is a homeomorphism g: N->M such that g o f= identity mod{U,}
(i.e., for each p e M, there is an index a such that {p,gef(p)}C U,).

CoROLLARY. Suppose K is a compact subset of M such that ff(p) = p
for each p e K. Then g may be chosen so that g o f|K = identity. Hence,

(1) The author is a Sloan Foundation Research Fellow.
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