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The finite levels of the hierarchy
of effective R-sets

by
Peter G. Hinman (Aon Arbor, Michigan)

Abstract. Let B, be the operation of countable intersection, R,;, the operation
obtained by applying Kolmogorov's operator R to the dual of E,, R, the class of sub-
sets of w obtained by applying R, to recursive families of subsets of w, and ¢R, the
class of complements of sets in R,. Then R,=1II{, R, =X, and for all n, Ry c4;.
We are concerned here with the question of which of the many methods which in some

-gense “generate” A} from II; also suffice to “generate”  Ruiq N 6Ryyy from Ra. Pirst

we show that the iteration of a jumip operator j over a system of ordinal notations does
not suffice: if j is the hyperjump or indeed any jump definable in R, cR, form, the
resulting class of sets is properly.included in R, eR,. On the other hand we define

‘a set K,,, and a prewell-ordering on it such that the classes of sets reducible to seg-

ments of Ky, form a hierarchy for Ry N 6Rpyy. Finally we show that 4 eeRyyy just
in case it is reduecible to a set inductively defined by a monotone operator in R, form.

Several recent articles ([Am 1, 2], [Hi 1]) have considered various
aspects of the interplay between Kolmogorov’s operator R and hierarchies

- of recursion theory. In this paper we contribute to this development

and in particular answer a question posed in [Am 1] concerning the
relative extent of several hierarchies. Our notation will follows that of
[Am 1] and [Hi 1] as much as possible and the reader will profit from
some familiarity with these papers. The set of natural numbers is denoted
by N and the set of number-theoretic functions by N¥. Variables a, b, ¢, ...
range over N; a,f,y, ... OVer N¥; and ¢, v, B, ... over the set of parma,l
functions from some N* into . We identify finite sequences of natural
numbers with their images under some fixed encoding and use letters
s, t, u to denote them; s{m) is a sequence of length one greater than
that of s, s ¢ is the concatenation of s and 7, and sC? means s is an
initial segment of . Dm and Rg denote domain and range respectively.

1. The E-hierarchies. If I is an operation on countable families of
subsets of N, we say I has base M C N¥ iff for any family F and any
meN

m e I(F) o Ba,ea Vp[m ¢ Pla(p))]
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We shall need to consider the following bases closely connected with M:
M = {y| Vo, pTpla(p) e Rgyl},

(1 M* = (p|a,e s VD VBrersEa[<a(p), B(0)> « ReyT} , -
RM = {y| VtVu
(i) O ¢ Rgy,

(if) » Ct e Rgy—>u e Rgy, and
(1if) ? € Rgy>Ha, 5 Vo[1<a(p)) e Rgy} .
Although an operation I' will in general have many bases, it is obvious
that M°, M*, and RM depend only on I' 50 we may write I, I*, and RI"
for the operations with these bases.
We wish first to consider the two sequences of operations:

Qo= (countable intersection), @, ,= R(Q}),
RBy=1, Rn+1=R(R$1,)~

Each operator generates a class of sets of natural numbers:

@)

Q, = {Qu(F)| F is a recursive fa,miiy} ,j

3
) R = {Bn(F)| F is a recursive family},

where F i3 a recursive family iff the relation m e F (p) is recursive. The
classes R, and R, are well-understood, ‘being respectively II? and 1.
We denote by ¢Q, and cR, the clags of complements of @, and R, sets.

Let L, and M, be the natural bases for the operations @, and R,
respectively — that is, Ly = M, = {Ap-p}, L,,, = RL}, and M,,,= RM’.
In accord with [Hi 1, 5.1], we define functionals g7 and r¥ ag follows:
for any (partial) function g,

=0, i Ha,,Vplpla(p) ~ 0],
@ey=1, i Vo,8plap) ~1],
is undefined, otherwise;

(4) .
20, i Ha,e, Volp(a(p) =0
7‘7?(‘77) ~1 I} if VaaeMn‘rt[p [‘P(a(p)) ~1
is undefined, otherwise.

B
],
From [Hi 1], 7.5, we have for all ACN and all n:

(6) A€o, <+ A is recursively enumerable in a¥,
(6) AeQ, . ned,, - A is recursive in qF.

Our first goal is to establish the corresponding result for the R,
and r}. In fact, we shall see that the operations @, and R, are equivalent,
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the classes Q, and R, coincide, and the functionals ¢* and »¥ are recursive -
in each other. We recall from [Hi 1], 2.9, that for any two operations I"
and A, I' subswmes A (I"> A) iff there exists a primitive recursive func-
tion z such that for any family 7,
_ A@® =Tip-Flx(p))) -

Note that is a transitive relation. We will say that I" and A are equivalent
(I'~A) iff both I'> A and A=1T.

LeEmvA. For any operations I' and A:

(a) I =T,

(b) '=A—-TI" = A,

(¢) A" > A and A* > A°,

(d) RI'> T,

(e) I'=>A—-RI'> R4,

() RI'='A and RI'> A°> Rl = A%,

(g) RI'~RRT.

Proof. (a) and (b) are trivial, (c) is proved just before [Hi 1], 4.7,
(d) and (e) are [Hi 1], 4.6, (f) follows easily from [Hi 1], 4.7, and (g) follows
from (d) and the proof of [Hi 1], 4.7.

THEOREM 1. For all n, Qu~R,. o

Proof. For n =0 this is obvious so assume Q,~R, as induction
hypothesis. From @, > R, we derive successively Q% = R? by (b) of the
lemma, Q) > R? by (e) and transitivity, and @,., > R, ., by (). Toward
the converse, we have first B, ., > Rl > @S by (d), (b), and the induction
hypothesis. If n=0, R,,, > Qs is wellknown [Hi 1], 2.9, examples.
Otherwise, Ry > @n = RQ;_, > Q) , > Q,_,, Q% , by the induction hypo-
thesis, (d), and (c). Hence R,., >R} >@Q% ,,Q, , by (d) and (b), so
Ep11>Qp s by (). Hence R, ,~RE,,,>RQ: =@, by (g) and (e).
Finally, B, ., > @, by (f) and again applying (g) and (e) we obtain R,
> RR, ., > RQ; = Q,,, as Tequired. V

COROLLARY A. For all n, Q= R, and ¢¥ and r¥ are recursive in
each other.

CorOLLARY B. For all ACN and all n:

(a) 4 ecRyy > A 48 recursively enumerable in 7},

(b) AeR,; ~neR, A is recursive in .

The functional 7 has been studied by Aczel in [Ac] where it is
called Bf. Since R, is the operation # it is easy to see that for any @:

~0, it HaValp(a(n) ~ 0],
Bie)1~1, it Veln|p(a(n) ~1],
is undefined, otherwise .

Then we have immediately
1
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CoroLLARY C. For all ACN:
(2) A e Ry A is recursively enumerable in Ef,
(b) A e Ry n eRyr A is recursive in By

2. Short hierarchies. In [Am 1], § 3, Amstislavskii considers several
hierarchies of subsets of N and shows that all of the sets involved lie in
R, neR, but leaves open the question whether or not any of these hierar-
chies exhaust R, » ¢R,. In this section we ghall show that these hierarchies
comprise only part of R, ~cR, and indeed, in some sense, only a very
small part.

Let ¥, denote the restriction of Eff to total functions. In view. of
Corollary C and the following immediate consequence of [Hi 1], 5.11:
(7)  The class of sets A C N recursive in ¥, is properly included in the

class of sets recurgive in Ef,
we need only show that all of the sets in the hierarchies of [Am 1], § 3 are
recursive in ;. '

In accord with the notation of [Am 1], § 3, let <, be a well-founded
partial ordering of a set W C ¥V with least element 1. If j: §(N)—-T (),
then = (j,<y) is the class of those functions ¥: W->T(N) such that there
exist partial recursive g, y, and y such that for all @, b, ¢ with @ ¢ W~{1}:

() pla) <wa,

(ii) x(a@,bd) € F(p(a))>b<wa, and

(iii) ¢ e F(a)orp(a, ¢) €j(V,), where

Vo= {<b, 6| x(a,bd)e g"(tp(a)) and ¢ e F(b)} .

We Yv-rite A =[¢] to mean that Am-{e} (H, m) is the characteristic
functlon_of A. If hj denotes the hyperjump, a basic property of F, is that
there exists a primitive recursive = such that 7j([e]) = [z (¢)]:

) T]IEORE?K[ 2. If F en(hj,<w) and F(1) is recursive in E,, then there
exists a.pa'rtwl recursive function ¢ such that for all a e W, & (a) = [o(a)].
In particular, each F(a) is recursive in H,.

Proof. Following closely the proof of [Am 1], Theorem 3.1, we
assume for application of the recursion lemma that « ¢ W and

Vb <y a)(F (b) = :
Lot (Vb <w a)(F (b) = [{}(®)])

U= {<l, a,b, 0| x(a, ) € [{IH{p(a))] and o e[} (0)]}
={¢ a,, 0 {{BH{p(@)} (B, x(a, b)) =0 and {{} ()} (B, o) =0}

U is only. recursively enumerable in F;, but for a e W, Vo= {<b, ¢)|
<lya,b,65 e U} is recursive in ;. In fact, there exists a primitive re-
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cursive o such that Ve =[c(l, a)]. Hence kj(Vs) = [z(c(l, 4))] and given
an index for y it is easy to compute an FE,-index for ¥ (a).

Now if H,(a) and b, are the sets obtained by iterating the hyper-
jump over, respectively, the notation systems Dy of [En]and U of [Kr-Ro],
we have

COROLLARY D. For all a D, Hya) is recursive in By. For all a €T,
Ba is recursive in B, . Hence the class of sets recursive in some Hy(a) or Ba is
properly included in Ry N CR,.

Proof. For H, this is an immediate consequence of Theorem 2,
[Am 1], Lemma 3.2, and (7). The methods used to establish the results
for B, are similar to those msed in the proof of Theorem 2.

Theorem 2 can be considerably strengthened. The following im-
provement of (7) is an immediate consequence of [Ac], Theorem 3:

(8) If f is a functional with domain N and recursive in Ef, then the
class of sets A C N recursive in f is properly included in the class
of sets recursive in Hf.

Let us call § an R; ~ eR, jump operaior iff there exist recursive relations §

and T such that for any ACN:

§(A) = [m] Ta,en, VoS(4, m, alp))}
= {m| Vo, T T4, m, a(p))} -

Let f; be the functional defined for total a by:

0, it mej({n| a(n)=0}),
Jite, m) = 1, otherwise.

From the extended version of [Hi 1], 7.5 established in [Hi 1], § 8, we have
(9) for any R, cR, jump operator 4§, f; is recursive in Bf.

THEOREM 3. If j is any R, cRy jump operator, Fen(j,<uw), ond
F(1) € Ry ~ Ry, then the class of sets recursive in some F(a) with ae W
is properly included in Ry~ R,

Proof. By (9) and Corollary C there exists a functional g defined
only on total arguments, recursive in E¥, and such that f; and F(1)
are both recursive in g. As in the proof of Theorem 2 we may construct
a recursive function o such that for all ae W, o(a) is & g-index for F(a).
Hence the class of sets recursive in some F(a) with a e W is included
in the class of sets recursive in g, which is properly included in R, N eR,
by (8) and Corollary C.

A similar result holds for all Ry~ 6Ra, 7= 2.
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3. Longer hierarchies. Although the above hierarchies do not ex-
haust R, 10 ¢Ry41, We shall construct one here that does. In [Hi 1]
5.2 we defined for each operation I" a set K™ and a mapping | |” of KT ontc;
an 01(;dmal %". Let Kn, | |n, and x, be the set, mapping, and ordinal corre-
sponding to I"= E,. The following facts are easily derived from [Hi

1
5.4, 1.3, 7.4, and 5.7: —

(10) A is recursively enumerable in 7 < A is many-one reducible to K,

(11)  There exists & function % partial recursive in #}¥ such that (i) w ¢ &,
and |uls < jola>n(u,v) =0, and (i) |[ols < |ulp—>n(u,v)~1.

For each » << uy, let Ku(v) = {u| u ¢ K, and |ul, < Th
have immediately ! e 52 3. hen from. (11) we

(12) ?<wn—>Kn(v) is recursive in #¥.

If we combine this with (10) and the boundeduess argument of [Hi 1], 5.9
we obtain for any 4 C N: ' T

(13) A is recursive in vijE[v[v{ #n and A is many-one reducible
to Ea()].

;[‘hus it J{,,.f(v) = {4} 4 is many-one reducible to' K,(»)}, the classes Kon(v)

or v < %y, form a hierarchy on the set: ive in ¥ i

o y sets recursive in #;7, that is on R, ., ~
We do not know whether or not these are i i

e &6 proper hierarchies — that

<y —>Rnlu) # Fnl),

a,lthoygh we conjecture that they are. In any case we can of course make
them proper by removing any superfluous classes. We wish to show that
the resulting proper hierarchy still has order-type w,. Let

*
Ky = {u| we K, and Vo[|v|s < [4]n~>Ku([uls) is not many-one

reducible to Ku(|vlx)] and Vo([vls = |uln—>u <o)}.

It is not hard to * s .
in * and Pfovid:: i,th&F oy Is recursively enumerable but not recursive
o nﬂ . 8.2 unique notation for each v << #, such that ¥n(v) is
strictly larger than any Ja(u) for u< ». The mapping | |, induces a uni
mapping ||, of Ky ont inal »* que
that < » » 0060 some ordinal x, < x,. Suppose for a contradiction

W < o =|‘T]Je]r there is a unique ordinal-preserving function ¢
mAPping Hn(x,) onto K. Tn fact, ¢ can be defined by:

¢(u) 2 veue K,(%y) and v ¢ K} and Va[if a i i
n n is an ordinal- i
map of Ky(|ul) onto Kj(|v[}), then a(u)= v]. Hrpreeng

icm
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The function quantifier oecurring in the definition is really only a Suslin
quantifier (Vo @p—a(p)—) so a bit of computation using & uniform
version of (12) and its analogue for K% shows that ¢ is partial recursive
in 7*. Then since for any o,

9 e K* oHulu e K,y(%) and ()=o)

and K,(») is the domain of ¢, K is recursive in r¥, which is a contra-
diction. Thus we have proved

TrEROREM 4. For u e KX, let Fop(|uly) = Fou(|uln). Then the classes Ko ()
form a proper hierarchy of lenglh xn which exhausts Ry, ™Ry,

We note that x, is the same as the ordinal wg, of [Am 2]. The hierarchy
constructed there also exhausts R,.; M cR,., (see [Hi 2]).

4. Inductive definability. A function @: F(N)-»T(I) (here called an
(inductive) operator) is monotone iff 4 CB implies @(A)C B(B). Any
monotone operator has a smallest fixed point

"= {4] &(4)C 4}.

If C is a clags of operators, a set 4 is C-monolone inductively definable
iff A is many-one reducible to ®* for some monotone operator @ in C.
For any partial function 6, let Z, = {m| 6(m)=~0}. An operator is
in X, .. iff the relation m e ®(Z,) is a 23, ... subset of N x NV. In this
section we present a generalization of the following two results of [KI]
and [Ac], Theorem 1, 2, respectively: for all ACN,
A € cRy(=IT}) A is II{-monotone inductively definable,
1 .. .
14) A ecfy(=r.e. in Bf)o A is Zl-monotone inductively definable.
DrrmvITION. For any inductive operator & and any n:
(a) @ is Ry« for some partial recursive functional g and all 6,

@(ZO) = {'m’l ﬂﬂﬁeMnVQ[g(ei m, ﬁ(q))dol} ]

(b) @ is weakly Ry > for some récursive functional g and all a,
®(Z,) = (m| Epear, Valgla, m, B(9)) = of} .

Tt is immediate that @ is weakly Ry(R,) just in case @ is (), so
from (14) we have for all ACN: .
1B) (n=0,1) AecR, A s weakly R,-monotone inductively de-
finable.

We do not know whether or not (15) holds for all .
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ToeoREM 5. For all n and all ACN:
A eeR, A is Ry-monotone inductively definable .

Proof. Suppose first that 4 is many-one reducible to @* for some R,
operator @. Note that @ is automatically monotone. Let g be as in the
definition and set

f(0,m)~r¥(ip-g(8, m,p)),
80 that

m e D(Zy)—f(8,m)~0.

Clearly f is partial recurgive in 7, so by the first recursion theorem there
is a function §* partial recursive in #¥ such that

0*(m) = f(6% m),
and 6* is the smallest such function. Hence
0¥(m) ~ 0 >m e ¥,

5o @* and 4 are recursively enumerable in 74 and thus in ¢R,., by
Corollary B.

For the other direction, suppose A e 0R,+1 20d let T be a recursive
family such that A= N~R,  (F), that is

medoVa,y,, Hp[m ¢ F(a(p))] .
Let @ be the monotone operator defined by:
(m, 8> e D (B)e>m ¢ F(s) or Eppyr, Va[<{m, s<B(g)>) < B] .
Then @ is an R, operator since
{my 8y € D(Z,) >8Py sy, Va[m ¢ B (s) or 0(Cm, s<B(g)y>) 0] .
We will show
(16) {m, 8) € D Va, pr,,, TAplm ¢ Fls* a(p))],
from which follows

me Ao (m, D> e .

First suppose ¢(m, s) ¢ &* and let a, enumerate the set of all ¢ such

that Vu(uCt—<m,s*u) ¢ 3*). We claim a,e M,,, = RM°. Clauses (i)
and (ii) of (1) are obviously satistied. Furthermore, for any ¢,

{my %1y ¢ O o (m, s % 1) ¢ D(D¥)

>VBsenr, Hg[{m, s B(@)>) 9’@*] .
=Wy 3 Vr[<my 8% 1<y (r)>) ¢ 0],

icm
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and thus (iii) is also satistied. By definition,

Vol<m, s * a(P) ¢@*] ’
80, in particular,

Volm ¢ Bls « ap))] ,

which yields the negation of the right side of (16).
For the left-to-right implication of (16), let

0 = (<M, 55| Vayear,, Tpm ¢ Fls + a(@))]} -

By the definition of &* it will suffice to show @(C)C C. Suppose {m, )
e ®(0). It m ¢ F(s), then m ¢ F(s = @) so {m, s> ¢ C by property (i) of (1).
Otherwise, for some f, e M,,

Valim, s{Bo(@)>) € O] -
For any ae M, ,, it follows from (i) and (iii) of (1) and the definition
of M}, that there exists g, such that (By(g,)> « Rga. Let » enumerate the

set of ¢ such that {By(g,)>te Rga. It is easily checked that y e M, ,, so
by the definition of O,

E”'[m ¢F(3 Bolgo)> * 7(7'))] ’
and thus
Hp[m ¢ F(s * a(p))] .
Since « was an arbitrary member of M, ,,, this shows {m,s) e and
completes the proof.

We conclude by mentioning some open gquestions concerning the
relationships which hold among R, and weakly R, inductive operators.
‘We know only the following:

LeMMA. For any monotone operator @ and amy n:

(2) @ is Ry and n>0->P is weakly Ry,

(b) @ is weakly Ry->® is R?,

(¢) D is weakly R,~® is R,.

Proof. (a) Extending a partial recursive g to one that is total on
total arguments requires only a number quantifier. For » >0, this can
be “absorbed” into the prefix Ha,, ., VP.

(b) For any monotone @,

m e P(Zy)Va[Zy,CLl,~>meD(Z,)].

If & is weakly R,, this is easily put into R? form.
(c) is proved similarly using the fact that for monotone @

m e &(Zy)Ha[Z,C Z, and m e D(Z,)] .
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We do not know whether either (b) or (¢) can be extended to larger n» —
that is whether for any » >1 and all monotone &,
| & is weakly R,—~® is Ry,,, or
@ is weakly R,—>® is Ey.
Either would suffice to extend (15) to such n, since either would imply

that if @ is weakly Ry, the f defined from @ in the proof of Theorem 5
is partial recursive in 7.

(17)
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- Ordres “C.A.C.?
par

B. Leclerc et B. Monjardet (Paris)

Résumé. Les ordres “C.A.C.” (chain-antichain complete) ont été définis par Grillet
dans [5]; ce sont les ordres ou toute partie libre maximale rencontre toute chaine ma-
ximale; on peut amssi énoncer cette propriété en termes d’hypergraphe ([2]): I’hyper-
graphe défini par les chaines maximales d’un ordre “C.A.C.” appartient 3 la classe des
hypergraphes dont I’ensemble des transversales fortement stables égale I'ensemble des
parties fortement stables maximales. Ici, nous développons I’étude des ordres “C.A.C.”,
dans le cas fini. .

Au premier paragraphe, nous en donnons une caractérisation du type Kuratowski
{théoréme 1). Au paragraphe 2, nous caractérisons les ordres gradués C.A.C. et nous
donnons quelques résultats sur leur dimension. Au troisidme paragraphe, nous étudions
les treillis C.A.C., nous caractérisons ces treillis et les treillis gradués C.A.C.; nous don-
nons plusieurs caractérisations des treillis modulaires C.A.C. (théoréme 2); on déduit
immédiatement de ces résultats que ces ordres sont de dimension deux.

0. Définitions et notations. Nous considérons un ensemble E ordonné;
la retation d’ordre sur B sera notée O ou <; nous noterons » 0 y ou z < ¥;
la relation de couverture associée & Pordre sera notée <: x <y #'il n’existe
pas 2z tel que # <<y <<z; la relation dincomparabilité associée & UVordre
sera notée I: 1y si w Ly et y £ 2; 2 est comparable & v si z <y
ou y < .

Une partie libre L de Pensemble ordonné (F, <) est une partie de F
dont les éléments sont deux & deux incomparables (on dit aussi partie
indépendante, sous-ensemble stable intérieurement, antichaine); une chaine
de Vensemble ordonné est une partie de E dont les éléments sont deux
4 deux comparables (c’est 4 dire un sous-ensemble totalement ordonné).
Nous notons £ Pensemble des parties libres, L™ Uensemble des parties libres
maximales; nous notons & Pensemble des chaines, §™ Pensemble des chaines
mazimales.

La dimension (an sens de Dushnik-Miller) d’un ordre O est le nombre
minimum d’ordres totaux dont O est intersection; nous la notons dim (0)
{[4] ou [1] chapitre VI). :

Un hypergraphe (simple) H = (B, #) est le couple formé d’un ensemble
fini ¥ et d’un ensemble de parties non vides de E appelées arétes:
A= {4, 1eI}; une transversale de H est une partie de F rencontrant
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