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Strongly additive functions on lattices
by
Geoffrey Fox and Pedro Morales (Montréal)

Abstract. Let € be a lattice of subsets of a set T, with ¢ £, let G be a complete
metric abelian group, and let i: £ —~G be a strongly additive, (o, 6)-additive function.
It is shown that monotone convergence, together with a regularity condition, are
necessary and sufficient conditions for the unique extension of 4 to 4 strongly additive,
(o, 0) -additive function on the generated (o, d)-lattice. This generalizes a previous
special case, in which £ is an algebra and & is a Banach space.

1. Introduction. The term laftice will refer to a lattice £ of subsets
of a fixed set T, such that ¢ «£. Let A map £ into an Abelian group G.
As was remarked by Smiley ([6], p. 239), additivity, of ring context,
generalizes, in lattice context, to sirong additivity:

MHAUBy=A{A)+A(B)—A{Ad ~B), AP)=0.

The following result ([5], p. 189; [3], p. 327) will serve as the basic lemma:

1.1. TuEoREM. Let L be a lattice, R(L) the ring generated by €, and G
an Abelian group. A strongly additive function A: LG extends uniquely
to an additive function 71: R(L)—G.

‘When u denotes a strongly additive function on a lattice L into an
Abelian group @, u denotes its additive extension to R(L), according
to 1.1,

If @ is a complete metric Abelian group we may suppose its metric g
invariant ([4], p. 487). Then |x| = (0, 2) is a non-negative function on @
with the properties: [ri=0< =0, |z-+y <|e/+]yl, |—x/= |z
Henceforth, a function maps a lattice into a fixed complete metric Abelian
group G. :

A function 2 on £ iz o-additive (6-additive) if, for every increasing
(decreasing) sequence (L,) in £, with HﬁmL" e £, we have )L(Ln)—>z(]i£n1},.).

It 1 is o-additive and §-additive we say that i is (o, 8)-additive. For
strongly additive funections, (o, §)-additivity is the natural generalization
of ¢-additivity in ring context. The ¢-ring generalizes to (o, §)-lattice,
that is, lattice closed under countable unions and countable intersections.
Let 1: £ @ Dbe strongly additive and (o, 6)-additive. The purpose of the
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paper is to establish necessary and sufficient conditions for the unique
extension of 2 to a strongly additive (o, d)-additive function on the
(o, 0)-lattice generated by L. When £ is a ring the conditions reduce to
monotone convergence:

For every monotone sequence (L) in £, (A (Ln)) converges. Accordingly,
the result will contain the extension theorem for an algebra given in (21,
p. 1254).

2. Extension theorems. Let £ be a lattice and let ZCT. If Lef we
say that L is an £-set; a sequence of L-sets will be called an C-sequence.
We denote an increasing (decreasing) £ - sequence by Lnty Ln € L{Lnyy Ly € £),
and, if ¥ is the limit set, we write Lyt B, Ly, € L(Ly) B y Lin € £). The domain
of a funetion 1 (which is always a lattice) is denoted D(1). Let 1 be
a function and let B C 7. The class {L: L<D(4), L C B}, directed by D,
defines the Moore-Smith sequence (A(L))pcprepu. Similarly the class
{L: L e D(2), LD B}, if non-empty, directed I;y C, defines the Moore-Smith
sequence (/I(L))L2 zrepw The lattice of countable unions (countable inter-
sections) of L-sets is denoted £ (f,). All sets, other than classes of sets, are
subsets of 7. ’

2.1. DeFINITION, Let 4, u be functions:

(a) 2 is p-lower regular if, for every B e D), lim  w(F)= A(B).
. i ) FSE,F::D(/J)
(b) .A 18 - upper regular if, for every B « D(J), the class {F: FeD(u),
F D B} is non-empty, and lim u(F) = A(E).
FOE,FeD(u)

2.2. LemMA. Let 1 be a function and let u be a strongly additi )
gly additive function.
Let BeD(1) and let ¢ >0 be arbitrary: d
(@) If A is p-lower regular and F is a D(u)-set contained in E such
that FCGCE and G« D(u) implies (@) —p(F)| <e, then A, Be D(w),
4,BCE and A—BCE—F implies |u(A— B)| < 2e.
(b) If 2 is p-upper regular and F is a D(u)- ontaing
: ©)-set containing B such
that FD GD B Lmd. G e D(u) implies |u(G)— u(F)| < & then A, B e D(u),
A,BOE and A—BCF—F implies [4(4~B)| < 2e.
Proof. Under the hypotheses of (a); (b) we have, respectively,
]g(A—B)] = |p((AvBUF)—(B UF) = u(dwB V) —p(BowF)| < 2,
(A~ B)| = p((A~FP)— (A~ B AF) = u(d NF)—pu(4 ~BnF)| < 2.

2.3. LEMMA. Let A be a Junction, let u be a strongly additive function
and l?t € >0 be arbitrary. If A is u-lower regular (u-upper regular) cmc%
(En) 8 .a decreasing (increasing) D(A)-sequence, there emists o decreasing
(increasing) D (u)-sequence (Fn) such that By C B, (F, D Bu) and |u(Fy)—
—A(By)| < &. Further, given a D(p)-set A contained in (—conmming) lim#,,

n
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" we may choose the sequence (Fn) so as 1o satisfy the additional condition

ACHmF,ClimE, (4D lLmF,DlimA,).
n n n a

Proof. In the first case, choose D(u)-sets By contained in K, such
that B, CCCEx and CeD(p) implies [u(C)— A(Bu)| < 270+,

n
116(C)— p(By)] < 2702, Let Fp = () Bi, 50 that Fp ¢ D(u), Fu C En, Fai-
° 1
For » > 1, B,—F, is expressible as the digjoint union

[Ba—(Ba ~ B)]© [(Ba ~ By)— (Ba ~ B, ~ By)] w ...
w[(Ban B~ ..nB, )~ (BanBin..n B, )]

of which the jth term is contained in FE;— B;. By 2.2(a),
n—1

e (Ba)— p{Fa)] = [u(Ba—Fa)| < Y 277 e<< 27,

50 that 1A(Ha)— u(Fa)| < e
In the second case, choose D(u)-sets B, containing E, such that
BnD CD Byand € ¢ D(y) implies |p{C)—A(En), |4(0)— u(Ba)] < 2-"¢,

n

Let ¥, = {J Bi, then it suffices to observe that, for n > 1, Fy— B, is
1

expressible as the disjoint union

[(Byv Byu ... Bp)— (B, ... v Bp)| v [(Byu ... v By)—
— (B ..U By)lu ... W [(B,_; v Bn)—Ba],

of which the jth term is contained in B;— Ej.
If, in the respective cases, 4 is a D(u)-set contained in (containing)
lim B, , we may choose the B, so as to satisfy the additional condition
n

ACB.CEn (ADB.DE).

Henceforth 4 is a fixed function of domain €.
2.4. Lemma. Let 1 be strongly additive and o-additive. Then . the
following conditions are equivalent:

(a) For every set E, lim A(L) exists.
LCE,LeC

(b) For every increasing L-sequence (Ln), limi(L,) exists. Moreover,
n .
if (a) or (b) holds, then for every increasing L-sequence (Lgp) with limit B,
we have lHm A(L) = lim2(Ly).
LEE,LESZ n
0
Proof. (a)= (b): Let E=|J L, so that Iim A(L)=g¢g exists,
1 LCE,Lef
by (). It will be shown that.lim2(L,) = g. Given ¢ > 0, there exists an
n
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£-set L contained in ¥ such that LCL'C B, L' « £ implies |A(L)— A(L")!,
[A(L)—gl < e. Then
(L) — g1 < |2(Ln)— M)+ [A(L)— 9]
< ML= L)+ AL~ La) 4 ¢
= [A(In v D)= L)+ [AL)= 2L A Ln)| +-e .

Finally, |A(Znv L)—
(b) = (a): It

ML) < & and A(L)— A(L ~ L) =0 (o-additivity).
hni ﬁl(L) does not exist, for some ¢ >0, and every
€
£-set contained in E there exists an £-set L’ such that LCL'CE and
[MI)—A(L")] = e. We may construct inductively an increasing f-ge-
quence (L,) such that |A(Ls)—A(L,.,)| = ¢, contrary to (b).
Similarly we prove the dual lemma:

2.5. LEMMA. Let 1 be strongly additive and §-additive. Then the
following conditions are equivalent:
(a) For every set E, contained in ot least one L-set, Iim ML)
LDOE,LeL

exists.
(b) For every decreasing L-sequence (L), imA(L,) exists. Moreover,
n

if (a) or (b) holds, then for every decreasing L-sequence (Ly) with limit B,
im A(L)= hml(Ln)
LOE.LeL :
Henceforth, up to the statement of Theorem 2.10, 1 is assumed to
be strongly additive, (o, d)-additive and monotonely convergent. By
Lemma 2.4, 1 extends to the function 1, on £ A(E)= m  A(L);
LCE,LeC
and, by Lemma 2.5, A extends to the function 2; on £, A,(H)

= lim A(L). Accordingly, 2, (4) is A-lower regular (i-upper
LDE,Lel

regular).

2.8. LEMMA. The emtension A, (%,) s strongly additive, monotonely
convergent and o-additive (6-additive).

Proof. We treat i, the proof for 2, being similar. The strong ad-
ditivity is clear, so it remains to show that

(a) I EntE, By ef, then i (Bn)—> A (B).

(b) If Bud, Byel, then (1,(H,)) converges.

To prove (a), for each n choose an L-set L, L, C By, such that

L,CLCE, and Lef implies |A(L)—A(By)| < n'. For each n there

exists an increasing C-sequence (Lnm),_,s converging to EB,. Write
2

Kn=\ (Lin v L), so that LnC KnC BEn, Knef, and EKn4+E. Then

() — 2, (Bm)| < m~* and M Em)>2,(B) (2.4), s0 that A (Bn)—1(B).
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To prove (b), let ¢ > 0 be arbitrary. By 2.3 there exists a decreasing
£-sequence (Ly) sueh that |A(Ls)— 2,(Eu)| < &, hence (1,(E,)) is Cauchy.

2.7. Lenwa. (a) If A, is 2;-lower regular it is 6-additive.

(b) If 25 is A ,-upper regular it is o-additive.

Proof. We prove (a), (b) being similar:

Let Enl E, En, E<f , and let ¢ >0 be arbitrary. There exists an
£s-set F contained in E such that FCF'CE and F’ef;, implies
1A(F")— 2,(E)] < e. By 2.3 there exists a deereasmg -sequence (Fy) such
that |A(Fu)— A(Ex)| < ¢ and F ClimF, C E. By 2 6 (2,(E,)) converges.

‘We then have

1hm1 (En)—A,(E)] < [hmi,,(F%) IAE) +e<< 2e.
2.8. LEMMA. A, is 1,-lower regular if and only if 15 is A,-upper regular.
Proof. It will be shown that if A, is i;-lower regular then 1, is
Z,-upper regular. The proof of the converse is analogous. Let Fef,.
Since 4, is strongly additive and monotonely convergent (2.6), and also

é-additive (hypotheses and 2.7), lim i(F)= u(F) exists (2.5). Let
FOE.Fef,
&£ >0 be arbitrary. There exists an € -set F containing E such that

FOF DE and F'ef, implies 2 (F')—pu(B)], |A(F)—A(F)<e Let
Ly B, Ly €L. We have
[2(Ln)— p{ B < [2(La)— A F) [+ |2, F)—#(E)i
< AL v )= 2(FY 4 [2(F)~ 2L, n F)|+&.
Since |A(F)— i (F nLs)| < ¢ and A (Ly v F)->1,(F) (2.7) we have i(Ly)

—u(E). On the other hand, A(L,)—>1,(E) (2.5), therefore u(B) = A(E).

All of the proceeding lemmas (except 2.2) are implicitely involved in
the statement or in the proof of 2.9, which is the basic lemma for the
proof of Theorem 2.10. To reduce the terminology, we say that a funetion
is A-regular if it is 2,-lower regular and A,-upper regular.

2.9. LeMMA. Let A, be As-lower regular, or (equivalently) let 2; be
A,-upper reqular. Let p be a strongly additive, (o, 6)-additive, monotonely
convergent, J-regular function.

(a) If p extends 24 then u, is A-regular and 9-additive.

b) If p extends 7, then u; is A-regular and o-additive.

Proof. We prove (a), (b) being similar.

Let B ¢ (D (), 1et 2 > 0 be arbitrary, and let »(B) = lim 2,(F).

FCE.Fels
Then F contains an £;-set F such that FCF CFE and F'ef, implies
2(F)—v,(E)| < e. By the definition of u,, H contains a D(u)-set K
such that |u(K)— p(P)| < e, and, because £;C D(u), we may suppose
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that F C K. Because 4 is A -lower regular, there exists an £,-set H such
that FC HCK and |2s(H)— u(K)| < e. Then

o B)— po{ B} < ‘”1(E)—‘}v§(H)|+ |75(H)— p ()| + () — o B)| < 3.

We conclude that »(E) = u,(H), proving the A;-lower regularity of ux,.

To prove the A,-upper regularity of u,, we note that ¥ is contained in

some £ -set (because E is a countable union of D(u)-sets and, since u

is 4,-upper regular, every D{u)-set is contained in some L,-set), there-

fOIeF limt 2,(F) = »y(B) exists. There exists an £ -set F' containing
JE.,Felo

E such that FOF'DE and F' € £, implies |A,(F')—v(H)| < e. Let
Eu}E, ByeD(p). There exists an increasing £,-sequence (F,) such that
A (Fn)— u(Br)| < & and F Dlim¥, D E. We have

n

o B)— o B)| < [ B)— 2, (Lt F)| + |2 (L0 ') — s, (1)

< e+ lliinza(Fﬂ)_han(Eﬂ)[ < 2,

and therefore ».(E)= pu,(E). To establish the ¢-additivity of u,, let
Al A, An, A € (D(p,). Since u, is J;-lower regular, A contains an £;-get ¥
such that FCF' CA and F’ ef, implies |A(F')—u,(4)| < e; and there
exists a decreasing f,-sequence (Fy) such that [A(Fp)— u,(ds)] < e and
FC lianﬂ C E. We then have

P 5 A ) — 1 4)] < T A ) — i 2| (i 25(F) — g )

< et [ m P~ 4)] < 2,

completing the proof.

Applying 2.9 to p = 4;, we have the

COROLLARY. Let 1, be 15-lower reqular, or (equivalently) let 3, be A,-upper
reqular. Then Ay, is L-reqular and 6-additive. .

2.10. TueorREM. Let A be a strongly additive, (o, 6)-additive function
on a lattice L of subsets of a set T, with values in a complete metric Abelian
group @. Then ) is uniquely extendable to a strongly additive, (o, 8) - additive
Sfunction 2" on the (o, 6)-lattice £ generated by L, if and only if the following
two conditions are satisfied: l

(a) A is monotonely .convergent.

(b) 2, is A,-lower regular, or (equivalently) A; is I -upper regular.

. I-trt?ojf of necessity. Since A’ is (o, 8)-additive on the (g, 6)-lat-
tice £, A’ is monotonely convergent, and so is its restriction A. Let B« (,

and let FC];m 28(F) = u(B) (which exists because A; is a restriction
Fels f

of 7). Let & >0 be arbitrary. There exists an C;-set K contained in B

icm
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such that KCHC E and H ¢
Let Lyt E, Ly ef. Then

[ La)— p(E)| <

£, implies |A,(H)— p(E)], [A,(H)—4{K)] < «.

(L) 2|+ ) — (B
2ol La ~ K)j+ ¢

< I B)— 1K)+ 2 E)—

But |4l v K)—i(K) < e and 2 (K)—Af{Ls » K) = V(K)—
-0, and therefore A{La)—>u(E), so that u(E) = 2(E).

Proof of sufficiency. Let I7 be the set of all pairs (K, u), where K
is a lattice, £, CX CL’, and p: ¥—G is an extension of %, with the
properties:

(i) u is strongly additive, (o, 8)-additive, monotonely convergent
and A-regular.

(ii) g is the only strongly additive, (o, d)-additive extension of
Age O JU.

We partially order I7 by the usual formula:

ALy ~ K)

(Ray 1) = (Kyy ) =K D3, and  p, extends 4.

By 2.6, the hypothesis and the corollary of 2.9, (£, lm) e IT. Let 4 be
any non-empty linearly ordered subset of /7. Then Jug= {_ {3 (K, p) e 4}
is a lattice such that £, C X, C ¢'. The function u,: 3\,0—>G is well defined -
if we write uo(E)= u(F), where (X, x) is any element of . such that
He%. We will verify (i) and (ii) for g,. It is clear that g, is strongly ad-
ditive and A-regular. Let (E,) be a decreasing 3,-sequence. Let ¢ >0
be arbitrary. Because u, is Z;,-lower regular, Lemma 2.3 implies the
existence of a decreasing £,-sequence (F) such that |[15(Fn)— po(En) < &,
and it follows that (uo(En)) is Cauchy. If, further, Byl E, B sJGo, thén E
contains an {,-set K such that KCE' CE and K'ef; implies
2 E")— o B)| < e. According to 2.3 we may suppose that KC han CE,

and we conclude that x]lm 2o( Bn)— pol B)! < 2¢. Treating mcreasmg oo - se-

quences similarly, we conclude that u, is monotonely convergent and
(v, 8)-additive. To verify (iij for u,, we note that every strongly additive,
(o, 8)-additive extension of 7, on &y coincides with the restriction of u,
to &, for every (K, u)e¢.l. We may now apply Zorn’s lemma to assert
the existence of a maximal element (X', u') of II.

By 2.6, u. is strongly additive, o-additive and monotonely con-
vergent. BV the hypothesis and 2.9, g, is A-regular and o- additive.
By 2.4, g, is the only \th]lﬂ'l\ additive, (o, 0)-additive extension of u’
on X.. We have shown that (J vy uoy € IT, so, by the maxunahty J =R
Smnlarly R =35, and therefore K’ =’. Then 2’ = ' is the required
extension, and the proof is complete.
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If the domain of a strongly additive function is a ring, then the con-
dition of (o, 8)-additivity reduces to o-additivity.

2.11. TurorEM. Let 1 be a o-additive function on a ring R of subsets
of a set T, with values in a complete metric Abelian group Q. Then A is
uniquely extendable to a o-additive function A’ on the o-ring R’ generuted
by R if only if 1 is monotonely convergent.

Proof. Let £ (R’) be the (o, d)-lattice (s-ring) generated by K.
We note that R’ is the monotone class generated by K ([1], p. 12). Since
£’ iz a monotone class containing R, £’ D R’. On the other hand, R’ is
a (o, 0)-lattice containing R, hence also L', so we have &' = £’. Now the
theorem will follow, as a corollary of 2.10, if we show that the monotone
convergeénce of A implies the A,-lower regularity of 1,. Let F ¢ R,. Since
25 is monotonely convergent (hypothesis and 2.6), the argument (b) = (a)

of the proof of 2.4 shows that lim A(F)= u(F) exists. Let ¢ > 0 be
FCE.FeRe

arbitrary. There exists an R;-set K contained in ¥ suchthat K CK'CE
and K' e R; implies [A,(K')— u(E)], [A(K")|—A(K)] < ¢. Let Byt B, Ry e R.
Then

12(Bn)— p(B)] < |M(Ba)— A K) |+ |A(E)— p(B)]
< M Bn v E)— 1K)+ |25(E—Rn)| + ¢

and |A,(Ry v K)— 4(K)| < e Because R is a ring, K— Ry € R,, 80 A(K—Ry)
= A5(H— Ru)—>0 (2.6). Therefore A(R,)—~pu(E). On the other hand, 1(R,)
- J(E), therefore u(B)= 1(E).
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Various approaches to the fundamental groups
by -
M. Moszyinska (Warszawa)

Abstract. The notion of the fundamental group introduced by X. Borsuk in [1] is
useful in the Borsuk approach to the theory of shapes. However, if one is concerned
with the Mardegi¢ and Segal approach (see [3], [4]), then some other notions seem to
be more convenient. One of them, the notion of the limit homotopy group, has been
defined by the author in [7]. Another one, the notion of the shape group, is defined
here in § 4. As regards compact metric spaces, these three approaches turn out to be
in some sense equivalent (§ 6). To explain these connections we start with preliminaries
concerning the category theory (§1). .

For the convenience of the reader, definitions of the two categories R*,R%
(of ANR(R)-systems) and of the categories §%, &* (of inverse systems of groups) are
recalled in the Appendix.

1. Isomorphism and quasi-isomorphism of functors. One of the basie
concepts in category theory is the notion of natural transformation and
of natural equivalence of functors (see [6], p. 59). The notion of natural
equivalence enables us to identify two functors I7,II': X-—£, which,
from the intuitive point of view, coincide. Here, the natural transformations
are treated as morphisms in some category of functors; then the natural
equivalence is simply an isomorphism in this category. In turn, this
notion of isomorphism of functors from % to £, where the categories X, €
are both fixed, is extended to the notion of quasi-isomorphism of functors.
It enables us to study the connection between two funetors II: J—¢€
and I7": X'—~¢C. )

Given two categories X, £, we are concerned with covariant functors
from X to €. Let us consider the category 4™ (1) with all those functors
as objects and with morphisms defined as follows:

for IT, II' « Oby,

A eMory(IT,II')  whenever 1= {Ax}xcony
where

Ay € Morg(IT(X), IT'( X))

() We shall often write M instead of MHE,
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