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Abstract. All spaces are to be metrizable. The paper is motivated by the following
extension problem: Let § be a topologically closed class of spaces and n an integer.
Characterize those spaces X which have an extension ¥ such that ¥ ¥ and the di-
mension of the remainder F\X does not exceed n. Covering dimension applied to the
remainder 1’\X leads naturally to the coneept of a T -horder cover and the order of
a §-border cover. Analogous to dimension theory, §-dim and &-Dim are defined, the
covering dimensions modulo a class &, according to whether finite or arbitrary &'-border
covers are refined.

A solution to the above characterization problem is given in terms of - Dim under
reasonably weak restrictions on &. The following analogues of theorems of dimension
theory are proved under mild assumptions on §': 1. The characterization of I-dim by
mappings into spheres. 2. Sum theorems for §-dim, #-Dim and §-Ind, the strong
inductive dimension modulo the class 9. 3. Dowker’s theorem: J-dim = #-Dim.
4. §-dim < F-Ind.

With the aid of the so-called ambignous spaces, the notions of extensions and
kernels (introduced in {3]) are shown to be complementary. A unified theory of kernels
and extensions results.

1. Introduction. All spaces are understood to be metrizable.

The present paper is an investigation of the following problem of
extensions of spaces (cf. [5]): :

Let & be a topologically closed class of spaces and n be an integer.
Find a characterization of those spaces X which possess an .extension
Y ¢ & whose remainder Y\X has dimension not exceeding 7.

This problem has been succesfully resolved for the class of eompact
spaces by Smirnov [9]. The solution uses certain sequences of so called
border covers (see Section 2 for a definition) with a uniformly bounded
order. Also, Aarts [1] has shown that, for the class of topologically com-
plete spaces, consideration of the order of border covers yields a solution
to the extension problem. In this case, no special sequence of Dborder
covers is required. The present work gives a reasonable solution to the

(t) Both authors were partially supported by the National Science Foundation
Grants NSF GP-12915 and NSF GP-28572.


Artur


76 J.M. Aarts and T. Nishiura

general extension problem via a covering dimension theory using border
covers. The solution includes the results of [1]. It also becomes evident
from examples that, for the class of compact spaces, a solution to the
extension problem will require more structure such as those assumed
by Smirnov [9].

Covering dimension theory using border covers also yields a nice
way to investigate kernels which were studied in [3]. (For the definition
of a kernel, see Section 2.) In [3], we have shown Dy examples that
extensions and kernels are divergent concepts. None the less, we show
in the present paper that these two notions are complementary and that
covering dimension theory using border covers results in a unified theory
of extensions and kernels.

The paper begins with notations and basic definitions in Section 2.
The standard procedures for defining covering dimensions are followed
to give the two covering dimensions modulo a class of spaces ¥ by means
of border covers; the smaller, §-dim, being the result of finite Dborder
covers and the larger, §-Dim, the result of arbitrary border covers. As
the development proceeds, the conditions on T will, in general, become
more restrictive. With minimal conditions, mappings into spheres are
discussed in Section 3. This leads to a characterization of 7 - dim. in Section 4.
Relationships between §-Dim and kernels are derived in Section 5. The
solution of the extension problem via T-Dim is discussed in Section 6.
A unified theory of extensions and kernels is presented in Section 7.
Section 8 concerns finite sum theorems for the two covering dimensions.
Countable sum theorems for the covering dimensions and for ¢-Ind,
the strong inductive dimension which neglects a class 4 (see 2.4), are
discussed in Section 9. Section 10 develops the analogue of Dowker’s
theorem: ¢-dim = §-Dim, and also develops the inequality §-Ind
> §-dim. All these partial results are put together in Section 11.

2. Definitions and notations. The nature of the problem under con-
sideration requires a substantial number of definitions. To ease the ex-
position and for the convenience of the reader, we collect most of them
in this section.

2.1. Let JG denote the class of metrizable spaces. A subelass T of A6
is said to Dbe topologically closed if X ¢4 whenever X is homeomorphic
to ¥ and Y ¢ . Throughout this paper all classes considered ave assumed
to be topologically closed. We also assume throughout that @ e ¥.

2.2, DeriNtrioN. Let § be a class of spaces. A §-border cover of
a space X is an open collection U such that (X\|J V) € 9. The set X\ [J VU
is called the enclosure of <U. The order of a T-border cover (at a point) is
defined as usual (e.g. [8] Definition I.3). Whenever no confusion is likely
to arise, we shall use “border cover” rather than “J-border cover”.
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In dealing with border covers we adopt the following convention.
I V= {V,]yel}isacollectionin X and ¥ C X; then U|Y — the restric-
tion of U to ¥ — is the collection {V, n Y| y e I'}. We also adopt the stan-
dard conventions for collections ([8], Section I.1).

2.3. We now define the small and large covering dimensions modulo
a class §, §-dim and 9-Dim.

DerFINITION. Let § be a class of spaces and X be a space. §-dimX << n
if for any finite -border cover WU of X there exists a §-border cover U
such that U < W and order U < n+41. F-Dim X < » if for any -border
cover W of X there exists a T-border cover U such that U < U and
order U < n+1. It will be agreed that §-dimX = —1 (§-DimX = —1)
if and only if X ¢¥. When ¢ = {0}, we drop the prefix § and simply
write dim. (That Dim = dim on . is a well-known theorem of Dowker [8],
Theorem I1.6). We shall show that 9-Dim = §-dim under rather weak
assumptions (Section 11). It is unknown whether or not §-dim = §-Dim
in general.

2.4. The following definitions were given in [3]. The notion of T-de-
ficiency is motivated by the extension problem. One of the goals of the
present paper is to find relationships between §-dim, -Dim, F-deficiency,
7-surplus and strong inductive dimension which negleets 4.

DEFINITIONS. Let § be a class of spaces and X be a space. A T-kernel
(7-hull) of X is a space Y ¢ with ¥ C X (¥ D X). (Thus, the enclosure
of a T-border cover of X is a closed ¥-kernel of X.)

J-Sur X = min {Ind X\Y| ¥ is a ¥-kernel of X} and

F-Def X = inf{Ind Y\X| Y is a ¥-hull of X}.

(Here, Ind is the strong inductive dimension. Ind = dim on JG.)

F-Sur and $-Def are, respectively, the strong surplus and sfrong
deficiency with respect to .

The strong inductive dimension which neglecis 3, of a space X, §-Ind X,
is defined in an inductive manner similar to that of strong inductive
dimension, [8] Definition 1.5. The induction is started by taking #-Ind.X
= —1 if and only if X e¥. For peculiarities of this definition see [3].

2.5. MONOTONICITY OF A CLASS. In our discussions we will need to as-
sume certain monotonicity conditions on a class of spaces 9. That is,if ¥
is a certain type of subset of X and X ¢, then Y €. The types we will
consider are closed, open, F, and @;. We will use these modifiers to express
the type of monotonicity we wish to use. For example, closed monotone
class F. The relationships between the various types of monotone classes
are obvious.

2.6. ADDITIVITY OF A GLASS. YWe will use two basic kinds of additivity
conditions on a class § of spaces. ‘
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DEFNITION 1. Let § be a class of spaces. If Zed whenever 7
= X u Y with X closed, X ¢¥ and Y €7, then we say ¢ is weakly additive.
DEFINITION 2. Let § be a class of spaces. Suppose X ¢ ¥ whenever
there is a closed cover F of a certain type with & C §. Then we say  is

closed additive of that type. There are three types we will consider: finite,

countable and locally finite. We will use the expressions finitely closed
additive, countably closed additive and locally finitely closed additive.

2.7. MULTIPLICATIVITY OF A cLASS. The multiplicativity conditien,
which will be used, will be defined in Section 6.2.

2.8. ConvENTIONS. If 4 is a subset of X, then Bx(4)(clx(4)) denotes
the boundary (closure) of 4 in X. If the space X need not be emphasized
the subseripts will be dropped.

Let F be a subset of a space X. Then we agree to the following:

M1. 4 C BmodF means A\NF C B\T.

M2. order U < nmodF means order V| (X\F) < n.

M3. A ~ B =@ modF means (4 ~n B\F = 0.

These notations should be read as A is contained in B modulo F, ete.
They will also be used in composite formulas. In connection with this
convention the following propositions are very useful and will be tacitly
nsed in the sequel. The easy proofs are omitted.

ProrosrrioN 1. If F is a closed subset of X,
= (clx ANF for every subset A of X.

ProrositioN 2. If U is open in X, then Bxnm(U\F)C Bx(UNF for
every subset F of X. Furthermore, when I' is closed, By w( UNF) = Bx(UNF.

ProposiTIoN 3. If F, CF,, then relationship A C BmodF, implies
A CBmodF,. A similar statement holds for order modulo F, and I,.

then  cly p(ANF)

3. Mappings in spheres. The propositions of this section will assume
only the minimal conditions listed in Section 2.1 for the class 7. That is,
T is topologically closed and @ . After the presentation of some simple
consequences of the definitions, we will deduce a theorem which relates
the covering dimensions modulo § and the extendability of partial
mappings into spheres under the added condition that ¢ he closed
monotone.

3.1. ProrosiTiON 1. F-dim end #-Dim are topological invariants.

-ProposiTioN 2. §-dim < §-Dim << dim.

Observe that §-dimX = —1 if and only if -DimX = —1 if and
only if F-IndX = —1 if and only if X ¢7.

3.2. ExaMPLE 1. Let S= {X| X is o-compact}. Let Z = BxI",
where. I denotes the unit interval and B = {#| £ I and ? is irrational}.
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We shall show $-dimZ = 8§-DimZ == n. In view of Proposition 2 above
we have only to show 8-dimZ > n. Since dimI™ = »n, there is an open
cover W= {U,| y e I'} of I" such that for every open cover U of I™ with
U < U we have order U= ntl. W'={BxU, yel} is a cover of
Bx I". Let W be a border cover of Z with enclosure €' such that W < W*.
Since B is not o-compact, there is a ¢ e B with {g} X I" n (' = 0. There-
fore, n+1 < order W| {g}x I" < order W. Consequently, §-dimZ > n.

ExAMPLE 2. Let % = {X| X is compact} and consider the space Z
of Example 1. In exactly the same way it can be proved that X-dimZ
= JG-DimZ = R.

3.3. The following proposition will be very important later on.

PrOPOSITION. Suppose T-DimX < n. Let {U)| yel} be a locally
finite open collection and let {F,| y eI} be a closed collection such that
F,CUT,, yel. Then there exist open collections (V.| y e I'} and {W,| p eI}
and a closed F-kernel G of X such that

F,CV,CelsV,CW,C U,mod6, yel,

and
order {W\elxV,| y e I'} < nmod & .

The corresponding result holds for $-dimX << n and I' finite.

Proof. Let U, = {U,, X\F,}, y e I. Then A{W,]y e I'y iz a locally
finite open covering. Sinee #-DimX < n, there exists a J-border cover
N = {N,] 6 € A} such that N < A{,| y €I}, order N’ < n+1 and such
that every XN, intersects at most finitely many members of {F.} yel}

Let G be the enclosure of N. Restrict {U,| v e ['} and {F,| ¥ el'} to
X\@ and proceed as in the proof of [8], IL.3.B (“covering” in [8] should
be read as “covering of X\G”). Then in X\G we get open collections
{F,l yeI'} and {W,] e I'} (observe that open in X\@ is the same as open
in X for subsets of X\@) sucb that

FNGCT,CelygV,CW,C UNG, vyel,
and
4 order {IW\elngV,| 7 eIt <n.
In view of Proposition 1 in 2.8 this is just what we wanted to show.

The proof for F-dim X < n is similar. Note that the condition that
every N, intersects at most finitely many members of {F}yellis trivially
satisfied, because I" is finite. .

3.4, THEOREM. Suppose § is closed monotone. Then, for each closed
subset F of X, 7-AimF < F-dimX and §-DimF < §-Dim X.
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Proof. Let {U,| y eI} be a finite F-border cover of F' with en-
closure G. Let U) be an open set in X with Uy nF = U,.

WU = {U:l y e Iy w {X\F}
is a finite border cover of X. Let U De a border cover of X with en-
closure H such that U < WU and order VU < F-dim X' 1. U] Fis a §-Dorder

cover of F with enclosure H nF' of order <7-dim X 1. It follows that
T-dim¥ < T-dim X. The proof for F-Dim is similar.

3.5. The following theorem is highly useful in the computation of
lower bounds for §-dim. It also will lead to a characterization of &-dim
in Section 4.4.

THEOREM (n > 0). Suppose § is closed monotone and F-dimX < n,
Then for every closed subset C of X and every continuous mapping f of ¢
into the n -sphere 8" there exists a closed F-kernel T of X with F C X\ O such
that f has @ continuous extension over X\JF.

Proof. The proof essentially follows the “only if” part of the proof
of [8] Theorem ITI.2. We may assume that f is defined in a closed neighbox-
hood W of C, since 8" is an absolute neighborhood retract. Let Y be the
complement of the interior of W. Theorem 3.4 gives §-lim ¥ < n. Let
B= W Y. Then f is a continuous map of B into S~ We will regard S"
to be boundary of I"**. With the aid of Proposition 3.3, the proofs [8]
IIT.1.A and ITI.2.A give the existence of a closed T-kernel ' in ¥ and
a continuous mapping ¢ of T\F into I+ such that the origin is not an
element of g(¥Y\F), and g and f agree on B\T. Consequently, ¢ and f
agree on the set B\F which is the intersection of the closed subsets T
and Y\F of X\F. It is clear that F' is a closed T-kernel of X. Thus we
have an extension of f: ¢—8"C I"* to a continuous mapping h: X\F
->I™1 guch that k(X\F) does not contain the origin of I"+1, The theorem
now follows eagily.

Remark. A similar theoreni for $-Ind has been proved in [2] with &
closed monotone and X hereditarily normal, not just metrizable.

3.6. ExaMprm. As before, 5 denotes the class of compact spaces.
Let B* denote Euclidean n-space (n > 1). We ghall compute %-dimE™
= %-DimE" = n. In view of 3.1 Propogition 2 it is sufficient to prove
K-dimB"* > n. We shall derive a contradiction from the asswmption
K-dimE® < n—~1. Let On= {#] o(2, pm) =1} where Pm is a point the
distance of which to the origin g is 3m, m=1,2,.. Let

C=U{On m=1,2,..].

A continuous map f of ¢ onto the standard sphere 8" iy defined by
sending each Oy isometrically onto 8" L. If - i E™ < n—1 then, by
virtue of Theorem 3.5, there exists a compact set # in E* with F C INC

icm
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such that f has a continuous extension over X\F. Since F is bounded
it follows that for some % the partial map f| €y can be continuously extended
over {z] g(x, px) < 1}. That is, the n-cell can be retracted to its boundary.
This is a contradiction.

4. Characterizations of T-dim. The classes in this section are assumed
to be weakly additive and open monotone except in the last theorem where
closed monotone will be added. Three characterization theorems for
F-dim will be given. .

4.1. THEOREM. If F is a closed T-kernel of X, then

T-dim X = ¢-dim X\F F-DimX = §-Dim X\F.

This theorem justifies the name “covering dimension modulo 7,
Notice the equality! A similar result for 7-Sur follows easily from the
definition.

Proof. (i) 7-dimX < F-dim X\F. Let U be a finite border cover
of X with enclosure G. Since F is closed and ¢ is open monotone, U| I\F
is a border cover of X\F with enclosure G\F. Let U he a border cover
of X\F which refines | X\F, has order U < F-dimX\F-+1 and has
enclosure H. Since H i3 closed in X\F, Fu H is closed in X. § heing
weakly additive, U is a border cover of X with enclosure F v H.

(i) T-dim X\F < §-dim X. Let U be a finite border cover of \F
with enclosure G. G F is a closed §-kernel of X and hence U is a border
cover of X with enclosure G w F. Let U be a border cover of X which
refines U, has order U < F-dim X +1 and has enclosure H. Open mono-
tonicity implies U X\F is a border cover of X\F with enclosure H\F
of order <¥-dimX+1. The proof for F-Dim is similar.

and

4.2. TuroreEM. T-dim X < n if and only if for every closed T -Fkernel F
of X in the subspace X\F' the following holds: for every open collection
{U: i=1,..,%} and closed collection {Fi| i=1, ..., k} with-F; C Uy there
exist a closed T-kernel G of X\F and an open collection {Vi| i=1,...,k}
such that (in X)

F1CV¢CCIXV1C UzlllOdGu.F, i:l,...,]\‘,
and

order {Bx(T)l i=1,..,k} <nmodG v F.

Proof. Necessity follows from Proposition 3.3, Theorem 4.1 and the
propositions in 2.8. YWe prove the sufficiency. Let {Uy i =1, ..., k} be
a finite border cover with enclosure F. In the subspace X\F there exists
a closed covering {Fy| i=1,..,k} with F;CU;. Let ¢ be a closed
J-kernel of X\F and let {¥;| i =1, ..., k} De an open collection such that

F:,CY;CealyY;CUmodGuF, i=1,..,Fk,

5 — Fundamenta Mathematicae, T. LXXVIII
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and

ovder {Bx(Yy)] i=1, ..., k} <nmod v F.

In view of the weak additivity of § we have H = F w G «T. Observe
that H is closed in X. Let Vi = Y\H. Then {Vy| i =1, ..., k} is a F-border
cover of X with enclosure H. Also, it is evident that

F,CV;CeclgVi;C UymodH, i=1,-..,k,

and

order {Bx(Vi)] i =1, ..., b} < nmod H .

Now we restrict our attention to the subspace X\H and proceed as in
the proof of [8], Theorem II.8. We result in an open cover w of X\NH
which refines {UNH| i =1, ..., k} and order W < n-+1. Since W is a cover
of X\H, W is a §-border cover of X. The proof is now completed.

4.3, TaeorREM. §-dimX < n if and only if for every closed F-Fernel
F of X in the subspace X\F the following holds:

for every open collection {Us| i=1,...,n+1} and closed collection
{Fyf i=1,...,n+1} with F;C U;, there emzst a closed T-kernel G in I\F
and an open collection {Vi| i =1, ...,n+1} such that (in X)

FiCVi(:cleiCUzmodGuF, L=1, ...,71»-*—1‘
and
N{Bx(Vy] i=1, ...

Proof. The necessity follows from the preceding theorem. We prove
the sufficiency by meodifying slightly the proof of the corollary to
Theorem II.8 in [8]. Let, in the subspace X\F, {U;| ¢ =1, ..., k} be a given
finite open collection and {Fy i=1, ..., %} be a closed collection such
that F; C U;. As in the above mentioned proof, we number all the combi-
nations € = {i, ..., iyy;} of n-+1 numbers from.{1,...,k} as Cy,...; Cm.
In X\F we can find a closed € -kernel H, and an open collection {V3| i ¢ O}
such that

v

,n~+1}=0OmodGu F.

F,CViCelyViC UmmodH, v F, ieC,
and
N{Bx(Vy)| i€ C}=OmodH, v I.

Weak additivity gives G4 = F v H, is a closed T-kernel of X. Let A be
open subsets of X\@ such that

Be(VH)CAIC Umod@, (ie ) and ({4l icC)=0.

icm®
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Let W= T%u A% (i € (}). Then
F,CViCel,ViCWIC Umod@,, ieC,
and

N {WNeLVY i€ C)} = Omod @, .

Now we can proceed in a similar way as in the proof of the above mentioned
corollary and define, for each 1=1, 2, ..., m, closed §-kernels G; of X
and open subsets V% and W% of X\, i€y, such that

1) FCGE CG,C...C Gy

2)if ie ONUU{Cs] j <1}, then ‘ -

F;CVLC el V' C WLC U,;mod G
3) it i e\ U{Cy] j <1}, then
F,CViCelgViCVLC elgFLC WLC WiC U;mod &

for every j for which 1 <j<I-1,ieCjy

4) M{WhClgVY ie ) = Omod &;.

Clearly 2, 3 and 4 remain true if we replace &; by U{Gj=1,...,m}.

. Also, U{G4] j=1,...,m} is a closed T-kernel of X. The computations

in the last few lines of [8] p. 31 can be carried out in X\ {Gy]
j=1,..,m} Let @= UJ{G4] j=1,..,mNF. G is closed in X\F.

The result is that for any combination C; of n+41 numbers from
{1,...,k} we have [} {Bx(Vy)| i¢ (}} = Omod G v F. This means order
{Bx(Vy)| i=1,...,k} < nmod G v F. Therefore, by the preceding theorem
we conclude F-dimX < n. '

4.4. We now give a characterization for ¥-dim using extendability
of mappings in the n-sphere S

DerINtTiON. Y i3 said to be an ertensor of Xmodf if for every
closed ¥-kernel F' of X and every closed subset ¢ of X\F and every
continuous map f: C—Y there exists a closed T-kernel @ of X\F such
that ¢ C X\C and f can be extended over X\(F v @).

PROPOSITION. If 8™ is an extensor of Xmod¥, then F-dimX < n.

Proof. Let F be a closed T-kernel of X and let {U;] i=1, ..., n+1}
De an open collection and {F;| i=1,..,n+1} be a closed collection
in X\F with F;C U;. We will consider 8" to be the boundary of I"*!
where I = [—1,1]. For each 4, let fi: X\F I be continuous with fi(Fs)
= —1 and fi{X\(F v U;))=1. Then f=(f;, ..., fors) 15 a continuous
map of X\F into I"*%,

Let € = f(8"). Since 8" iy an extensor modﬂ there exists a closed

9 -kernel ¢ of X\F such that & C ¥\ and f|C has a continuous extension ¢

over I\(Fu G).

6
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Recalling our agreement that S is the boundary of I and letting
= {13 - Yny1) We define ‘
Vi= {z} e X\(F v &) and gi(z) <0}.
Tn view of Propositions 1 and 2 in 2.8 it follows that
F,CV;CeclxV,C UimodGU.F’, i=1,..,n+1,
and
N{Bx(Vi)| i=1,..,n+1} = OmodG v F.
Then T-dimX < n by Theorem 4.3.
Our final theorem of this section needs the added assumption of
closed monotonicity as well as those assumed throughout this section.
TaroreM. Suppose T is closed monotone. Then T-dimX < n if and
only if 8" is an extensor of Xmod¥. :
Proof. Sufficiency has been proved in the previous proposition.
Necessity: Let F be a closed & -kernel in X. Then, by virtue of Theorem 4.1,
§-dim X\F < n. Let C Dbe a closed subset of X\F and f: 0 —8". Theo-
rem 3.5 now completes the proof.

5, The excision theorem. In this section we will assume the classes
to be closed monotone and weakly additive. In [3] Theorem 4.5 it has been
proved that §-Ind < §-Sur under the sole assumption that T is cloged
monotone. The assumptions of this section yield the corresponding re-
lations for covering dimensions modulo §. The reverse inequality for
the large covering dimension modulo ¥ is then obtained under the ad-

"ditional assumption that ¢ be countably closed additive.

5.1. Leyma. Let Y be a subspace of X. For every open collection
{U,| y eI'} of X there exists an open collection {V,| y eIt of X such that
U,=V,nY and order {U,| y eI} = order {V,| ye I.

Proof. See [6] § 15, XIII.

5.2. TerorEM. T-dim < 7-Dim < §-Sur.

Proof. Suppose §-Sur X < n. Let {U,| y « I'} be a border cover of X
with enclosure F. Using the definition of the strong surplus of X with
respeet to T, we choose a §-kernel @ of X with Ind X\G < n. {UNG| y ¢ I'}
is an open cover of the space X\(G v F). Since Ind X\(G'v I') < n, there
exists an open cover {V,| § ¢ A} which is a refinement of {UNG| y eI}
and has order <{n+1 at each point of X\(G v F). By using Lemma 5.1
above we may assume {V,| 6e¢ 4} is an open collection in X, refines
{U,| y «I'} and has order <n+1 at each point of X. X\ J{V;| d € 4} is
a clogsed subset of G U F. The weak addivity of & gives G v I' ¢ 7. Hence
{Vs] 6 €4} is a Dorder cover of X. Thus §-DimX < n. The theorem is
completed by referring to Proposition 2 in 3.1.
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5.3, THE EXCISION THEOREM. Suppose T is countably closed additive.
If $-DimX < n, then there exists an F, T-kernel G of X such that
Ind X\G < n.

Proof. Let {U,| y «I'y} be a locally finite open cover of X with
mesh < 1/i and let {¥,] ¥ « I't} be a closed cover of X, i=1,2,..., such
that F,C U, for ye J{I{] i=1,2, ..}

By use of Proposition 3.3 we define open sets in X

Vs, W, for every yeli,
V2, W; for every ye Iy v Iy,

and closed 7 -kernels Gy such that G C Gy, i=1,2,...,insucha way that
F,CViC eyViCWiCUmodd;, j=1,
el VI CVi, . e WIC Witmod&;, j=2,
order {WNCleVi| y eIt v o w I} <mmod @, j>1.

This construction can be done, because Gy is a closed T-kernel in X and
§-Dim X = §-Dim X\G; by Theorem 4.1. (Observe that T is open mono-
tone, since ¥ is countably closed additive). Finally let

V=Vl j=1,2,.} for ye {4 i=1,2,..}
and
=G4l j=1,2,..}.
One readﬂy computes
F,CV,CU mod@.
Also,
(AL TAANTNE) C (A WHNGNTITNG)
C (g WIHNVIHNG C (WNLVING  for  j>1.
Conseqﬁently, we have -
order {Bxno(T\@)| v e Uil i=1,2, L.

Since {VN\G y « U{lY i=1,2, ..}} is a o-locally finite open basis for
the space X\@, it follows from [8] Theorem II.9 that Ind X\& < n. Since.
¢ is the countable closed union of members of § we have @ is an F,
§-kernel of X.
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Remark. It should be observed that the condition of countable
closed additivity implies that of weak additivity.

54. As a result of Theorems 5.2 and 5.3 we have the following
theorem, the analogue of which for small covering dimension modulo ¢ is
discussed in Section 11. )

THEOREM. Suppose T is countably closed additive. Then §-Sur = T-Dim.

ExaMpres. The conditions of the preceding theorem are satisfied
Ty several classes of gpaces. We mention only:

the class of all countable spaces;

the class 8§ of all o-compact spaces;

the class +(a) of all absolute Borel sets of additive class a, 1 < a < £,
which will be discussed in 7.3.

In case § = {0}, we have §-Sur =1Ind and T-Dim = dim.

COUNTEREXAMPLE. Let C be the class of topologically complete
spaces. Here we present an example of a spaee X with C- Dlml =0
and C-SurX =1.

X is the subspace of I x I defined by X = Ix@w @ x I, where I is
the unit interval and @ is the space of rationals in I.

C-Dim X = 0 follows from the results of the next section.

C-SurX =1 has been computed in [3], Section 5.1, Example 3.

So the complement of any C-kernel in X has dimension one. None
the less, every C-Dborder cover of X has a border cover refinement of
order one! It is evident that C is not countably closed additive.

6. Extension theorems. Except in the definitions below, all classes
in this section will be open monotone and weakly additive.

6.1. In [3] Theorem. 4.7 it has Dbeen proved that &-Ind < 9-Def
under the assumption ¥ is closed and open monotone. Similar inequalities
hold for ¢-dim and -Dim.

THEOREM. Suppose § is closed monotone. Then F-dim < J-Dim
< ¥-Def.

Proof. In view of Proposition 2 of Section 3.1 we need only prove
§-Dim < §-Def. Suppose T-DefX <#n and F is a F-hull of X with
Ind FNX < n. Let {U,| y eI'} be a border cover of X with enclosure G.
For each y, let T} be an open subset of ¥ with U} n X = U,. W= U{TU};|
yeI'} is an open subset of F' and hence W e, Since G ~ W = @, weak
additivity gives ¥ = G v W is a F-hull of X. Also, Ind Y\X =< ». As in
the proof of Theorem 5.2, let U be an open collection in ¥ such that order

LKnt+l, VX <{U|yel} and VU is a cover of I\X. T\ V is a
elosed subset of Y contained in X. It follows that V|X is a border cover
of X of order <n-+1. Hence T-DimX < n.
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6.2. DEFINITION. A class § ig said to be countably open multiplicative
if for each Y ¢ and each nonempty countable collection {X¢ i =1, 2, ...}
of 7-kernels of ¥ the intersection X = [ {X;l i=1,2,..} belongs to 7,
whenever XA\ X is open in T\X for j=1, . It is clear that if ¢ is
open monotone and countably open multiplieative, then J is closed
monotone.

6.3. LEMMA. Suppose § is countably open multiplicative. Then 5-Dim X
= §-DetX provided X has a §-hull.

Proof. In view of Theorem 6.1 we need only prove T-DefX
< 9-DimX. Let ¥ be a $-hull of X. We may assume X is dense in Y.
Let W, = {8y(x)] #e X\X}, where Si(2) = {y Y] ¢(x,y) <1} Let U,
= U, | X. Uy is a border cover of X with enclosure ¥\ J U,. Let U, be
a border cover of X with enclosure F, such that U; < U, and order
UV, < n+1, where n = $-Dim X. Let W, be an open collection in ¥ such
that W;|X = V;. Since X is dense in ¥, we have order W, << #n-+1.
Suppose W,, ..., W;_, have been defined. Let Uy = {Si(2)] 2 e NI}
Let VUx be a border cover of X with enclosure Fy Whmh refines
(U A W,_,) | X and has order <n+1. Let ‘Wi be an open collection such
that Wi|X = Vi, W, < Wy, and order W< n+1. Weak additivity
implies .X],;:FkU(U Wg) € F. - )

Denote by Z the set [ {Xz k=1,2,..}. Since FxC X C Xy for
each &k, ZDX and XA\Z = (| We\Z. Consequently, countable open
multiplicativity of 7 implies Z is a 9-hull of X. We shall show Ind Z\X < n.
Let W, = W] Z\X. Then {W,] ¥=1,2,..} is a sequence of open co-
verings of Z\X such that

1) Wy < Wy, k=1,2,..

2) order W, < n+1, k=1,2,..;

3) mesh W, < mesh W;, = mesh U;, < mesh W, < 2/k.

By [8] Theorem V.1 it follows that Ind Z\X < n. Hence F-Def X
< n=9-DimX.

6.4. DEFINTTION. A. class T is said to be universal if every space X
has a @-hull.

A G, monotone class ¥ is universal if and only if ¢ contains the class C
of topologically complete spaces. :

From Lemma 6.3 we get the following theorem.

THE EXTENSION THEOREM. Suppose T is couniably open multiplicative
and universal. Then F-Def = 7-Dim. i

ExAmpLes. The conditions of the preceding theorem are satistied
Dby the class C of all topologically complete spaces and by the class A (a)
of all absolute Borel sets of multiplicative class a, 2 < @ < 2, which will

-

be discussed in 7.3.
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Observe that the class C is the smallest class which satisfies the
conditions of the preceding theorem. In view of Example 3.6 the covering
dimension turns out not to be the right way to characterize compactness
deficiency. It is also clear why for the characterization of compactness
deficiency — J-Def —in [9] a special system of border covers with
compact enclosures is employed. ‘

COUNTEREXAMPLES. As in 3.2 Example 1 let § denote the class of
all ¢-compact spaces. In [3] Example 6.1 a separable space X has been
presented with §-DefX =1 and §-IndX = 0. As will be shown in
Section 11.2, §-Ind Z = §-Dim Z for every separable space Z. So §-Dim X
. = 0. Obviously § is not countably open multiplicative.

Another useful example is the following: Let T = {@). As is easily
seen, we have

I-Defd = —1, and T-DefX = oo if and only if X == 0,
Obviously ¥ is not universal.

7. Complementary dimension functions. In this section we shall show
that the notions of kernels and hully are complementary. We remind
the reader of the hasic assumptions of Section 2.1.

7.1. The relation between §-Dim and 7-Sur has been discussed in

Section 5, and the relation between §-Dim and §-Def is given in Section 6. -

Now we first discuss the relation between F-Sur and 7-Def.

TuroREM. Suppose T is F, monotone. Then F-Sur < T-Def.

Proof. We may assume §-Def X < oo, Let ¥ be a T-hull of X with
IndT\X = ¢-DefX. By virtue of [8] Theorem II.9, there exists a @,
subset ¢ of ¥ with D Y\X and Ind@ = Ind Y\X. Then F = Y\ is
an ¥, subset of ¥ contained in X. Hence F iz a T-kernel of X with
IndX\F < ¥-Def X. That is, §-Sur X < 7-Def X, '

7.2. For a further investigation of the relations between the large
covering dimension modulo 7, the strong swplus and the strong deficiency
we now discuss the interplay of such functions induced by two classes.

Dermurions. We will say that two subsets X and ¥ of a space Z
are complementary in Z it Z=Xo Y and X ~n ¥ = @. Let & and Q be
classes of spaces. A space Z is called ambiguous relative to T and Q provided
X €7 if and only if ¥ ¢ Q whenever X and Y are complementary in Z.

ExAMpLE. As before let § be the class of o-compact spaces and C be
the class of topologically complete spaces. Each. compact space Z is
ambignous relative to 8§ and C.

The following theorem, which is almost evident, will be very important
later on.

icm®
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THEOREM. Suppose Z is ambiguous relative to 5 and Q. Then Q-Det X
< §-Sur Y whenever X and Y are complementary in Z. '

7.3. By combining Theorems 7.1 and 7.2 we get the following result.

THEOREM. Suppose both § and Q are ¥, monotone. Suppose Z is
ambiguous velative to § and Q. Then 9-DefX — §-SurX — Q-Def Y
= Q-Sw Y, whenever X and Y are complementary in Z.

ExAMPLE. For every ordinal number a, 0 < a<f, let #4(«) and
Ao(a) denote the families of all absolute Borel sets of additive and multi-
plicative class a respectively. It is a classical result that, for a3 2,
Xe dE(a)(./K;((Z)) if and only if X is a Borel set of additive (multiplicative)
class a in some complete space ¥ which contains X [6]. The same holds
true for AG(1). (1) is the class of all topologically complete spaces (see
also [6]). In [10] it has been proved that (1) is the class of all o-locally
compact spaces. Evidently 6(0) is the class of all compact spaces and
£(0) = {@}. _

Using the characterization it is easily seen that every space Z e (a) n
~ #{a) is ambiguous with respect to J(a) and #£(a), 2 < a < Q. Also,
for 2 < a < 2, both M(a) and #(a) are Gy monotone as well as F, mono-
tone. Since, for a2, (1) C M(a) n#A(a), the class So(a) ~A(a) is
universal.

Hence we have the following proposition by the theorem above.

ProrosiTIioN. For every ordinal a with 2 < a < Q we have A(a)-Sur
= d(a)-Def and A (a)-Sur = A(a)-Def.

7.4. LemMA. Suppose T and Q are closed monotone. Let Z be ambiguous
relative to T and Q and let X and Y be complementary in Z. Let Us be an open
collection in Z. Then W|X is a T-border cover if and only if W|Y 4s
a Q-border cover.

Proof. Let W= | W. If T\W €8, then Z\(X\W) ¢ Q. But Z\(X\ W)
=YuwW and Y\W is a closed subset of ¥ v W. Hence Y\W @,
whenever X\W e 7.

TurOREM. Suppose T and Q are closed monotone. Suppose Z is ambigu-
ous relative to § and Q. Then §-DimX = Q-Dim ¥ and §-dimX = Q-dim Y
whenever X and Y are complementary in Z.

Proof. Since the proofs for the small and large covering dimensions
are very similar, we only give one case. Due to symmetry we need only
prove §-DimX < @-Dim Y whenever X and ¥ are complementary in Z.

Suppose Q-Dim ¥ < n. Let {U,| y I} be a F-border cover of X.
For each y e I', let U} be an open subset of Z with Uy n X = U,. By
virtue of the preceding lemma {U}| y e I'}|X is a Q-horder cover of Y.
Since @-Dim ¥ < n, this @-border cover has a @-horder cover refinement -
{Vyl 6 € A} of order < n-1. Using Lemma 5.1, we form an open collection
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(V3] 6ed} with {73 6ed}|X = (Vs ded}, V3l ded} < {U*| yel}
and order {V}| 6eA4}<<n-1. From the lemma above it follmw that
{Vi| 64} X is a T-border cover of X. This border cover refines the
given one and has order <n-+1. So §-Dim X < n.

Bxaseri. From the preceding theorem, Example 1 in 3.2 and .the
example in 7.2 it follows that C-dim@x I®= C- Dim@ x I" = ¢, where
C is the class of topologically complete spaces, I the unit interval and @
the set of rational numbers in I.

7.5. THEOREM. Suppose & and Q are F, monotone and weakly additive.
Suppose Z is ambiguous relative to § and Q. Then, if § is countably open
multiplicative or if @ 4s countably closed additive,

F-DefX = §-Swr X ='9-DimX = @-Dim ¥ == Q-Sur ¥ = Q-Def Y,
whenever X and Y are complementary in Z.

Proof. §-DefX =F-SwX = Q-DefY = Q-BurY by Theorem 7.3
and §-DimX = Q-Dim Y by Theorem 7.4.

icm

If Z is ambiguous relative to § and Q, then Z ¢T ~ Q. Then, if T is .

countably open multiplicative, by Lemma 6.3 we have §-Dim X = §-Def X,
If Q is countably closed additive, then @-DimY = Q-SurY by Theo-
rem 5.4. :

Remark. From the example in 7.3 and the proof above it follows
that for each a with 2 < a < 2, the class #(a) » M(a) is precisely the
class of all spaces which are ambiguous with respect to A(e) and AG(a).
Using the classical terminology [6], #(a) ~ AG(a) is the class of absolute
ambiguous sets of class a (i.e., each member Z of #(a) ~ M(a) is an
ambiguous Borel set of class o in every Z containing space X).

8. The finite sum theorem. In order for a finite sum theorem to hold
one necessarily needs the class ¥ to De finitely closed additive. The next
theorem shows that the converse holds under closed monotonicity.

8.1. THEOREM. Suppose T is closed monotone and finitely closed additive.
Let X=Yvw Z with Y and Z closed in X. Then

F-dimX = max{f-dimY, ¢-dimZ}
and

7-Dim X = max {F-Dim ¥, §-Dim.Z} .

Proof. Let n = max{F-Dim ¥, §-DimZ}. In view of Theorem 3.4
we have -Dim X > n. We shall show §-DimX < n. Let W = {U,| y ¢ I'}
be a border cover of X with enclosure F. Then W|Z is a border cover
of Z with enclosure F' ~ Z. Let U be a border cover of Z with enclosure G
such that U < U|Z and order VK n-+1l. We may assume that
V= (V.| yel'} with ¥V, CU,, that V, =V, whenever U, = Uy,, and
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that V, and V,. are distinct or both empty whenever U ;& v, @ 1s
closed in X and G U F i I3 2 closed T-kernel of X. Let W, = 7,\Z

y e I. It follows that W= {W,| ¥ ¢ I} is a border cover of X Wlth en-
closure G F such that order W|Z < n-+1 and W < . Now we apply

- the same process to W|Y. In this way we get a border cover of X which

has order <<n+1 at every point of Y and Z.

The proof for T-dim is similar.

The proof given above is very suggestive for the proof of the locally
finite sum theorem (Section 10).

8.2. ProBLEM. Is there a similar finite sum theorem for 7-Ind?
This problem seems rather difficult even under the assumption that 7 is
open monotone as well as closed monotone. But we do have a countable
and a locally finite sum theorem for §-Ind (see Sections 9 and 10).

9. The countable sum theorems. All classes are assumed to be closed
monogtone and countably closed additive. Open monotonicity and weak
additivity are implied by our assumptions.

In this section we shall prove countable sum theorems for the di-
mension functions §-Dim, F-dim and §-Ind. The interesting thing is
that the proofs are totally different, thus illustrating various aspects of
the dimension theory module a class §.

9.1. TaroREM. Let {Fy] i=1,2,..} be a countable closed covering
of X such that §-DimF; < n for i=1,2,... Then $-DimX < n.

Proof. The proof is by means of swrplus techniques ( cf [3], Section 3).
In view of Theorem 5.3 for each i there exists an F, F-kernel &; of F;
such that IndFA\G: < §-DimF; < n.

G=J{G] i=1,2,.} is an F, F-kernel of X and Ind X\G
< sup{IndF\G i=1,2,..} by the sum theorem of dimension [8],
Theorem II.1. Since @D G4 for each 7, it follows that F-Dim X = §-SurX
< n by Theorem 5.4.

9.2. THEOREM. Let {Fy| ¢=1,2,..} be a countable closed covering
of X such that $-dimF; < n for i=1,2, .. Then T-dimX < n.

Proof. In the proof the characterization of §-dim in Section 4.4
is employed (cf. [7], Theorem 9.10). We shall show that 8" is an extensor
of Xmodd. Let G, be a closed T-kernel of X, ¢ a closed subset of X\@,
and f a continuous mapping from C into S8". Let Fy= 0.

We shall define an open colleetion {U;| ¢=0,1,...} in X, a col-
lection of closed F-kernmels {G4y i=0,1,...} of X, and a collection of
continuous mappings {g:: clg\g(Us)—>8" 1= 0,1, ...} such that, for each
i=0,1,..,

1) CCULC Ty, k<1

2) Gr C Gy B <1
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3) UinGi=0, Uyv D Fyv ... v Ty

-i) glltvkzgk for k<< 1.
Since S™ is an absolute neighborhood retract, there exists an open neighbor-
hood T, of C in the space X\&, and a continuous extension gy: cly\q,Us
—&" of f. Clearly 1) through 4) are satisfied when ¢ = 0. Suppose Uj,
@ and g; arve defined for i<{j. By virtue of Theorem 3.4 we have
F-dimP; \U; <n. The mapping g;1Bxag{U;) » Fyyy has a continuous
extension hy,, over (F; \U;\Fj.,, where B, is a closed §-kernel of
F,\U; and By, CFy\elyg(U;). The combination of g; and by, yields
a continuons map H;,, of clykg(U;) v (Fpy\F;y,) into 8" Let Gy,
= G;v B;,,. Then @G, «¥ and is closed in X. Now as in the definition
of U, and g,, there exist an open neighborhood U, of the domain of
H,.,|(X\G;;,) and a continuous extension g;,,: el e Ug) > 8" of
H;y | (E\G1,). Tt is easily seen that the conditions 1) through 4) are
satisfied. Let U= [J{Us] i=0,1,..} and G= J{G] i=0,1,..}
The maps ¢; determine a unique continuous map g: U—8" which is an
extension of the map f(1) and 4. In view of 1, 2 and 3 we have
Tu@G=Xand UnG=0.

Since ¢ is countably closed additive G e § and consequently @ is
a closed T-kernel of X. G\G, is a closed §-kernel of X\@, which is disjoint
from C. Hence §-dimX < n.

9.3. THEOREM. Let {Fi| ¢=1,2,..} be a countable closed covering
of X such that T-IndF; < n for i=1,2,.. Then T-IndX < n.

Proof. The proof has the flavor of the theory of normal families.
of Hurewicz and Morita (see e.g. [8] Section IT.8).

Let 9§ be a family of spaces. The family 9’ is defined by

§' = {X| for any disjoint closed sets 7 and ¢ there exists an open
set U of X with FC UCX\G and Bx(U)ef}.

In order to prove the theorem we need only show 7' is closed monotone
and countably closed additive whenever ¥ is.

Suppose § is closed monotone and countably closed additive. \We
shall show that 9 has the same properties in three steps.

LeyMMA 1. 8 is closed monotone.

The proof of Lemma 1 is straightforward.

LeMMmA 2. 9 is open monotone.

The proof of Lemma 2 is quite similar to the proof in [7],.11.3. Let:
X ¢9’ and let V be an open subset of X. Let ¥ and & be disjoint closed
subsets of the subspace V. Write V'= | J {Fy| i =1, 2, ...} with F; closed.
in X and F; CIntF,,, (Int denotes the interior in X). Let T; be an open
subset of X, i=1,2, .., such that )

icm

Covering dimension modulo a class of spaces 93

FCol, Wi CW,CV\G i=1,2,.. and

For each ¢

N (Wi i=1,2,.}=F.

FAF,CW;nIntF, ,CF,,.

By virtue of Lemma 1 we have Fy,, ¢¥'. From the definition of ¥ it
follows that there exists an open set U; with F n F;C U;Cel, U;,C W;n
ATty and Bp(U)ed. Let U= U{Us} i=1,2,..}1 Since the col-
lection {Ui i=1,2,..} is locally finite in V\F, we have By(U)
CU BT i=1,2,..}. Since T is closed monotone and countably
closed additive, By(TU) € . The inclusions F C U C cl,U C P\ are evident.
Thus Ve .

LmMMA 3. 97 is countably closed additive.

Prooﬁ. Tet ¥=|J{Xi i=1,2,..} where X; is closed in X and
X; 9. Define Fy, = X, and Fy = X\U{Xj j=1,..,i—1}, 1> 2. Then
X=J{F i=1,2,..} and the F; are pairwise disjoint. Moreover

(i) Fred, i=1,2,.. (Lemma 2),

() U{Fy j=1,..,4} is closed in X for each i.

The proof of X 7’ i3 now a slight modification of the proof of 7]
Theorem 10.4 (Read “IndX < n” as X ¥, “IndX <n—17 a8 X e9.
Observe that ¢ is weakly additive.)

10. Lining up the dimension functions. All classes in this section are
assumed to be closed monotone, weakly additive and locally finitely elosed
additive.

The main purpose of this section is to show

7-Ind > F-dim = §-Dim .

As a byproduct we obtain the locally finite sum theorem for the 1.;]1_ree
dimension functions. Observe that if § is locally finitely closed additive,
then ¥ is open monotone. This is clear gince any open set V in X can be
written as

1

< Q(wi X\V) < 7:‘;

V= J{Hs k=0,1,2,..} where H’ﬂz{”” k+1

{Hg| k=0,1, ..} is a locally finite closed cover of V.

10.1. 'We first prove the analogue of a theorem of Dowker. We shall
generalize the proof of this theorem as given in [8], Theorem IT.8. Compare
also with Theorem 8.1.

THEOREM. -dim = T-Dim. ‘

Proof. We need only prove §-Dim < -dim. Suppose F-dim X < n.
Observe that in view of Theorem 3.4 we have g-dimF < n for every
closed subset F' of X.
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Let {U,] y e I'} be a §-border cover of X with enclosure &,. We may
assume that {U,| y eI} is a locally finite cover of I\G,. Let 7
={F,] 1 <v <1t} be a locally finite closed cover of XN\G, (v and 7 are
ordinal numbers) such that
(i) each F, meets at most finitely many elements of {U| yel}.
(ii) each F, is closed in X. Consequently F-dimP, < n, for 1 <v < 7.
Ve assume that F, o F,, whenever x = » In X we construct a trans-

finite sequence of border covers {U,,| y e I'} with enclosures UG 1w <}
such that

U, U, and

T Yy

G, CF,

U,

y for

w< v

for 1<% and

{U,,| yeI'}|F, is a border cover of F of order <n+1.
Let U,

wy 20d G, be determined for u <. Put Uy, =N {U,, | u<o).
U{G. 1< <) is a closed $-kernel of X\Gy, since T is locally finitely
closed additive. Since & is also weakly additive, UG 0 <<} is
a closed §-kernel of X. Thug {U;,| yeI}|P, is a $-border cover of I,
with enclosure #, ~[|) {G,] w <9}

Let W Dbe a border cover of F, with enclosure @, such that
W<{U,,| yeI}|F, and order W <n+l. We may assume that
W= {W,| yel} with W,CU,,, that W,= W,, whenever U, = U;..»
and that W, W,,, or both empty, whenever Ufﬂ # U, o Let

U’w = (U:i,,\ 71') hd TVV = U:‘V\(F v\W'y)'

Finally, let V,=N1{0,,l » <. Then,
of order <<n-1 with enclosure
It follows that T-Dim X < n.

V.| »eIt is a $-horder cover
(JA{G,| v <1}, which refines (U yel.

10.2. As a corollary to the Preceding theorem we get the following.

COROLLARY (The locally finite sum theorem). Let & vel} be
a locally finite closed covering of X such that T-AimF, < n (T-DimF, < n)
for yeI. Then §-dim.Y < (T-DimX < n).

Proof. It is sufficient to prove the theorem for ¢ -dim. Let Pl yeld
be a locally finite closed cover of X with ¢ - dimF, < n. Let {Us] i =1, ..., k}
be a border cover of X with enclosure G. Let {H,| » < v} be a locally finite
closed covering of X\@ such that o

1) each H, meets at most finitely many elements of ‘{Zf’yl yell,

2) each H, is closed in X.

By virtue of Theorems 8.4 and 8.1 we have §-dim H, << #. Now proceed
as in the proof above.

J iw“@
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10.3. Tn order to show $-Ind>9-dim we first prove the locally
finite sum theorem for -Ind.

THEOREM. Let {F,| v e I'} be a locally finite closed covering of X such
thaf §-IndF, < n for y e I. Then T-IndX < n. _

Proof. The proof is by a normal family type argument ag the proof
of Theorem 9.3.

Suppose  is a closed monotone, weakly additive and locally finitely
closed additive class. Let 9’ be defined as in the proof of Theorem 9.3.
We need only show that §’ is closed monotone, weakly additive and
locally finitely closed additive.

LeMMA 1. §7 is closed monotone.

See 9.3 Lemma 1.

LeMMA 2. 97 is open monotone.

The proof of Lemma 2 is almost the same as the proof of Lemma 2
in 9.3. The collection {By(U,;)| ¢=1,2,..} constructed in that proof
is locally finite in V\F. So B,(U) e ¢ since 9 is closed monptone, open

"monotone and locally finitely closed additive.

LeMMA 3. 97 is weakly additive.

The proof of Lemma 3 is almost identical to the proof of the first
two steps of the inductive proof of Lemma 3 in 9.3. Observe that the
weak additivity of § is essential!

Lemuma 4. § is locally finitely closed additive.

Proof. Let X = | J{X,| ¥ eI}, where X, is closed 111 X, X, €9,
and {X,| y e I'} locally finite. In a standard fashion we can find a locally
finite open cover {U, §e4} and a closed cover {F,| 64} such that,
for each J, F;C U, and clU; meets at most finitely many members
of the collection {X, | y ¢ I'l. In view of Lemma 1 and Lemma 3 we have
clUs e« 9’ for each 6. Lét A and B be two disjoint closed sets in X and
ds=A nF,. Then A, and [B(U,)w B] ~clU, are disjoint closed sets
of 1 U;. Hence there exists an open set ¥, such that A, CV;CeclV,C UN\B
and B(V,) 9. ‘

Since {B(V;)| § € 4} is a locally finite closed cover of | {B(V,)| 6 € 4},
we have | {B(V,)| 6ed}ef. Let V= {J{V;| 64} Then ACV CX\B
and, by Lemma 1, B(¥)ef. Hence X ¢ 9.

CoroLLARY. If U is an open subset of X, then $-IndU <¥-IndX.

10.4. THROREM, F-Ind > 7-dim.

Proof. The proof is similar to the usual proof of Ind > dim (cf. [7]
or [8]) and we will only indicate the crucial steps.

The proof is by induction on ¢-TInd. Suppose that F-IndX < n (n > 0)
and that the theorem holds for all spaces X with §-IndX < n~—1: Let
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§={G| i=1,..,k De a finite border cover of X.with enclosure F.
Let {F;| i =1, ..., k} be a closed covering of X\F such that F; C @&, for
each . In exactly the same way as in the proof of [7], Theorem 10.1 we
can find an open border cover of X\F which refines § and has order not
exceeding n-+1 (using T-dim and ¢-Ind instead of dim and Ind
respectively).

11. Summary. In this section the partial results of the preceding
sections are put together. We remind the reader of the basic assumptions
of Section 2.1.

11.1. TaeoREM. Suppose that a class T is
\1) closed monotone, and

2) locally countably closed additive.

Then T-Dim = F-dim = 9-Ind = F-Sur.

Proof. First observe that if T is locally countably closed additive,
then T is countably closed additive and locally finitely closed additive.
The converse holds if 7 is closed monotone. The theorem now follows
from the results in Sections 5 and 10, The family #(a) of absolute Bore}
sets of additive class a satisfies the conditions of the preceding theorem
(see Example 7.3 and [4]).

The conditions of the theorem are also satisfied by - the family
Dr = {X| IndX < k}. By a simple inductive proof it can be shown that
De-Ind ¥ = sup {Ind ¥ — (k+1), —1} for every space Y. By the preceding
theorem we have :

Dp-Dim Y = Dp-dim ¥ = sup {Ind ¥ — (k+1), -1} for e\.rery space Y.

11.2. CoROLLARY. Suppose that a class T is
1) closed monotone, and
2) countably closed additive.

Then T-Dim = ¢-dim = ¢-Ind = F-Sur on the class of separable
metrizable spaces.

11.3. TarorREM. Suppose that a class § is
1) countably open multiplicative,

2) weakly additive, and

3) locally finitely closed additive.

Then §-Dim = §-dim = 7-Ind = T-Def on the class of all spaces
whieh have a T-hull.

The theorem follows from the results in Sections 6 and 10, The family
A:(a) of absolute Borel sets of multiplicative class a>> 1 satisfies the
conditions of the theorem (see Example 7.3 and [4]).

(1
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(6]
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