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Let y, = Min{yy, ¥a, -, ¥} Then I=[¢,d]X [0, y,] €[I] and for I(x,)
we have

(@) A Gl = [y n] X [0, 0] ~ Gl
> D [y bas] X [0, %] 7 Gile
k=1

K
>34, 2 (@ D)

k=1
> 1Yo
=} I(@)l:-
Hence it follows that Dy (G,, %) > > 0.

Exampre 2. In [2], pp- 299-300, there is an example of a continuous
function ¢ such that if § is any fixed direction other than m, and 4,(f, 2)
is the directional essential cluster set in direction ¢, then for every
x, o(f, \(f, ®) # ©. By our theorem it follows that the strong essential
cluster set can differ from the directional essential cluster set at every x
for any direction other than 3.

BExaMPLE 3. Let B C Rt be any set of measure zero and f the charac-
teristic function of B X (0, o). Oy(f, #) = {0} for every «, but ¢(f, ) = {1}
for every # < H. So the exceptional seti of the second part of the theorem
can be any set of measure zero. )

Exampre 4. In [3], Sierpinski constructs an example of a non-
measurable set § with the property that every line in the plane contains
at most two points of § but for every measurable set B, |S n H|, = |Bl,.
The characteristic function of 8 provides an example of & non-meagurable
function f for which L e C(f, #) for every z, but ¢(f, ») = {0} for every s.

The above examples indicate the possible differences between strong
and linear metric density.
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On countably universal Boolean algebras
and compact classes of models

by
L. Pacholski (Wroclaw)

Abstract. In the first part of the paper we give a characterization of the set I of
complete theories of Boolean algebras which has the following properties: 1° For every
set I and every filter & of subsets of I the Boolean algebra 27/F is w,-universal provided
its theory belongs to 7. 2° For every complete theory 7 ¢ T there is a set I and a filter &
such that Th(2/F) = T and 2/¥ is not o,-universal.

The second part of the paper contains a characterization of the class C, of filters
such that for every compact class K of similarity type of power < » and for every
F ¢C, the class F (K) of all F-reduced products of elements of K is compact. Let F be
a class of filters and let K be a class of relational structures. By F(K) we denote the
class | {F(K): < F). As a corollary to the result of the second part we give a cha-
racterization of classes F of filters such that for every compact class K the class F(K) is
compact.

The present paper is a continuation of [10]. In Section 1 we give
the necessary background for Sections 2 and 3. In Section 2 we prove
that for some class T of complete theories of Boolean algebras if Th @b er
then 2§ is countably universal. Moreover, for every T¢I we give an
example of an ideal § such that Th(2§)= T and 2% is not countably
universal. Section 3 contains a characterization of the class C, of ideals
such that, for every compact class K whose similarity type is of power <m
and every §eC, the class §(K) of all §-reduced products of elements
of K is compact. If C is a class of ideals and K a class of relational strue-
tures, then C(K) is the class of relational structures such that % e C(K)

_if and only if for some § e C and for some sequence {;: i ¢ I)> of elements

of K, U = Pg Wy i e I (Pg denotes the operation of a §-reduced product).
As a corollary to the results of Section 3, we give a characterization of
classes C such that for every eompact class K the class C(K) is compact.
Finally, in Section 4, we give some results concerning separatistic Boolean
algebras of the form 2g (see Definition 3.1).

Investigations of operations which preserve the compactness of
clagses of relational structures were started by M. Makkai, who proved
that the class of all direct products of a compact class is compact (see [6]).
Further results were obtained by 8. R. Kogalovskil [5] and A. I. Omarov
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[7], [8] and recently by L. Pacholski and J. W aszkiewicz. For more histo-
rical remarks see [10].

1. We use the standard terminology and notation, slightly simplified
it there is no danger of misunderstanding. By 2, sometimes with sub-
scripts, we denote relational structures. If % is a relational structure,
then A is the universe of 9. We use &, § to denote ideals. If 5 is an ideal,
then by F we denote the support of ¥, Le. the set X guch that ¥ is an
ideal of subsets of X. If there is no danger of misunderstanding, we
identify an ideal F with the pair (F', & 3. By 2 we denote the two-element
Boolean algebra. Pg is the operation of a $-reduced product, i.e. if
it i€ G is a sequence of relational structures, then PgW: 1 e G de-
notes the direct product of <¥i: 7 « G) reduced by § (P Us/S in the standard

iel :

notation). 2§ is the Boolean algebra of all subsets of G reduced by 8.
We sometimes write 2g instead of 2§. Bold-face letters denote classes,
e.g. by K we denote classes of relational structures.

Now we shall recall some details from Ershov’s paper [1] on the
decidability of Boolean algebras. If B is a Boolean algebra, then by §(B)
we denote the ideal of all elements of B which can be divided into atomie
and atomless parts. We put B, = B and B,,; = Ba/F(Ba). Let gu be the
natural homomorphism of B, , onto B, and let 7y = g, and h,,,
= o hn. We pub Fu(B) = h;*(0). Of course Bp= B/F,,(B). If a<B,
then by (a), we denote the element h,_,(a) of By.

By ai(z) we denote the formula. of the language of Boolean algebras
which says (x); is an atomic element and f; ;(#) denotes the formula which
says (); has at least j atoms (see [9]). Let I, 5 he the language of the
elementary theory of Bqolean algebras (i.e. the language {v, ~, —, 0,1})
extended by adding new relational symbols a;, fB;,. Let T, » be the
theory in I p obtained faom the theory of Boolean algebras by adding
the axioms: ‘o> oy and B, ;< f,,; for 4,j. We ghall use the following
fact (see [9]).

TraeoREM 1.0. Every formula ¢ of Ly 5 is equivalent in T, to an
open .f.ormula, @o. Moreover, the procedure which gives the formula ¢, is
primitive recursive.

Using Theorem 1.0 one can easily obtain a new proof of decidahility
of the elementary theory of Boolean algebras.

Following Tarski [11], with every Boolean algebra B we correlate
a triple <a, b, c> where a < oo, b <{ o0, ¢ <1 in the following way:

1° if, for every natural number =, B, is non-trivial, then w;fe pub
a= 00, b=0, ¢=0,

2° otherwise 4= max{z: B, is non-trivial}, b iy the number of

:ﬁoms in B, and ¢ = 1 if there isan atomless element in B,; if B, is atomie,
en ¢=0.
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Ershov ([1]) has proved that for every friple (a,b,¢> such that
a<oo,b<oo,c<land b=0,¢=01i a= coand b+e¢>0if ¢ < oo
there is a Boolean algebra B such that {a, b, c> is correlated with B.
Let {a,, by, ¢,> be the triple correlated with B° and let {a;, by, ¢;> be the
triple correlated with B'. One can easily check that if <ay, b, o>
= {ay, by, ¢;> then Th(B®) = Th(B).

We say that a set X of formulas is consistent with T if for every
finite X, C X' the sentence Hv, ... Hon A2y is consistent with T' (vg, ..., Un
are the free variables of X,). X is complete over T if X is maximal con-
sistent with 7. ¥ is finitely satisfiable in 9 if for every finite X, C X the
existential closure of the conjunction of all elements of X, holds in .
X is complete over U if ¥ is maximal finitely satisfiable in A.

Now let us come back to the Tarski’s classification of Boolean algebras.
We shall write tr{B) = <a, b, ¢ if {a, b, ¢} is the triple correlated with B;
if b is an element of B, then tr(b) = (i,j, k> where {i,j, k> = tr(B),
and B denotes the algebra B restricted to b (1). Let = be a term in the
langnage of Boolean algebras. We say that a set X determines that tr(7)
= <i,], k> if, for every Boolean algebra B and every set {Zgy Byy eaey Tn}
of elements of B such that ag,ay, .., % satisfy T in B, we have
t2(v (g, -ory @n)) = 47,4, k> In this case we write to(Zit) = (4,5, k>
If tr(B) = 7i,],; k>, then try(B) = i, try(B) = J, trs(B) = k. Similarly we
introduce try(z) and tr,(X:7).

TaroreM 1.1. If X is a set of formulas complete over T, then for every
term v of the language of Boolean algebras T X determines tr(r).

Proof. By Theorem 1.0 every formula of X is equivalent to an open
formula of L, p. Consequently, X is equivalent to a set of conjunctions
of atomic formulas and negations of atomic formulas of I 5. Hence,
since X is complete, it is equivalent to a complete set of atomic formnlas
and their negations. Let v be a term. We put

i=maxit: By (7) e Z for some u>0 or ¢ ¢ X},
. 0 if i= o0,
- ‘max{t: Bialr) € I} otherwise,
0 if afr)e X,
= l 1 otherwise .

Ttis a matter of simple computation to show that tr () = (i, j, k>, ie.,
that for every Boolean algebra B which is a model of T and every
set @y, ;... of elements of B which satisfies X' we have tr{z (@, woey n))
= {i,], k>.

() Le. the algebra of all x-<b.
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As a corollary to Theorem 1.1 we obtain the following theorem of
Tarski [11].

CoROLLARY 1.1. For every complete theory T of Boolean algebras there
is a triple <i, ], k> such that if B-is a model of T, then tr(B) = <i,j, k).

We write tr(T) = i, §, k) if for every model B of ' we have tr(B)
=i, jv k>. :

We say that a class K is compact if the compactness theorem holds
in K, ie., if for every set = of sentences X' has a model in X if and only
if every finite subset of X has a model in K. If K is a class of relational
structures and G is an ideal, then by $S(K) we denote the -class
{PglWi: i e G>: W e K. If Cis a family of ideals, then C(K)= | J{S(K):
GeCl. .

Now we shall recall some notions concerning ideals of sets. An ideal §
of subsets of a set I is countably incomplete if I is the union of a countahle
subfamily of §. 8 is (w, x)-regular if there is a subset X of G of power
such that, for every infinite ¥ C X, | J¥ = & Let S,(«) be the set of all
finite subsets of . § is »*-good if for every monotonic function f on §,(x)
into § (i.e. z Cy implies f(z) C f(y)) there is an additive function ¢ (i.e.
g(x v y) = g(z)w g(y)) such that ¢(z)D f(y) for all e 8,(»). For infor-
mation on various types of ideals see [3] or [4]. '

If I is a first order language, then by L(») we denote the language L
extended by adding new symbols of constants a, for all a < %, We say
that U is x=-universal if, for every set X of sentences of L(x) of power less
than x, if Th(2) v X' is consistent, then X hag a model of the form (U, a)
where a e A”. A is countably universal if it is o,-universal. One can easily
show that % is countably universal if and only if every set of formulas
finitely satisfiable in 9 is satisfiable in 2.

2. The following theorem has been proved in [10].
THEOREM 2.0. If tr(2g) = (0,14,]>, then 2g is countably wuniversal.
In this section we shall give an extension of Theorem 2.0.

Lemma 2.1, Let tr(2g) = <a, b, ¢) and X be a set of formulas such thet

1. X is finitely satisfiable in 2g,

2. tr(Xw Th(2g): v5) = <ay, by, ¢,> and

tr (X w Th(2g): —vy) = (g, by, €5,

3. there is no element of 2g which satisfies X,

Then b=10, 0 <a < co and we have a;= a~1, by= oo, ¢;= 0 for
i=1o0r i=2. :

Proof. Suppose that the conclusion of lemma is not true while 2.1.1
and 2.1.2 hold. We shall prove that there is an element of 24 which satisfies
2. We shall consider a few cases. One can eagily check that if X is a set
of formulas with one free variable v, then from tr(#) = tr(7 « £, v,) and
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tr(—a) = tr(T v X, —u,) it follows that satisfies X. Hence it suffices to
find an element x which satisfies the equations above.

Case 1. a; = a5, @ # co. Since X is finitely satisfiable in 2g and,
since the fact that trx)= i for i< oo can De deseribed by a simple
formula, we have a, = a. Of course tr((2g)q) = <0, b, ¢> and, for some ¥,
(2g), is of the form 2. Hence by Theorem 2.0 there is an element z; of 25
guch that tr(z,) = <0, by, ¢;> and tr{—az1) = {0, b, ¢5). Let X be a sub-
set of G (@ = F) such that 4, = X/F. Then tr((X/Q),,) =<0, b, ¢) and
tr(( —X/8)s) = <0, bs, €o>; hence x = X/S satisfies X in 2g.

Case 2. 4; = a,, ¢ = oo. We shall define two sequences (Xt 0 < @)
and (¥u: 2 < o) of subsets of G such that X,C X0y YuC Yoirs
Xon Tn=0 and By (XufS)A o Xl @A By s Tn/S) A T1By,o(¥yf8) olds
in 2g. If X, and ¥, ave defined, then tr(—(Xnv Y,)/8)) = {0, 0, 0,53
hence there are sets X, and ¥, such that X, ~ ¥, =0, (X,w Y~
A(XaU Tn) =0 and (BpiA 18ns) (X,fS) and Buah “1nsl Y,/S) hold
in 2g. We put X, = X, v X, and Y ., = Y, v Y,. It is easy to show
that if &= (| Xa)/@, then tr(z)= {co,0,0> and tr(—z)= <o, 0,0).

Case 3. 4, # 4, 0 < a. Without loss of generality we assume that
a, < a,. In this case it suffices to find an element z such that tr{x)
= {a,, by, ¢;> because @, by, Cz> = {a; b, ¢> and, moreover, trl(y)._: ay
implies tr(—y) = <a,b, > If by is finite, then X iz equivalent in 2g
to the simple formula (B, 5~ 1Bay,bre1) (Po)i hence we assume that
b, = oo.

' Moreover, we can assume that ¢; = 0. In fact, since a; < a, there
is an element y of 2g such that (y), is atomless. Hence, if for some
xe2g triz)= {@y, by, 00, then tr(x v y) = {ay, by, 1>- . 7

Now we shall prove that there is an atom in (28)qyi1- We consider
two subeases.

Subease 3.1. b= 0 or a = co. Then for every n<a there is an
atom in (2g)a-

Subease 3.2. b= 0 and a < oo. Since 2.1.3 does not hold and b = 0,
0 <a< oo, wehave @, = a—1 orb; 5= 00 0T €, = 1. But we have assumed
that b = coand ¢ == 1; hence a, % a—1. Moreover, a; < &, hence a, +2 < a.
Consequently the Boolean algebra (2g)s,4s 18 non-trivial and hence there
is an atom in (2g)g4q- .

Now let X De a subset of @ such that (X/8),,, is an atom of (2g)g,41-
Since X/8 ¢ F,,.4(2g), there is an infinite set {X: i < w} of subsets of X
such that for i < w (X/8),, is an atom of (2g),, and (XifS)y, N (X1/8)g, =0
for i -#j. By easy induction one can prove that we can assume that
XinX;=0. Let X' = {J{Xs: i < w}. Then {X'|8),, has infinitely many
atoms. We shall find a set ¥ C X’ such that tr(X/8) = {a,, oo, 0>, ie.,
(X/8)g, is atomic and has infinitely many atoms. Let ¥; = (J{X.s 1< w}


Artur


48 L. P n.cholski

and ¥,= UKot ¢ <o} We claim that X3/8 € s,4.(26) or Y8

€ Fa2(2g)- In factk it Y4/ ¢ Fa,0a2(20), then

(1) (YofSpin < (Yo/S)g41 v (Y1/8) gy 41
Since ¥; v ¥, C' X by (1), we obtain (¥5/S)q1 < (X/8)gy 41, DUt (X[8), -
is an atom of (29),11 +1; Whence (¥,/8),,,, is the zero element of (2g), ..,

which means that (Y,/8) ¢ ¥,,41(2¢). It follows immediately from the .

definitions of ¥, that for 4= 1,2 (¥4/S), has infinitely many atoms,
which completes the proof that there is a set ¥’ such that tr(¥’/g)
= <ay, o0, 1y If 1= 0 we put ¥ = ¥'. Otherwise I’ can be divided into
two sets ¥ and Z such that (¥/S),, is atomic and (Z/8),, is atomless,
whence tr(Y/[§) = {ay, oo, 0). ’

TEEOREM 2.2. If tr(2g) =<a,b, ¢y and b0 or a=0 or a= oo,
then 2g is countably universal.

Proof. Let I be a set of formulas of the language of Boolean algebras
which is finitely satisfiable in 25. We can agsume that X is complete and
finitely satisfiable in 2g, i.e., for every formula o, if {s} v X iy finitely
satisfiable in 2g, then o ¢ X. Let &: 412 (3). If ¢ is a formula of the
language of Boolean algebras, then ¢(z) denotes the f01 Id'lllﬂ; @ in which
every free occurrence of v; is replaced by e(i). Let X, = {p(s): pe X}
Weput X'= —X, X' =X, 2% ={e: 2", n < w}. If T= (X i< 0
then eX = A{X';“): i e dom(e)}.

Now we shall define by induction a sequence X = <X;: ¢ < o) of
subsets of G such that:

(2) ' the sequence {XyfG: i< oy satisfies X in 2g, and

(8) if, for some e € 2%, tr( (eX)/8) = <n, 0,1, then fzs a subset Y, of X
such that tr(Y,[S) = {(n—1, oo, 0.

To simplify the notation, let wus introduce the following symbol:

{yy 1, mg> if Ry <,
Choyy Ly Mgy -y by Moy = <loyy L+ 1, max{my, ma}> if Ty=1ly,
‘ gy by My if by <hy.

If % and B are Boolean algebras, then tr () -+ tr(B) = tr (Y X B).

From Lemma 2.1 and (3) we obtain the following stronger version
of (3).

(4)  If <Fay by md 4y Uyy my)y = tr(eX/[8), then there is a subset Z of eX
such that tx(Z[8) = (hy,y by, my> ond tr(eX—2Z18) = <k, by, M.
Since we have assumed that X is complete, we have | )
tr(Th(2g) v Xt vy) = (ay, by, 6,> and e (Th(2g) v 2t —vp) = (ay, by, G«
() n= {i: i<n} .
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Hence, since b 20 or a = 0 or a = oo, by Lemma 2.1 there is a set X,

such that tr(X/8) = {ay, by, &> and tr{ —X;/8) = (@a, bs, ¢;>. To define X,
we shall consider three cases: a, = a5, a; < a, and a, > a,. If a; = a, then
b,+b, > 0. By Lemma 2.1 there is an element ¥, such that tr(¥/S)
= {a—1, 00, 0y. We put Xy=X;u ¥, if =0 and X,= X;—¥, if
b, = 0. If a, < @, then we put X, = X, ¥, where Y, is a set such that

(Yo/8) = <a,—1, o0, 0); if 0, > a, then X,= X,—X,, where tr(X,/S)
= {a,—1, oo, 0>. Tt is a matter of simple computation to check that X,
has the desired properties.

Now let us assume that a sequence X, = (X, ..., Xs) is defined.

For ¢ e 2" let X, = £X, and let G(e) denote the ideal § restricted to X,.
Since X' is complete,

tr(TIL(ZQ(E)) U X vy )=<a, b, 6> and

tr{Th(2g4) © 2 —Tpy) = (@ byy € -
1

() tr(2g) = &', by ¢ and  Jag, by, ey = (@' —1, o0, ¢'>
for i=1 ori=2,
then by the inductive hypothesis there is a set Z,C X, such that
tr(ZS(e)) = Cay, by, 0> and  tr((X,—Z)[S(e)) = <az, be, €2 -

If (5) does not hold, then the existence of such a set i3 a consequence
of Lemma 2.1 applied to 2g,. In the same way as X, was obtained
from X, we obtain from Z, a set Z, such that Z,4Z,e Fenzye(2e0)
and Z, contains a set ¥, such that tr(¥,/8(e)) = <tr{Z,[S(s))—1, o0, 0>
and X,—Z, contains a set ¥, such that tr(¥,/S(e)) = <tr, (X, — Z,)/S(e)) —
—1, o0, 0>.

Weput X, ., = | {Z,: e 2"}. Obviously, the sequence (X;: 7 < n+1)
satisfies (3) and the sequence <X;/8: i < n-+1)> satisfies all the formulas
of X whose free variables are among Ty, ...y Tpag-

Slightly meodifying the proof of Theorem 2.2, we can obtain the
following fact, which will be used later.

THEOREM 2.3. If tr(2g) = <m, 0, 1> and there is an element x of 2g
such that tr(r) = {m—1, oo, 0, then 2g is countably universal.

From Theorem 2.2 we obtain the following corollaries.

COROLLARY 2.4. If, for all m >0, tr(2g) % {m, 0, 1), then for every
finite relational structure N, the reduced power Ug is countably universal.
If, moveover, § is countably incomplete, then for every relational structure A
(not necessarily finite) the reduced power g is countably universal.

4 — Fundamenta Mathematicae, T. LXXVIIL
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COROLLARY 2.5. If, for all m > 0, tr(2g) # <M, 0,1y, then for every
compact class K of countable similarity type, the class S(K) is compaet. If,
moreover, § 48 countably incomplete, them we can omit the assumption of
compactness of the class K.

Corollary 2.4 follows from Theorems 1 and 2 of [10], Corollary 2.5
is a consequence of the theorems of Section 4 of [9].

Now we shall give another consequence of Theorem. 2.2, namely we
ghall prove that in Theorems 1 and 2 of [10] the assumption that 2g iy
countably universal is necessary.

TaEOREM 2.6. If, for every compact dass K of countable similarity
type, the class S(K) is compact, then 2g is countably unsversal.

Proof. Let § be an ideal such that 2g is not countably universal.
By Theorem 2.2 there is a natural number m such. that tr(2g) = <m, 0, 1),
Algo, by Theorem 2.3 there is no element @ in 2g such that tr(z)
= (m—1, oo, 0. Let T be a language with one binary relational symbol <
and let U = {0}, <> and A, = <{0, 1}, <>, We put K; = {¥U;, W}

Let .

M, = {ano( D} B, (D)2 0 < 00}

We claim that IT, is finitely satisfiable in §(K,). In fact, let II’ be a finite
subset of IT,. We can assume that II' = {a, (1)} v {Baey,s(1): & <}
Sinee tr(2g) = {(m, 0,1), there is an element y of 2g such that tr(y)
= (m—1,n,0>. Let ¥ be a subset of @ such that Y/8=y. Let
#£ = (Uj: j « G be the sequence of elements of K; such that %y = Uy if
and only if j e ¥. Of course, Pgst is an element of §(K;) and II’ holds
in Pgst. On the other hand, S(K;) is not compact. In fact, if C is a sequence
of elements of K, such that PgC is a model of IIn, then we pub
X ={je@: €=} It is easy to check that if » = X/, then = is an
element of 2g such that tr(s) =<(m—1, oo, 0.

From Theorem 2.6 and Theorem 1 of [10] we obtain the following
result.

COROLLARY 2.7. 2g is countably universal if and only if, for every
compact class K of countable similarity type, the class S(K) is compaci.

Now we shall prove that Theorem 2.2 cannot be extended to every
Boolean algebra of the form 2g.

THEOREM 2.8. For each positive integer mn theve is an ideal Fn of sub-
sels of w such that tr(2g,) = <m, 0,1 and 2g,, is not countably universal.

Proof. Let m be a positive integer. Let {Hi: i < w} be a partition
of o into infinite sets and, for each ¢ < w, let §; denote an ideal of subsets
of F; such that

(6) | tr(2g,) = <m—1,1, 0>
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and
(7) S; is non-principal .

The existence of such an ideal is a consequence of the theorem of
Ershov [1] mentioned in Section 1.
We put
Fm={XCw: BEinXeSi for i <o and {ir BE;~ X 320} is finite} .
Let
T = {0 (D)} 0 {Brny, d(To): L < @}

e shall prove that, for every m < w,

(8) Xy is finitely satisfiable in 25, ,
and
(9) Zm is not satisfiable in 24, .

Tt is easy to remark that for every i < o the equivalence class of E;
with respect to F, forms an atom of (2g,)pn_- Consequently
U {Es: i < n}/F.s has n atoms and is atomie in (25,,)m—y; hence (8) holds.

Moreover, by easy induction one can prove that
(10) if YC Ei, then tr(X[8;) = tr(¥|Fm) .

Now we shall prove an auxiliary fact.

2.9, For every n < i and every set X C o, we have (i) if and only if (ii)
and (iii), where

(i) X/Fm < Fal25,),

(i) (X ~ Fp)[Si € Fal2g,), for i < w,

(iii) {i: (X ~ )G contains an atom of (2g,)n}, is finite.

Proof. We will proceed by induction.

a. (ii) A (iii) = (i). Since (ii) holds, for each i < @ there are sets X
and Yy such that X ~H;= X;u ¥s and (X/Si)s is an atomic and
(Y4/Si)n is an atomless element of (2g,),. On the other hand, by (iii) we
can assume that for i > i, X; = 0. By (10), for ¢ < o, (¥i/Fm)s is an atom-
less element of (25,), and, for i <4y, (XifFm)a is an atomic element
of (25,),- Let X' = {J{Xu © <4} and ¥ = | J{Ys: i <o} Of course
(X'/Fm)n is a union of a finite number of atomic elements of (2g,),; hence
it is an atomic element of (25, ),. Also (¥/Fm)s is an atomless element
of (25,),. In fact, it ¥'C Y and Y'[Fm ¢ Fu(25,), then by the inductive
hypothesis

(11) (Y A E)[S; ¢ §a(2g,) for some i <w,
or

(12) I={i: (X' ABE)[S)y_ has an atom of (2g)n-1} is infinite.
4*
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Tf (11) holds, then by (10) (X' By)|Fr)a is atomless; hence (¥'[Fp),
containg an atomless element. Let us assume that (11) does mnot hold
and (12) holds. Let ¥, = J{¥' » By ieZ} for ZCI. Then if Z iy in-
finite, then by the definition of I and by the inductive hiypothesis (¥g/q )
¢ Ful25,) and since (11) does mot hold, for every tinite Z, (¥,/F,)

€ ¥u(24,). Consequently (Yu/F ) ¢ $n(25,) it and only it 7 is infinite and -

hence Y’ is atomless.
b. (i) = (ii). It is an immediate consequence of (10).
c. (i) = (ili). Tt suffices to prove that

(13) for every set Z such that the set Du(Z) = {i: (Hy ~ Z)[S; belongs
to an equivalence class of an atom of (2g,),} 18 infindte, there is
a set YCZ such that (Y[Fm)n is an atomless element of 2g.)n
(§o= 0).

In fact, let us suppose that (13) holds. Then if X/F, €¥,.:(24,)
then there are sets X, and X, such that X = X; v X, (Xy/Tm)n is an
atomic element of (24, ), and (Xy/Fm)s is an atomless element of (2,),,.
Hence, for each i < w, {(X, A B)[8i)n is atomless. Since, for every i < «
(X, ~ B)/Si)n is atomless, it remains to prove that Dy(X;) is finite. T
fact, if we assume that Dn(X,) is infinite, then by (13) there is a sub
set ¥ of X, such that (¥/¥F,), is atomless, which contradicts the fact
that (X,/Fm)e is atomic.

To finish the proof of 2.9 it remains to prove (13). We consider two

cases: n= 0 and n > 0.

n = 0. Let Z be a set such that Dy(X) is infinite. Let ¥ Dbe a subset
of X such that ¥ ~ B; has exactly one element if 4 ¢ Dy(X) and ¥ n By
is empty otherwise. We have {i: H;~ Y 3£ 0} = Dy(X). Hence the set
{it By~ Y = 0} is infinite. By the definition of Fm, for every infinite
Y,C Y, Yo/Fpn # 0. Moreover, since for each 4, §; is non-principal, for
e;fe;y finite ¥;C ¥, Yy/Fm= 0; hence ¥/F, is an atomless element
0 T

n > 0. Now let X be a set such that D,(X) is infinite. Then there
is a set ¥ such that ¥ C X, ¥ ~ By is empty if £ ¢ Dy(X), and if ¢ ¢ Dy(X),
then ((1’mE1)/9¢)n_1 forms an atom of (2g),_;. Let Xy== {J{Bn T:
ieZ} for Z C Dy(X). By the inductive hypothesis one can show that
X4Fm € $u(2g,) if and only if Z is finite; hence (F/Fm)s is atomless.

Now we are ready to prove that X, is not satisfiable in 2g4,. Let
us suppose that X iy a set such that (X/F,),_, is atomic. Hence X/Tmn
€ bnl2g,). By 2.9 we have :

(14) D, 1(X) is finite .

Let ¥ = | J{X nEz i ¢ D, (X)) We claim that Y/F,, ¢ Fpoy(2g,)- 10
fact, for every i < w ((B; » ¥)/S)n_, is atomless, and hence by (6) we

icm®

On countably universal Boolean algebras and compact classes of models 53

have (¥ ~ E)S; € §,,_:(2g,). Moreover, if we suppose that the set
H = {i: (Y n BS;),,_. has an atom} is infinite, then one can prove that
(¥)F,)m contains an atomless element. But ¥ C X and (X/Fp)pmy 18
atomie; hence H is finite and consequently, by 2.9, Y[F,, € bm1(25,)-

Now, by (6), (B,/S;)m_, has exactly one atom; hence, by (14), (X]F )
has a finite number of atoms, which contradicts the fact that X|Fm
satisfies Zp. .

Now it remains to prove that tr(2g,) = {m, 0, 1. Since Xy, is finitely
satisfiable and is not satisfiable in 25, , by Theorem 2.2, for some natural
number m;, we have tr(2g,)= {my, 0,15. Also by Theorem 2.3 we
have m, = m.

3. In this section we give a characterization of ideals § such that
for every compact class K the class §(K) is compact, and also some related
results.

DEFIToN 3.1. An ideal € is x-separatistic if, for every set & of

" sentences of L(x) (L, denotes the language of Boolean algebrag) which

is satisfiable in 2g, there is a sequence (X;: ¢ < %) of subsets of § such
that the sequence (Xi/S: i< x) satisfies T and for every s,t eS8, (%)
we have

(15) Ni{Xe ies}n N {G—Xiiety=
if () (XyS: iest A {—(XyfS): iet}=0.

Leyva 3.2, If § is =-separatistic and (o, x)-regular, then, for every
set = of sentences of Ly(x) which is satisfiable in 2g, there are sequences
(X i< # and (X7: i<y such that

1. the sequence (X}]G: i <) satisfies X in 2g,

2. G—(XF U XT)eS for i <= X;Cca-—Xf, .

3. if ICx is infinite, then (\{X{: iel}= N{X7:iel}=0,

if M{XHG: iest Y I—(XF/S: det}=0, then NiXi: iesy
AN{X7: ieth=0 for s,teS,(x).

Proof. Since § is =-separatistic, there is a sequence (Xy: << ) such
that the sequence - X8: i< x> satisfies 2 and {(15) holds. Since § is
(e, #)-regular, there is a subfamily (E:: ¢ < %) of 8 such that, for every
infinite set T Cx, (U{E: iel}= (G We put Xf = X;—F; and X7
= (G—_Xi)—Ei.

Let T be a fixed language of power ». We assume that all sentences.
of I are enumerated by elements of . If i < » then by a; we denote the ith
sentence of I. We say that the sequence (o, g, ..., &, I8 acceptable
if o is a formula of the language of Boolean algebras (L,) and is.
a sentence of I (j < n). If = is a formula of L, then we say that the ac-
ceptable sequence {o, Gy, -, Gy 1S connected with w i (o, ez oy G

L
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ig the sequence defined for in the proof of the theorem of Teferman
and Vaught (Th. 3.1. of [2]). Let us recall that if <{o, a;, .-y ;> 13 the
sequence connected with 7, then for every ideal § and every sequence
;s i€ Gy of relational structures of similarity type L we have

(16) PeUy: je @ Fa if and only if 26 ¥ ofla;], -oos [ag,]] 5

where [a,] = {jeG: Wk 0;,}/S.
TmmuA 3.3. Let 2 be a set of formulas of L and K a class of structures
of L. With L and K we connect @ set II = I, v I, of formulas of Ly{x), where

Iy = {6(Csyy vry Cig)t <Oy iy eey a;,> 18 an acceptable sequence connected
with =, e X},
and
I, = (") {h(8)eir i e dom(R)} = 0: s € 8,(x), h: s2,
' KE A B@) a0 e dom(R)} ().

Then, if T is finitely satisfiable in S (K), then IT is finitely satisfiable -

L n 2g.
Proof. Let II' be a finite subset of I7 and let X, C Z be a finite set
such that if o(ey, .., 6;,) ¢ II', then there is a sentence m e X, such that
{6, Uiyy ey O,y 18 conmected with . Since X is finitely satisfiable in
§(K), there is a sequence &= (Wi i e Gy such that Pglk) F A Zp. If
6; appears in any formula of II', then we put Oi={keG: W,Fai
Let ‘o(csy -y G) € I Then, by the definition of ZX,, for some me X,
(6, Ugyy vy @, 15 connected with . Hence, since Pg(4) F 7, by (16) we

obtain

26 F 6[CfS, -\ C,/S]-

Moreover, it K& TIA{R(i)as: i€ dom(h)}, then by the definition of the
sequence (Cy: i< =) we have () {h(i)Ci: iecdom(h)}=0; hence the
sequence {Cy: 1 < x) satisfies IT'.

THEOREM 3.4. If § is »-separatistic and 2g 18 =t -universal, then for
every compact class K the class §(K) is compact provided the similarity type
of K has power <x. .

Proof. Let T be a set of sentences of L which is finitely satisfiable
in G(K). Hence by Lemma 3.3 the set I7 defined in Lemma 3.3-1s finitely
satisfiable in 2g. Since 2g is »* -universal, IT is satisfiable in 2g. Since § i
%-separatistic, there exists a sequence (Ci: 4 < x) of elements subsets
of & such that if ¢;= €8, and ¢ = (ci: i < ), then (2g,¢) is a model

() le=¢, 0¢c= —¢, la= a, 0a = Tla.
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of IT and if s,te8,(x) and (\{e: ies}n{{—ei: iet} =0, then
N {0z ies} AN{G—Ci: i et} =0.

Now we are going to define a sequence (;: i ¢ @ such that W e X
and Pg(As: € G) F Z. Let 4, be a fixed element of G; we shall define ;.
Let X, = {ax: i€ Oz} and 2';, = { Tla: 1, ¢ Ci}. We claim that X v 27, '
is finitely satisfiable in K. In fact, if 5,1 e Su() and {a;: j es} C 2} and
{Tlaj: jetyC Xy, then doe(){Cr: kestn()\{G—Cs: ket}; hence
Ndae: kes}aA{lax: k e1} is satisfiable in K. Hence, since K is a com-
pact class %, v X has a model in K. We select U, such that U, is
a model of X, v X7,

Of course Pg{Ws: 7 € G» ¢ S(K). Let ¢ e X and let (=, az, ..., a;,> be
an acceptable sequence correlated with . By the definition of I7, in
Lemma 3.3, m(¢y, ..., ¢;,) belongs to IT,; hence by the definition of the
sequence Cj: i < %> we have

(1n 26 b 7[ 0,8, -5 /S -

On the other hand, if % e (i, then ¢; holds in A and if % ¢ Cy, then
Ax F TJai; hence 48 = [a;]. This, by (16) and (17), completes the proof
that Pg(Wi: ¢ € Gy is a model of 2.

THEOREM 3.5. If 25 is »* -universal, x-separatistic and (v, x)-regular,
then for every class K of relational structures of similarity type of power <x
the class S(K) is compact. ‘

"Proof. Let X be a set of sentences of I which is finitely satisfiable
in G(K). Hence the set I7 defined in Lemma 3.3 is finitely satisfiable.
Since 2 is »* -universal, x-separatistic and (o, »)-regular by Lemma 3.2,
there are sequences (X7 : i < %), {(X;: < %> which satisfy the conditions
3.21-3.2.4. Let Y, = {k <x: e Xf} and Z; = {k <u: fpe Xy} We

- ¢laim that Y, and Z, are finite. Of course ioe( ) {Xf: ke Y,}; hence

M {X#: ke X} # 0 and consequently by 3.2.3 ¥;, is finite. Moreover,
foe V{Xf: ke X} nN{Xy: keZ,}; henece by 3.2.1, 3.2.4 and the
definition of the set IT;, there is a relational strncture %, ¢ K such that %;,
is a model of A {ax: k € X, }AA{ lax: k € Z;}. The proof that the reduced
product PeWs: 7 e @ is a model of X is similar to that of the proof of
Theorem 3.4. The only difference is in the proof of the fact that X;/S
= [a¢]. We have

(18) X7 C{l: Wk} C —X7.

On the other hand, — (X} v X7)e§; hence by a simple computation
from (18) we obtain {k: Uk a}4X} €S (4 is the symmetric difference
symbol).

Now we shall prove that the assumptions of Theorems 3.4 and 3.3
are necessary.
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THEOREM 3.6. If the class S(K) is compact for every compact class
whose simalarity type is of power < x, then the Boolean algebra 2g is s -yni-
versal and »-separatistic.

Proof. Let X be a complete set of sentences of Ly(») sueh that
Th(2g) v 2 is consistent. To prove that X has a model of the form (2g, ¢)

where ¢ = <04S: i < x) and the sequence {Cy: ¢ < x) satisfies (15), we -

consider the class:
K, = {A: €= (2,d),de2", and if () {h(i)es: i edom(h)}==0)¢ X,
then [ {h(i)di: ie dom(h)} = 0},

The compactness of class K; iz an immediate consequence of the com-
pactness theorem for the propositional caleulus. Since K is compact,
the class §(K;) is also compact. Moreover, we can identify I,(») with the
language of K;. Hence we can consider X as a set of sentences of the
language of K. Since Th(2g) v X is consistent, X is finitely satisfiable
in §(K,). Lfat N be an element of §(K;) which is a model of 5. Then U
= Pgl(2, ¢): 1 e @), where, for i ¢ G, ¢* < 2" We put Or= {i ¢ G: ¢} = 1}
and ¢ = {Cxf8: k < »). Of course (2g, ¢) is a model of X (now considered
a8 @ seb of sentences of Ly(»)). Moreover, if () {h (%) (Cy/S): & ¢ dom(h)} = 0,
‘.nhen by the completeness of X' the sentence (M) {h(k)er: % e dom(h)} = 0
is an element of X, and hence, by the definition of K,, we have

BN {(h(k)de: ke dom(h)) =0 for every B cK,.

Consequently () {h(k)Cx: & e dom(h)} = 0, which completes the proc
that the sequence (Cp: k < »> has the desired properties.

TarorEM 3.7. If the class S(K) is compact for every class with similarily
type of power <x, then § is (w, x)-regular.

Proof. We consider the class

K= A= (2,¢), ce2* and {i ex: o= 0} is finite} .

By the assuwmptions of the theorem the class S(K,) is compact. Let
2= {ox=10: k <=} be the set of sentences of Ly(%) (which is also the
language of K,). Of course every finite subset of £ has a model in S(K,).
Hencr, by th_e compactness of §(K,), there is in §(K;) a model of % L“et
U= Pel(2, ¢’): i € &> be 2 model of T which belongs to §(K;). For ¢ << %
we pub Cr = {i € G: ¢’ = 1}. Since U is a model of 2, O is an element
of G We claim that for every infinite I Cx | J{0s: ke I} = @. In fact,
let ¢ ¢ @. Then the set {k: ¢} = 0} if finite by the definition of K,; hence,
for some keI, ¢ =1 and consequently ie C, .
COROLLARY 3.8. Let G be an ideal. § is x-separatistic and 2q is T -uni-

versal if and only if, for every compact class K of similayi -
of similarity type of power «<x
the class S§(K) is comvact. Y wpe of 1 o
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COROLLARY 3.9. § is x-separatistic and (w,x)-regular and 2g is
xT =universal if and only if, for every class K of similarity type of power <z,
the class G(K) is compact.

Corollary 3.8 is a consequence of Theorem 3.1 and Theorem 3.6.
Corollary 3.9 is a consequence of Theorems 3.5, 3.6 and 3.7.

Sometimes it seems to be more natural to consider classes of oper-
ations on classes of relational structures instead of a simple operation
(see e.g. [6]). The method developed above enables us to give the following
characterization of classes of operations which preserve the compactness
of classes relational structures.

"DEFINITION 3.10. Let C be a family of ideals. We say that C is
%-strongly compact it the class B(C)= {2g: §¢C} is compact and for
every Boolean algebra 9 in B(C) there is a Boolean algebra B in B(C)
such that A = B and B is »* -universal and x-separatistic.

DerINtrioN 3.11. A class C of ideals is »-powerfull if, for every ele-
ment A of B(C), there is an element § of C such that 2g is »* -universal,
%-separatistic and % = 2g and, moreover, § is (w, »)-regular.

THEEOREM 3.12. C is x-strongly compast if and only if, for every compact
class K of velational structures of similarity type of power < x, the class C(K)
is compact.

THEOREM 3.13. C is x-powerfull if and only. if, for every class K of
relational structures which similarity type is of power <z, the class C(K)
i8 compact.

Proofs of Theorems 3.13 and 3.12 can be obtained by a modification
of the proofs of Corollaries 3.8 and 3.9. .

Finally let us give the following corollary, which by a theorem of
Keisler [3] implies the main result of paper [7] of Omarov.

COROLLARY 3.14. C is x=-strongly compact for every = if and only if,
for every compact class K, the class C(K) s compact.

DerFINITION 3.15. A class C of ideals is elementary if the class B(C)
= {25: § ¢ C} is an clementary subclass of the class of all Boolean algebras
of the form 2g.

THEOREM 3.16. (Omarov [7]). If C is an elementary class of ideals,
then, for every compact class K, the class C(K) is compact. '

Let us conclude this section by a remark that all the theorems of
this section can De extended to limit reduced powers and some of the
results can be extended to the case of strongly compact classes or re-
lational structures (in the sense of [7]).

4. In this section we try to find properties of an ideal § which imply
that the Boolean algebra 2g is x-separatistic.
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TusorEM 4.1. If G is «*-good, then, for every sequence bz i <) of
elements of 2g, there is a sequence (Bi: © <> of subsels of G such that:

1. by= Bi/S for i <« and

2. for every s e S,(x) and every h: s—2 we have

N{R(E)be: i es} =0 implies (\{h(3)Be: iest=0.

Proof. Let ¢(Bj: i > %) be a sequence of subsets of ¢ such. that for

i < % Bj/§ = b;. Let for se8,(x)
F8) = UIN () B ety he2ly tCs, (N {h(D)bi: i et} =0}.

Clearly f is a monotonic function and, for each se S, (x), f(s) <.
By the »-goodness of § there is a function g: §,(») -9 such that, for every
s,te 8, (%), g(s)Df(s) and g(sut)=g(s)wg(f). We shall define a se-
quence B; such that
(19) Bi4B; C g({3})

and 4.1.2 holds. (19) and 4.1.2 are equivalent to conditions (20) and (21)
below: ’

(20) if m ¢ g{i} then m ¢ BiAB; for m @,
(21)  if m e\ {k(%)B:: i e dom(h)}, then
M {h(2)bs: iedom(R)} £0 for me@G.
It suffices to show that for a given particular m, we can satisfy conditions
(20) and (21). ,

. Let X=2* be the topological space with the product topology.
With every sequence <E;: i < x> of subsets of G we connect an element %
of X such that #(¢) = 1 if and only if m, ¢ E;. Conversely, every element
of X can De treated as a code of a set of statements {m, e By: ¢ < x}. Let y

be the element of X which is connected with the sequence (Bj: 7 < ).

To satisfy (20) and (21) it suffices to find an element x of X which belongs
to the intersection

(22) (WY §<ap v { Ty 8,16 8,(%)}
where

Y= {z: m¢g{j})—>y(j) = (5}
and

Yy ={o: O{m: ies}-[] {(1—a(i)): et} =1
= {be: Gest n{—bi i€t} 0},

For every j e » and every s, ¢ S,(x), the sets ¥; and ¥,, are closed

subsgts of X; hence, since X is a compact space, it suffices to check that
the intersection
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(23) MY 4 elyy N {Tp: <8,1> €, C{Sa(#))%)

is non-empty if I, and I, are finite.
Let

u=1I,w{ien: ies or iet and {s,t>el},
so={keu: kely, y(k)=1 and m ¢ g (&)
and let
fy={keu: kely, y(k) =0 and m ¢ g{En) .
Since g is an additive function, we have
(24) Mg ¢ G(Sg v tu)’.
Moreover, for ke sy, y(k)=1 and for kei, y(k)= 0; hence
[Tk kesod [T{1—y(E): keted =1,
and consequently
(25) T omee\{Bs: Eesgt n[{—By: kety}.
Since g D f, by (24), we obtain m, ¢ f(s, v f,); hence, by the definition
of f and (25), we have
(26) M {br: Lesgt 1 {—be: kely} #0.

Since s, w1, Cu and s Nt =0, by (26) there are sets s,,1, € 8,(»)
sueh that s,C 8, 1, Cty, tyw s =u and
(27) Ni{br: Fes;y n(V{—bi: keti} #0.

For & eu we put

N1 if Ekes,
k) = {0 if ket

and if k ¢ u, then z,(k) is arbitrary.

We claim that z, is an element of the intersection (23). In fact, for

every keI, we have x, ¢ Yi because s,C s and 4, Ct;. Moreover, if for
{¢,1» el we have

[1 {zal2): i€ sh-Jl{l—an(i)): iel} =1,
then sCs; and $Ct and consequently by (27)
Nifbe: kesy n(V{—br: ket} # 0.
COROLLARY 4.2, If § is »T-good and 2g is »*-universal, then, for every
compact class K whose similarity type is of power <Jx, the class §(K) is compact.
COROLLARY +.3. For every complete theory of Boolean algebras and every

cardinal number x, there is an ideal S such that, for every compact class K
of similurity type of power <x, the class G(K) is compact.
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» Corollary 4.3 is a consequence of the existence of good ideals (see
eg. [4]).

The following fact was stated in [4].

LEMMA 4.4, If G is »™-good, then it is w-incomplete if and only if it
is (w, x)-regular.

CoroLLARY 4.5. If § is %*-good and w-incomplete and 2g is x*-uni-
versal, then, for every class K whose similarity type s of power < x, the
class S(K) is compact.

Finally, let us remark that the assumption of x*-goodness in Theo-

rem 4.1 is not necessary. The proof of it is easy. Also there iy o x-sepa-
ratistic ideal @ such that the Boolean algebra iy »T-universal and § is
not (w, »)-regular.
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Concerning closed quasi-orders
on hereditarily unicoherent continua

by
G. R. Gordh, Jr. (Lexington, Ky.)

Abstract. The purpose of this paper is to define and study a class of hereditarily
unicoherent Hausdorff continua, called nearly smooth, which admit a closed quasi-order
that is closely related to the weak cutpoint order. The major result is that for each
point p of a nearly smooth continuum M there exists a decomposition D of M such
that (i) D is upper semicontinuous, (i) the elements of D are continua, (iii) the decom-
position space of D is a generalized tree which is smooth at the element of D contain-
ing p, and (iv) D is the finest decomposition satisfying (i), (ii), and (iii). In addition,
characterizations of nearly smooth continua, smooth continua, and generalized trees
are obtained in terms of closed quasi-orders and the set-valued function T. A preliminary
result of independent interest is that every semi-aposyndetic, hereditarily unicoherent
continuum is a dendroid.

The notion of weak cutpoint order has been useful in studying the
structure of arcwise connected, hereditarily wnicoherent continua. For
example, Koch and Krule [10] have shown that a hereditarily unicoherent
continuum is a generalized free [12] if and only if there exists a point p
such that the weak cutpoint order with respect to p is a closed partial
order. Charatonik and Eberhart [3] have applied the notion of weak
cutpoint order to obtain characterizations of smooth dendroids and to
study their mapping properties. .

Tt is the purpose of this paper to study hereditarily unicoherent
continua admitting a closed quasi-order which is closely related to the
weak cutpoint order. One should observe that for non-arcwise connected,
hereditarily unicoherent continua the weak cutpoint order is a quasi-
order and not a partial order.

It is shown that a hereditarily unicoherent continuum is smooth at
a point p [6] if and only if the weak cutpoint order with respect to p is
closed. This result motivates the definition of a nearly smooth continunm
as a hereditarily unicoherent continuum admitting a closed quasi-order
which “approximates” the weak cutpoint order. Characterizations of

nearly smooth continua, smooth continua, and generalized trees are

obtained in terms of closed quasi-orders and the set-valued function T [4].
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