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Strong essential cluster sets
by
Richard J. O’Malley (*) (Lafayette, Ind.)

Abstract. Let H be the upper half-space of R® I7(x, 4) the upper orthogonal
linear metric density of 4 at point  « 8H. Let D™(z, 4) be the upper strong metric density
of 4 at point x ¢8H. For a measurable function f: H—R the linear essential cluster
set of f at x «9H is the set of 4 such that for every e > 0,1 7w, [y: 1—e < f(y) < A+¢])
> 0. The strong essential cluster set of f at # ¢ 2H is defined similarly. From two lemmas
about the structure of measurable sets, the following theorem can be established. For
a continuous function f: H R, the sirong essential cluster set of f contains the linear
essential cluster set of f at every point z ¢ 8H. Equality actually holds between these
sets except at a set of x e @H of the first category. For a measurable function, equality
holds except for a set of # «2H of measure zero. Examples are given to show that this
is the best possible result.

In obtaining an analogue for essential cluster sets of a theorem of
Collingwood [1] on cluster sets, Goffman and Sledd [2] show that if f is
a continuous function in the upper half plane, H, the ordinary essential
cluster set of f is contained in the vertical essential cluster set of f, at
each point in 8H except at a set which is both of the first category and
measure zero. If f is measurable the exceptional set is of measure zero,
but not necessarily of the first category. In the same paper it is shown
that the “contains in” relation cannot be strengthened to equality.

Our purpose is to show that this containment is replaced by equality
if strong essential cluster sets are considered instead of ordinary essential
cluster sets.

Our result follows immediately from two lemmas about the metric
structure of measurable sets. One of these lemmas establishes a relation
between strong and linear metric density. This relation while, perhaps,
not unexpected, appears not to have been discussed.

Let |-|; denote 4-dimensional Lebesgue measure, i = 1, 2 and let [I]
be the collection of closed rectangles of the form [a, b]x [0, k], a <0 < b,
a, b and k rational. For I e [I]let I(x,) denote the closed rectangle obtained

(*) Supported in part by N.S.F. Grant 9515 under the supervision of Professor
Casper Goffman.
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by mapping (z,y) into (z+u,y). We define the strong upper density

of o measurable set EC H at © < 0H as

{li’(m) s

D;(E, ) = lim[ sup W

© pes00 LOD<1/n

-z,

where §(I) is the diameter of I; and the upper metric density of B at
# ¢ 2H in the vertical direction as

[ {Il(w, h) ~ B,
sup | —————

d-(B, o) = lim ;

T>00

th rational}]
h<i/n
where 1(z,h) denotes the vertical open line segment in H of length h,
and end point . D7 (B, z) and d~(¥, #) are measurable functions of .
We need one more definition.

For f measurable, a real number y is in the strong essential cluster
set, O(f, ), of f at = if, for each ¢ >0, the set f™{(y—e,y-+¢)} has
positive strong upper density at . The essential vertical cluster set,
¢(f, %), is defined similarly.

LemmA 1. If B C H is open, then D; (B, ) = d~(E, ») for every x and
A= {w: D7 (E,x)>d (B,s)} is of the first category.

Proof. Let @ be fixed, d~ (¥, #) = a. Then there iy a sequence of
rational numbers %, decreasing to 0 such that

ftoy b) " B 1

ha

Let n be fixed and let fy = h. Then, since F is open, I(x, h) ~ H, con-
sidered as a subset of R, is open. So

U, h) B = (tm, bn)
m=1

where the (an, bn) are the components of the open set, and

21 (b —@m) > (a—1/n) .

m=1
We pick a finite collection of closed intervals [em, dwm], m =1,
such that [em), dw] C (am, bn), m =1, ..., M and
M

>

m=1

M,

(Am— em) > (a~1fn)h .

Sinee [em, dn] Cl(2, h) ~ B, there are closed rectangles Ju C B such that

I = [T —em, 2+ em) X [emy dm]
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with &, > 0, rational. Let &= min[em,m = 1,..., M]. Then for I
= [—e, e]X [0, h] we have I ¢[I], and

M
(@)~ Ely> D) 2e(dn—cm) > 26(a~1/n)h = (a—1/n) I]; .
m=1
It follows that D;(F,x)> a and we have D_(E,x)> d (E,z), for
every x. The proof that A is of the first category follows the same outline
as [2], p. 297 and is included here for completeness. Let:

Wz, i)n E
; [ b Il
for all A < 1/n, h rational},

Aaﬁn:{m: Di(EB,x)=h>a

for each natural number » and pair of rational numbers a,f, a < f.
Suppose 4, is dense in an open interval L. Then, since E is open, for
every v eL and h < 1/xn,

{Ha, ) ~n Bl < ah .

Let 25 € Ay, » L. Let T e [I] be such that I(xy) = J X [0, ] where k< 1/n
and J C L. Then

(20) n Bly= [ [l(z, ) ~ Blyde < ah-|T}y = a- [T}, .
: J

Therefore D (¥, x,) < a. This confradiction shows that 4, is nowhere
dense, so that 4 is of first category.

LemMa 2. If E C H is measurable, then D7(E, x) = d~ (¥, x) for a.e. 2.

Proof. Let 4 and 4, be as in Lemma 1; these sets are measurabie.
Suppose some A, has positive measure. Then we select any point
of A4, such that the metric density of A4, at z; is 1. Let ¢ = }(f—a).
There is an 5> 0 for which

[+, 2o+ d] ~ Aaﬁnll > (1~e)l[zg+e¢, 2+ d]ly

for any interval, [ig+¢, @y+d], with d > 0 > ¢ and d —¢ < 7. This implies

that for any I e[I] satisfying I ={e, d] X [0, k] with d—e¢ <7 and (1)
< 1/ we have, letting J = [2,+e¢, 2,4 d],

(o) ~ Ely= [ |l(z, }) ~ B,z
J

= [ Uz, h) ~nBLde+ [ |z, k)~ Elde
Jﬂﬁaﬁ" J“Aaﬂn

< bl ~ Ayl Rl
< (at- )L

A
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From the definition of D (#, @) we have
prm,m) < et P20 <p.

This eontradiction shows that A has measure zero.
We also let

= {g: Ad7(®, ») > D7 (E, »)}
and

[ (z) ~ Bl, <L |
Ban={m:—— Le<fgd” for all TC[I -
B (@) Le<BLd (B, ) 11, ¢ 4[
B and B,, are measurable. To complete the proof of Lemma 2 we need
only show that B, has measure zero for each a, §, n. To accomplish
this, we introduce the auxiliary sets W, for h rational and positive.

1 flt, h) A3 ~ll(m,h)f\l’]h}
f 3 dt = - .

W, = {w: lim
B r—gt (T_S)
8—>p— 8

' 1
That is, Wy, is the set of points where the indefinite integral of I (ﬁb——]%m Bh
o

is differentiable. For % fixed, W, is measura.ble. Since [—l-—(—,-v-i—]%l'h-h is

a bounded measurable function, the measure of the complement of W, is

zero. Setting W= [ W, we have
hr'lltiogm.l
L >

IWﬁBuﬁ‘nllz ]Baﬁn[17 fOl‘ Zl:l]. a, 167 n
We show that W n By, = @. If © ¢ By, then

[II(m) “E|2] _

sup <a.
Teln) @)y 1
aN<1in

Then, for 0 <% < 1fn, k rational,

= 1 j[l(t DEay:

r—>x+ "' -—8 )
Sz~

Accordingly, if # belongs to W, then
i@, h) B
1) h <,

for every h < 1/n, h rational. Hence A~ (B,z)< afor zeB
contradiction shows that By, "W =@, and so |B

U< a.

apn ™ W. This
uﬂnll = 0.
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THEOREM. If f: H— R is continuous, then C(f, ) 2 ¢(f, ), for every =,
and CJf, x) = c¢(f, ) except for a set of first category and measure zero.
If f is measurable, then C/(f, z)= c¢(f,®) except for a set of measure
zero.

The proof follows immediately by applying the definitions of C,(f, »)
and ¢(f, ) and the lemmas to the inverse images of the rational open
intervals. Further we show that this is the best possible result.

ExAMPLE 1. Let P be the Cantor ternary set and let U be the com-
plement of P relative to [0,1]. We denote U as the countable union of
dlsmmt open intervals, (an, ), n=1,2,.. For 0 <a <1 we let

En={2,¥): @ <2 <bn, ¥y = a(z—as)(bn—2)}
and

Eﬂ = U Eﬂ”

n=1

We define a continuous function f as follows:

F@, 1) {a for (v, y) e E,,

x =3

Y 1  elsewhere.

For x ¢ P we have that ¢(f, ) = {1}, but we show that 0 « O (f, x) for
2 ¢ P. This will establish that the exceptional set of the first part of the
theorem can be uncountable. Let 0 <& < 1. Let x)¢ P. We need only
ghow that if @, = {(z,¥): fla,y) <e}, then D (G, 2)>0. If = an
or b, for some n, then D, (G,, #,) = 1 eclearly. We therefore assnme 7z, = ax
or b, for any n. For any 6 > 0 we can find an interval J = (2,4 ¢, 2,--d)
such that e¢<0, d>0, d—e¢=r<46, d, ¢ rational, and J T

= U (@, by,). Since |P}; = 0 we have
k=1

i(angﬂ bnk)] =17.

Mz

=
{
-

We pick K > 0 so that

](“mﬁ bnk)l > %?‘ -

198

o
[l
-

Consider 1 < k < K fixed. For a,, <2 <b,,
G={ry: < E(a?_“nzc)(bm_‘m)} ’
and there is a yz > 0 such that y; rational and for 0 <y < yx we have

![an;ﬁ bm;] X [0) y] n Gslﬂ > %y (bnk_ ank) .
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Let y, = Min{yy, ¥a, -, ¥} Then I=[¢,d]X [0, y,] €[I] and for I(x,)
we have

(@) A Gl = [y n] X [0, 0] ~ Gl
> D [y bas] X [0, %] 7 Gile
k=1

K
>34, 2 (@ D)

k=1
> 1Yo
=} I(@)l:-
Hence it follows that Dy (G,, %) > > 0.

Exampre 2. In [2], pp- 299-300, there is an example of a continuous
function ¢ such that if § is any fixed direction other than m, and 4,(f, 2)
is the directional essential cluster set in direction ¢, then for every
x, o(f, \(f, ®) # ©. By our theorem it follows that the strong essential
cluster set can differ from the directional essential cluster set at every x
for any direction other than 3.

BExaMPLE 3. Let B C Rt be any set of measure zero and f the charac-
teristic function of B X (0, o). Oy(f, #) = {0} for every «, but ¢(f, ) = {1}
for every # < H. So the exceptional seti of the second part of the theorem
can be any set of measure zero. )

Exampre 4. In [3], Sierpinski constructs an example of a non-
measurable set § with the property that every line in the plane contains
at most two points of § but for every measurable set B, |S n H|, = |Bl,.
The characteristic function of 8 provides an example of & non-meagurable
function f for which L e C(f, #) for every z, but ¢(f, ») = {0} for every s.

The above examples indicate the possible differences between strong
and linear metric density.
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On countably universal Boolean algebras
and compact classes of models

by
L. Pacholski (Wroclaw)

Abstract. In the first part of the paper we give a characterization of the set I of
complete theories of Boolean algebras which has the following properties: 1° For every
set I and every filter & of subsets of I the Boolean algebra 27/F is w,-universal provided
its theory belongs to 7. 2° For every complete theory 7 ¢ T there is a set I and a filter &
such that Th(2/F) = T and 2/¥ is not o,-universal.

The second part of the paper contains a characterization of the class C, of filters
such that for every compact class K of similarity type of power < » and for every
F ¢C, the class F (K) of all F-reduced products of elements of K is compact. Let F be
a class of filters and let K be a class of relational structures. By F(K) we denote the
class | {F(K): < F). As a corollary to the result of the second part we give a cha-
racterization of classes F of filters such that for every compact class K the class F(K) is
compact.

The present paper is a continuation of [10]. In Section 1 we give
the necessary background for Sections 2 and 3. In Section 2 we prove
that for some class T of complete theories of Boolean algebras if Th @b er
then 2§ is countably universal. Moreover, for every T¢I we give an
example of an ideal § such that Th(2§)= T and 2% is not countably
universal. Section 3 contains a characterization of the class C, of ideals
such that, for every compact class K whose similarity type is of power <m
and every §eC, the class §(K) of all §-reduced products of elements
of K is compact. If C is a class of ideals and K a class of relational strue-
tures, then C(K) is the class of relational structures such that % e C(K)

_if and only if for some § e C and for some sequence {;: i ¢ I)> of elements

of K, U = Pg Wy i e I (Pg denotes the operation of a §-reduced product).
As a corollary to the results of Section 3, we give a characterization of
classes C such that for every eompact class K the class C(K) is compact.
Finally, in Section 4, we give some results concerning separatistic Boolean
algebras of the form 2g (see Definition 3.1).

Investigations of operations which preserve the compactness of
clagses of relational structures were started by M. Makkai, who proved
that the class of all direct products of a compact class is compact (see [6]).
Further results were obtained by 8. R. Kogalovskil [5] and A. I. Omarov
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