

- [15] Hanna Neumann, Varieties of groups, Berlin 1967.
- [16] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. (3) 14 (1964), pp. 566-576.

THE UNIVERSITY OF NEW SOUTH WALES Kensington, Australia

Reçu par la Rédaction le 25. 11. 1971

Some mapping characterizations of unicoherence

bу

R. F. Dickman, Jr. (Blacksburg, Va.)

Abstract. In this paper we characterize unicoherence in terms of certain real-valued mappings. The following theorems are typical of the results obtained: (1) Let X be a separable, locally connected, connected, perfectly normal space. Then X is unicoherent if and only if for every pair of disjoint non-empty closed sets A and B of X there exists a mapping f of X onto I = [0, 1] such that $0 \in f(A)$, $1 \in f(B)$ and $I \cap f(A \cup B)$ contains a dense subset D of I such that for every $d \in D$, $f^{-1}(d)$ is connected. (2) Let X be a separable, locally connected, connected, compact normal space. Then X is unicoherent if and only if for every pair of disjoint non-empty continua A and B of X there exists a monotone mapping f of X onto I such that f(A) = 0 and f(B) = 1.

The concept of non-alternating mappings was introduced by G. T. Whyburn in [8] and in [9] he showed that if M is a locally connected, compact connected metric space and J is any arc in M, there exists a non-alternating retraction $r\colon M\to J$ which, when M was unicoherent, was monotone. His proofs depended heavily upon cyclic element theory for compact locally connected continua. In [1], K. Borsuk characterized unicoherence for compact, locally connected metric continua in terms of mappings into the circle. More recently, K. Kuratowski proved that when X is a compact and locally connected space and Y is a metric space, \mathcal{N} , the set of all non-alternating mappings of X onto Y, is a G_{δ} -set in the space of all continuous maps of X into Y.

In this paper we characterize unicoherence for separable, perfectly normal, locally connected, connected spaces in terms of non-alternating mappings onto [0,1].

Notation and terminology. Throughout this paper let X denote a connected, locally connected normal space. By a continuum we mean a closed and connected set and a region is an open connected set. By a mapping we will always mean a continuous function. We will use I to denote [0,1] and a surjection f of X onto a space Y will be denoted by $f\colon X\Rightarrow Y$. A perfectly normal space is a normal space in which every closed subset is a G_δ -set.

DEFINITIONS. We say that X is unicoherent provided whenever $X = H \cup K$, where H and K are continua, $H \cap K$ is a continuum.

We say that a mapping $f: X \Rightarrow Y$ is non-alternating provided that whenever $y \in Y$ and $X \setminus f^{-1}(y) = A_1 \cup A_2$ is a separation, $f(A_1) \cap f(A_2) = \emptyset$. We use C(f) to denote $\{y \in Y: f^{-1}(y) \text{ is connected}\}$ and say that $f: X \Rightarrow Y$ is monotone (respectively, d-monotone) provided that C(f) = Y (respectively, $\overline{C(f)} = Y$).

A mapping $f \colon X \to Y$ is said to be interior at $y \in Y$ provided that whenever U is an open subset of X that meets $f^{-1}(y)$, y is interior to f(U). For a mapping $f \colon X \Rightarrow I$ we use $\Im(f)$ to denote $\{y \in (0,1) \colon f \text{ is interior at } y\}$.

LEMMA 1. A mapping $f: X \Rightarrow I$ is non-alternating if and only if for every $y \in (0,1)$, $X \setminus f^{-1}(y)$ has exactly two components.

Proof of the necessity. Suppose that P,Q and R are components of $X\backslash f^{-1}(y)$. Then for some pair, say P and Q, $f(P)\cap f(Q)\neq\emptyset$. But then $X\backslash f^{-1}(y)=P\cup H$, where $H=X\backslash (f^{-1}(y)\cup P)$, is a separation with $f(P)\cap f(H)\neq\emptyset$. Of course this implies that $X\backslash f^{-1}(y)$ has exactly two components.

The sufficiency. For any point $y \in (0,1)$, let A_y (respectively, B_y) denote the component of $X \setminus f^{-1}(y)$ that maps onto [0,y) (respectively, (y,1]). Then $X \setminus f^{-1}(1) = \bigcup A_y$, $y \in (0,1)$ and $X \setminus f^{-1}(0) = \bigcup B_y$, $y \in (0,1)$ are connected. Now suppose that $X \setminus f^{-1}(x) = H \cup K$ is a separation. By the above $x \in (0,1)$ and by our hypothesis H and K are connected and so $f(H) \cap f(K)$ must be empty.

LEMMA 2. If $f: X \Rightarrow I$ is d-monotone, it is also non-alternating.

Proof. Let $y \in (0,1)$ and suppose that P_1 , P_2 and P_3 are components of $X \setminus f^{-1}(y)$. Now each of the sets P_i , i=1,2,3, has limit points in $f^{-1}(y)$ and so for some pair, say P_1 and P_2 , we have that $\operatorname{int}(f(P_1) \cap f(P_2)) \neq \emptyset$. Let $c \in C(f) \cap f(P_1) \cap f(P_2)$. Now $f^{-1}(c)$ is connected and so it must lie entirely in any component of $X \setminus f^{-1}(y)$ that it intersects. But $f^{-1}(c) \cap P_1 \neq \emptyset \neq P_2 \cap f^{-1}(c)$ and this contradiction implies that $X \setminus f^{-1}(y)$ has exactly two components. Then by Lemma 1, f is non-alternating.

LEMMA 3. Let A and B be disjoint closed sets in X, let C be a component of A and let D be a component of B. There exist disjoint regions H and K of X such that $C \subset H$, $D \subset K$, $\operatorname{Fr} H = \operatorname{Fr} K$ and $\operatorname{Fr} H$ misses $A \cup B$.

Proof. Let W be any open set containing A such that $\overline{W} \cap B = \emptyset$ and let P be the component of $X \backslash FrW$ that contains C. Let K be the component of $X \backslash \overline{P}$ that contains D and let H be the component of $X \backslash \overline{K}$ that contains C. Then since X is locally connected, FrH = FrK and since $FrH \subset FrW$, FrH misses $A \cup B$.

Lemma 4. Suppose that X is perfectly normal and let A and B be non-empty disjoint closed subsets of X. Then there exists a non-alternating mapping

 $f: X \Rightarrow I \text{ such that } 0 \in f(A), 1 \in f(B) \text{ and } f \text{ is not interior at any point of } f(A \cup B).$

Proof. We will use induction to construct a sequence $\{f_n\}_{n=1}^{\infty}$ of mappings which converge uniformly to the desired map. To this end let U and \overline{V} be open sets containing A and B respectively such that $\overline{U} \cap \overline{V} = O$. Let A_0 be any component of \overline{U} that meets A and let B_0 be any component of \overline{V} that meets B. Finally let $T = \overline{U} \cup \overline{V}$. By Lemma 3 there exist disjoint regions $H_{1,1}$ and $H_{1,1}$ containing $H_{1,1} \cap T = O$. Let $H_{1,1} \cap T = O$ be any mapping such:

(1) $f_1(A_0) = 0$ and $f_1(B_0) = 1$,

(2) $f_1^{-1}[0, 1/2) = H_{1,1}$ and $f_1^{-1}(1/2, 1] = K_{1,1}$,

(3) $X \setminus (H_{1,1} \cup K_{1,1}) = f_1^{-1}(1/2)$.

Now suppose that for every positive integer $n \leq k$ we have chosen a mapping $f_n \colon X \Rightarrow I$ such that:

(a) $f_n(A_0) = 0$ and $f_n(B_0) = 1$.

(b) For every integer m, $1 \leq m \leq 2^{n-1}$, there exist disjoint regions $H_{m,n}$ and $K_{m,n}$ such that $A_0 \subset H_{m,n}$ and $B_0 \subset K_{m,n}$, $F_{m,n} = \operatorname{Fr} H_{m,n} = \operatorname{Fr} K_{m,n}$ misses T, $f_n^{-1}[0, m/2^n] = H_{m,n}$ and $f_n^{-1}(m/2^n] = K_{m,n}$, and $X \setminus (H_{m,n} \cup K_{m,n}) = f_n^{-1}(m/2^n)$.

(c) $f_n|_{f_{n-1}}(S_{n-1}) = f_{n-1}$ where $S_{n-1} = \{1/2^{n-1}, 2/2^{n-1}, ..., (2^{n-1}-1)/2^{n-1}\}.$

(d) For every integer $m, 1 < m \le 2^{n-1}, f_n^{-1}f_n[f_{n-1}^{-1}((m-1)/2^{n-1}, m/2^{n-1})] = f_{n-1}^{-1}((m-1)/2^{n-1}, m/2^{n-1}).$

We define f_{k+1} as follows: Let $A_{0,k} = A_0$ and let $B_{k,k} = B_0$. Now for each $m, 1 \leq m < 2^k, \ H_{m,k}$ is connected and since every component of $f_k^{-1}(m/2^k)$ meets $H_{m,k}, A_{m,k} = H_{m,k} \cup f_k^{-1}(m/2^k)$ is a continuum. Likewise for each $m, 1 \leq m < 2^k, \ B_{m,k} = K_{m,k} \cup f_k^{-1}(m/2^k)$ is a continuum. Furthermore for each $m, 1 \leq m < 2^k, \ T \cap H_{m,k} = T \cap \overline{H}_{m,k}$ and $B_{m,k}$ are disjoint closed sets, $T \subset (T \cap H_{m,k}) \cup B_{m,k}$, and $A_{m-1,k}$ is a component of $T \cap H_{m,k}$. Similarly for $m = 2^k, B_{k,k}$ is a component of $T \cap K_{m-1,k}$, $T \subset (T \cap K_{m-1,k}) \cup A_{m-1,k}$ and $T \cap K_{m-1,k}$ and $A_{m-1,k}$ are disjoint closed sets. So that finally, by Lemma 3, for each $m, 1 \leq m \leq 2^k$ there exist disjoint regions $H_{2m-1,k+1}$ and $K_{2m-1,k+1}$ containing $A_{m-1,k}$ and $B_{m,k}$ respectively such that $\operatorname{Fr} H_{2m-1,k+1} = \operatorname{Fr} K_{2m-1,k+1}$ and $\operatorname{Fr} H_{2m-1,k+1}$ misses T. Choose f_{k+1} : $X \Rightarrow I$ to be any mapping such that for each $m, 1 \leq m \leq 2^k$,

(i) $f_{k+1}f_k^{-1}[(m-1)/2^k, m/2^k] = [(m-1)/2^k, m/2^k],$

(ii) $f_{k+1}^{-1}((m-1)/2^k) = f_k^{-1}((m-1)/2^k)$ and

(iii) $f_{k+1}^{-1}((2m-1)/2^{k+1}) = X \setminus (H_{2m-1,k+1} \cup K_{2m-1,k+1}).$

Note such a selection is possible since X is perfectly normal. Clearly f_{k+1} so chosen satisfies (a)-(d).

Now there exists a mapping $f: X \Rightarrow I$ such that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f since for all integers p, n, m, where $p \geqslant n > 0$ and $1 \leqslant m$

 $<2^n, f_pf_n^{-1}[(m-1)/2^n, m/2^n] = [(m-1)/2^n, m/2^n]$. In order to see that f is non-alternating let $y \in (0,1)$ and let $\{p_i\}_{i=1}^{\infty}$ and $\{q_i\}_{i=1}^{\infty}$ be sequences of positive integers such that for each $i, 1 \leq p_i \leq 2^{q_i} - 1, q_{i+1} > q_i, p_i/2^{q_i} < y$ and $\{p_i/2^{q_i}\}_{i=1}^{\infty}$ is an increasing sequence which converges to y. Then

$$f^{-1}[0\,,y)=\bigcup_{i=1}^{\infty}f^{-1}[0\,,\,p_{\,i\!}/2^{q_{i\!}})=\bigcup_{i=1}^{\infty}f_{q_{i\!}}^{-1}[0\,,\,p_{\,i\!}/2^{q_{i\!}})$$

since

$$f_{q_i}^{-1}[0\,,\,p_{\,i}/2^{q_i}) \subset f^{-1}[0\,,\,p_{\,i+1}/2^{q_{i+1}}) \subset f_{q_{i+1}}^{-1}[0\,,\,p_{\,i+1}/2^{q_{i+1}})$$

and since each of the sets $f_{ai}^{-1}[0\,,\,p_{i}/2^{ai})=H_{p_{i},a_{i}}$ is connected, $f^{-1}[0\,,\,y)$ is connected. Similarly $f^{-1}(y\,,\,1]$ is connected and by Lemma 1, f is non-alternating.

Let $x \in (A \cup B)$ and let Q be the component of T containing x. Let $\{p_i\}_{i=1}^{\infty}$ and $\{q_i\}_{i=1}^{\infty}$ be sequence of positive integers such that $1 \leqslant p_i \leqslant 2^{q_i}-1$ and $q_{i+1} > q_i$ and such that

$$f(x) = \bigcap_{i=1}^{\infty} (p_i/2^{q_i}, (p_i+1)/2^{q_i}).$$

Recall that if any component of T met a set of the form $f_n^{-1}(m/2^n)$ it lie entirely within the set, so that for each $i \ge 1$,

$$Q \subseteq f_{q_i}^{-1}(p_i/2^{q_i}, (p_i+1)/2^{q_i}) \subseteq f^{-1}[p_i/2^{q_i}, (p_i+1)/2^{q_i}]$$
.

Hence f(Q) = f(x) and since int $Q \neq \emptyset$, f is not interior at f(x).

Remark 5. When A and B are continua we need only assume that X is normal and modify our construction slightly to obtain a non-alternating map onto I separating A and B.

THEOREM 1. Let X be a separable and perfectly normal space. Then X is unicoherent if and only if for every non-alternating map $f: X \Rightarrow I$, $\Im(f) \subset C(f)$.

Proof of the necessity. Let $x \in \mathfrak{I}(f)$ and let $H = f^{-1}[0, x)$ and $K = f^{-1}(x, 1]$. We assert that $f^{-1}(x) = \overline{H} \cap \overline{K}$. In order to see this suppose that $z \in (f^{-1}(x) \setminus \overline{H})$. Then there exists a region U containing z such that $U \cap H = \emptyset$. But then $f(U) \cap [0, x) = \emptyset$ and this is a contradiction since f is interior at x. Hence $f^{-1}(x) = \overline{H} \cap \overline{K}$ and since X is unicoherent and $X = \overline{H} \cup \overline{K}$, $x \in C(f)$.

The sufficiency. Suppose $X = H \cup K$ where H and K are continua and $H \cap K = A \cup B$ is a separation. Let $f \colon X \Rightarrow I$ be a non-alternating map such that $0 \in f(A)$, $1 \in f(B)$ and $J(f) \cap f(A \cup B) = \emptyset$. By the main result of [10], there exists $x \in J(f)$ and by our hypothesis, $f^{-1}(x) = C$ is connected. Then C separates any $a \in f^{-1}(0) \cap A$ from any point $b \in f^{-1}(1) \cap B$. But since $x \notin f(A \cup B)$, C is a subset of $K \setminus H \cap K$ or $K \setminus H \cap K$ and as such, C cannot separate A and A in A is unicoherent.

EXAMPLES (1). Let $X = \{(x,y) \in E^2: (x-1/2)^2 + y^2 = 1/4\}$ and let f(x,y) = x. Then $f\colon X\Rightarrow I$ is non-alternating, but $\mathfrak{C}(f) = \{0,1\}$. However X is not unicoherent.

(2). Let $Y = \{(x, y) \in E^2 : 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$ and let $X = Y \setminus \{(0, y) : 1/4 \le y \le 3/4\}$. Define $f : X \Rightarrow I$ by f(x, y) = x. Then X is unicoherent and f is interior at 0, but $0 \notin C(f)$. Thus we can not enlarge J(f) to include 0 or 1 in Theorem 1.

(3). Let Y be as in (2), let $Z = \{(x,y) \colon 1/2 < x \leqslant 1 \text{ and } 1/2 < y \leqslant 1\}$ and let $X = Y \setminus (Z \cup \{(1/2,y) \colon 1/2 \leqslant y \leqslant 3/4\}$ and again let f(x,y) = x. Then X is unicoherent and $1/2 \notin C(f)$ so that our construction in Lemma 4 does not in general allow us to choose f to be monotone. However we can prove the following:

COROLLARY (1.1). Let X be a separable and perfectly normal space. Then X is unicoherent if and only if for every pair of disjoint non-empty closed sets A and B of X, there exists a d-monotone map such that $0 \in f(A)$, $1 \in f(B)$ and $C(f) \cap (I \setminus f(A \cup B))$ is dense in I.

Proof. The proof of the sufficiency is similar to that for Theorem 1. The necessity. By Lemma 4, there exists a non-alternating map $f\colon X\Rightarrow I$ such that $\mathfrak{I}(f)\cap f(A\cup B)=\emptyset$ and by Whyburn's result in [10], $\mathfrak{I}(f)$ is dense in I. It then follows from Theorem 1, that $\mathfrak{C}(f)\cap f(A\cup B)$ is dense in I.

COROLLARY (1.2). If X is separable and unicoherent, then a mapping $f: X \Rightarrow I$ is non-alternating if and only if it is d-monotone.

This is a consequence of the fact that $\mathfrak{I}(f)$ is dense in I.

DEFINITION. We say that a subset A of X is C-separated provided that there exists disjoint continua L and M of X such that $A \subset (L \cup M)$ and $A \cap L \neq \emptyset \neq A \cap M$. We say that X has $Property\ C$ provided that every separated closed subset of X is C-separated.

LEMMA 6. If X is normal, then X has Property C if and only if for every pair of non-empty disjoint closed sets A and B of X there exists a nonalternating map $f: X \Rightarrow I$ such that $f(A \cup B) = \{0, 1\}$.

Proof. Suppose that X has Property C and let A and B be disjoint closed subsets of X. Let L and M be disjoint continua such that $(A \cup B) \subset (L \cup M)$ and $(A \cup B) \cap L \neq 0 \neq (A \cup B) \cap M$. By Remark 5 there exists a non-alternating map $f \colon X \Rightarrow I$ such that f(L) = 0 and f(M) = 1. Then $f(A \cup B) = \{0, 1\}$ as required.

The sufficiency. Let A be a separated closed subset of X, say $A=H\cup K$ where H and K are disjoint closed sets. By our hypothesis there exists a non-alternating map $f\colon X\Rightarrow I$ such that $f(H\cup K)=\{0,1\}$. By Lemma 1, each of the sets $f^{-1}[0,1/4)$ and $f^{-1}(3/4,1]$ are connected and so $L=f^{-1}[0,1/4)$ and $M=f^{-1}(3/4,1]$ are the required continua.

THEOREM 2. If X is separable, normal and has Property C, then X is unicoherent if and only if every pair of disjoint non-empty continua A and B of X there exists a d-monotone map $f: X \Rightarrow I$ such that f(A) = 0 and f(B) = 1.

Proof of the sufficiency. Suppose that $X = H \cup K$ where H and K are continua and $H \cup K = A \cup B$ is a separation. Since X has Property C, there exist disjoint continua L and M of X such that $(A \cup B) \subset (L \cup M)$ and $(A \cup B) \cap L \neq \emptyset \neq (A \cup B) \cap M$. By our hypothesis there exists a d-monotone map $f \colon X \Rightarrow I$ such that f(L) = 0 and f(M) = 1. Let $x \in (0,1) \cap C(f)$. Then $f^{-1}(x)$ must separate L and M. But it must lie entirely within $H \setminus (L \cup M)$ or $K \setminus (L \cup M)$ and cannot separate L and M in X. Hence X is unicoherent.

Proof of the necessity. Let A and B be disjoint subcontinua of X. By Remark 5 there exists a non-alternating map $f: X \Rightarrow I$ such that f(A) = 0 and f(B) = 1 and it follows from Corollary (1.1), that f is d-monotone.

COROLLARY (2.1). If X is separable and normal, then X is unicoherent and has Property C if and only if for every pair of non-empty disjoint closed sets A and B of X, there exists a d-monotone map $f: X \Rightarrow I$ such that $f(A \cup B) = \{0, 1\}$.

Proof of the sufficiency. By Lemmas 2 and 7, X has Property C and by Theorem 2, X is unicoherent.

The necessity follows from Corollary (1.1) and Lemma 6.

Lemma 7. If X is normal and has Property C, then X is unicoherent if and only if every pair of disjoint continua can be separated by a continuum.

Proof. The necessity follows immediately from Theorem (4.7) of [11].

The sufficiency. Suppose that $X = H \cup K$ where H and K are continua and $H \cap K = A \cup B$ is a separation. Since X has Property C, there exists disjoint continua L and M such that $(A \cup B) \cap (L \cup M)$ and $(A \cup B) \cap L \neq \emptyset \neq (A \cup B) \cap M$. By our hypothesis there exists a continuum T such that T separates L and M in X. But then T would be a subset of $H \setminus (A \cup B)$ or $K \setminus (A \cup B)$ and thus could not separate L and M. This contradiction implies that X is unicoherent.

DEFINITION. Let A and B non-empty subsets of X. We say that a finite collection of subsets of X, $\{S_1, S_2, ..., S_n\}$, is a simple chain from A to B provided, $A \cap S_1 \neq \emptyset \neq B \cap S_n$ and $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$.

LEMMA 8. If X is compact, X has Property C.

Proof. Let A be a separated closed set in X, say $A = H \cup K$, where H and K are non-empty and closed. Let P and Q be disjoint open sets containing H and K respectively such that $\overline{P} \cap Q = \emptyset$ and every com-

ponent of $P \cup Q$ meets A. Then since A is compact, $P \cup Q$ has only finitely many components, say $C_1, C_2, ..., C_n$. With loss of generality, we may and do assume that $\overline{C}_i \cap \overline{C}_j = \emptyset$ if $i \neq j$. Let $\{W_\alpha\}$, $\alpha \in \Gamma$, be an open covering of $X \setminus A$ by connected sets such that no \overline{W}_α intersects more than one \overline{C}_i . Let $\mathcal{K} = \{C_i\}_{i=1}^n \cup \{W_\alpha\colon \alpha \in \Gamma\}$. Since X is connected, \mathcal{K} contains a simple chain 8 from C_1 to C_2 . Let S_1 be the subchain of 8 such that S_1 contains exactly one C_i different than C_1 , say C_s . Now if C denotes the closure of the union of the elements of S_1 , then $\bigcup \{\overline{C}_i\colon i\neq 1 \text{ and } i\neq s\} \cup C$ is a closed set with $\leqslant (n-1)$ components. Clearly the result now follows by induction.

LEMMA 9. If $f: X \Rightarrow I$ is closed and d-monotone, f is monotone.

Proof. Let $y \in I$ and suppose that $f^{-1}(y) = H \cup K$ is a separation. Let U and V be disjoint open sets containing H and K respectively and let $F = \operatorname{Fr}(U \cup V)$. Now $R = I \setminus f(F)$ is an open set containing y. Let $U_0 = f^{-1}(R) \cap U$ and $V_0 = f^{-1}(R) \cap V$ and let Q_1 and Q_2 be components of U_0 that meet H. Suppose that $f(Q_1) \cap [0, y) \neq \emptyset$ and $f(Q_2) \cap (y, 1) \neq \emptyset$. Let P be any component of V_0 that meets K. Then $f(P) \cap [0, y) \neq \emptyset$ or $f(P) \cap (y, 1] \neq \emptyset$. Suppose $f(P) \cap (y, 1] \neq \emptyset$. Then $f(Q_2) \cap f(P) \neq \emptyset$ and in particular $f(Q_2) \cap f(P)$ contains a point $c \in C(f)$. But then $f^{-1}(c)$ $\subset (X \setminus F)$ and $f^{-1}(c) \cap U \neq \emptyset \neq f^{-1}(c) \cap V$. This contradicts the connectedness of $f^{-1}(c)$. Thus we must have that every component of $U_0 \backslash H$ maps into [0, y) or every component of $U_0\backslash H$ maps into (y, 1]. Suppose the latter case holds. Then by an argument similar to that above, we must have that every component of $V_0 \setminus K$ maps into [0, y). But then $X = [f^{-1}[0,y) \cup V_0] \cup [f^{-1}(y,1] \cup U_0]$ is a separation of X and of course this contradicts the connectedness of X. Therefore C(f) = X and f is monotone.

COROLLARY (2.2). Suppose that X is compact, separable and normal. Then the following are equivalent:

- (a) X is unicoherent.
- (b) Every pair of disjoint continua can be separated by a continuum.
- (c) For every pair disjoint non-empty continua A and B of X, there exists a monotone map $f: X \Rightarrow I$ such that f(A) = 0 and f(B) = 1.
- (d) For every pair of disjoint non-empty closed sets A and B of X there exists a monotone map $f: X \Rightarrow I$ such that $f(A \cup B) = \{0, 1\}$.

Remarks. We do not know whether every locally connected, connected normal space X has Property C, however we have shown that every Lindelöf, locally compact, locally connected, connected Hausdorff space has Property C [4].

A. H. Stone has made the following conjecture: (a) Let X be a locally connected, connected normal space and let n > 2 be an integer. If X is not unicoherent, there exist continua $A_1, A_2, ..., A_n$ in X such that 3 - Fundamenta Mathematicae. T. LXXVIII

 $X=\bigcup_{i=1}^n A_i,\, A_i\cap A_j\neq\emptyset$ if and only if $|i(\bmod n)-j(\bmod n)|\leqslant 1$ and no three of the A_i 's have a point in common. We have been able to show that (a) (for n=4) is equivalent to (b): Let X be a locally connected, connected normal space. Then X is unicoherent if and only if for every pair of disjoint subcontinua A and B of X there exists a sub-continuum C of X such that C separates A and B in X [4].

A. H. Stone has proved (a) for n = 3 [6] and (b) is true whenever X has Property C. The equivalence of (a) for n = 3 and unicoherence for compact metric continua is due to A. D. Wallace [7].

G. T. Whyburn proved that if X is a compact locally connected metric continuum and J is an arc in X from a to b, then there exists a nonalternating retraction $f \colon X \Rightarrow J$ of X onto J which was also monotone when X was unicoherent [9]. His proofs leaned heavily on cyclic element theory for compact metric continua.

Related results. In [3] we defined a set X to be weakly-unicoherent provided that whenever $X = H \cup K$ where H and K are continua and K is compact $H \cap K$ is a continuum. A set $A \subset X$ is γ -closed provided it is closed and $\operatorname{Fr} A$ is compact. In [2], we defined a set X to be γ -unicoherent provided that whenever $X = H \cup K$ where H and K are γ -closed and connected sets, $H \cap K$ is connected and in [2] we showed that a locally compact Hausdorff space is γ -unicoherent if and only if it is weakly-unicoherent, but in general the two concepts do not coincide. Finally we say that a space X has the Complementation Property provided that for every compact set K in X, $X \setminus K$ has exactly one component with a non-compact closure. In [3] we related the Complementation Property to weak-unicoherence and characterized those spaces which enjoyed both of these properties.

The following propositions can be proved by the techniques of this paper:

THEOREM 3. Let X be a separable and normal space. Then X is γ -unicoherent if and only if for every pair of disjoint, non-empty γ -closed subsets A and B of X there exists a d-monotone map $f\colon X\Rightarrow I$ such that $f(A\cup B)=\{0,1\}$.

Theorem 4. Let X be a locally compact, normal, separable Hausdorff space. Then

- (a) X has the Complementation Property if and only if for all compact sets K in X there exists a non-alternating map $f\colon X\Rightarrow I$ such that f(K)=0 and for all $c\in[0,1),\ f^{-1}[0,c]$ is compact.
- (b) X is weakly-unicoherent and has the Complementation Property if and only if for every pair of disjoint compact non-empty continua A and B of X there exists a monotone map $f: X \Rightarrow [0,1]$ such that f(A) = 0 and f(B) = 1 and for all $c \in [0,1)$, $f^{-1}[0,c]$ is compact.

References

- K. Borsuk, Quelques théorèms sur les ensembles unicoherents, Fund. Math. 17 (1931), pp. 171-209.
- [2] M. H. Clapp and R. F. Dickman, Jr., Unicoherent compactifications, Pac. J. Math. (to appear).
- [3] R. F. Dickman, Jr., Unicoherence and related properties, Duke Math. J. 34 (1967), pp. 343-352.
- [4] and L. R. Rubin, C-separated sets and unicoherence, to appear.
- [5] K. Kuratowski, Applications of set-valued mappings to various spaces of continuous functions, Gen. Top. Appl. 1 (1971), pp. 155-161.
- [6] A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), pp. 427-447.
- [7] A. D. Wallace, A characterization of unicoherence, Bull. Amer. Math. Soc., Abstract 345, 48 (1942).
- [8] G. T. Whyburn, Non-alternating transformations, Amer. J. Math. 56 (1934), pp. 294-302.
- [9] The existence of certain transformations, Duke Math. J. 5 (1939) pp. 647-655.
- [10] On the interiority of real functions, Bull. Amer. Math. Soc. 48 (1942), pp. 942-945.
- [11] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Pub. (1949).

VIRGINIA POLYTECHNIC INSTITUTE and STATE UNIVERSITY

Reçu par la Rédaction le 14. 12. 1971