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Some mapping characterizations of unicoherence

by
R. F. Dickman, Jr. (Blacksburg, Va)

Abstract. In this paper we characterize unicoherence in terms of certain real-
valued mappings. The following theorems are typical of the results obtained: (1) Let X
be a separable, locally connected, connected, perfectly normal space. Then X is uni-
coherent if and only if for every pair of disjoint non-empty closed sets A and B of X
there exists a mapping f of X onto I = [0, 1]such that 0 ¢ f(4), 1 f(B) and INf(4 U B)
contains a dense subset D of I such that for every d ¢ D, f*(d) is connected. (2) Let X be
a separable, loeally connected, connected, compact normal space. Then X is unicoherent
if and only if for every pair of disjoint non-empty continua 4 and B of X there exists
a monotone mapping f of X onto I such that f(4) = 0 and f(B)= 1.

The concept of non-alternating mappings was introduced by
G. T. Whyburn in [8] and in {9] he showed that if M is a locally con-
nected, compact connected metric space and J is any arc in M, there
exists a non-alternating- retraction »: M -+J which, when M was uni-
coherent, was monotone. His proofs depended heavily upon cyclic element
theory for compact locally connected continua. In [1], K. Borsuk charac-
terized unicoherence for compact, locally connected metric continua in
terms of mappings into the circle. More recently, K. Kuratowski proved
that when X is a compact and locally connected space and Y is a metric
space, N°, the set of all non-alternating mappings of X onto Y, is a G,-set
in the space of all continuous maps of X into Y.

In this paper we characterize unicoherence for separable, perfectly
normal, locally connected, connected spaces in terms of non-alternating
mappings onto [0, 1].

Notation and termirology. Throughout this paper let X denote a con-
nected, locally connected normal space. By a continuum we mean a closed
and connected set and a region is an open connected set. By a mapping
we will always mean a continuous function. We will use I to denote [0, 1]
and a surjection f of X onto a space ¥ will be denoted by f: X =Y.
A perfectly normal space is a normal space in which every closed subset
is a @4 set.

DerFiNITIONS. We say that X is wunicoherent provided whenever
X = Hwv K, where H and K are continua, H ~ K is a eontinuum.
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We say that a mapping f: X=X is non-alternating provided that
whenever y ¢ ¥ and X\f(y)= 4, 4, Is a separation, f(4;) nf(4,)
=@. We use C(f) to denote {y ¢ ¥: fy) is connected} and say that
f: X =Y is monotone (vespectively, d-monotone) provided that C(f)= ¥
(respectively, 5(7:) = Y).

A mapping f: XY is said to be interior at y ¢ ¥ provided that
whenever U is an open subset of X that meets f~(y), ¥ is interior to f(U).
For a mapping f: X =1 we use I(f) to denote {ye(0,1): f iy interior
at y}.

ylLmeA 1. A mapping f: X =1 is non-alternating if and only if for
every y € (0,1), X\fy) has exactly two components.

Proof of the necessity. Suppose that P, @ and R are components
of X\f~*(y). Then for some pair, say P and @, f(P)~f(Q) % . But
then X\f™y)= P v H, where H=X\(fYy)v P), is a separation
with f(P) ~f(H) # @. Of course this implies that X\f~(y) has exactly
two components. ‘ :

The sufficiency. For any point y € (0, 1), let 4, (vespectively, By,)
denote the component of X\ f~'(y) that maps onto [0,¥) (respectively,
(¥, 11). Then X\f~(1) = | 4y, y € (0,1) and E\f0) = () By, y € (0, 1)
are connected. Now suppose that X\f'(#)= H v K is a separation.
By the above z € (0,1) and by our hypothesis H and K are connected
and so f(H) ~f(K) must be empty.

Lemva 2. If f: X=1 is d-monotone, it is also non-alternating.

Proof. Let y ¢ (0,1) and suppose that P;, P, and P, are components
of X\fY(y). Now each of the sets Py, i =1, 2,3, has limit points in
FUy) and so for some pair, say P, and P,, we have that int( f(Py) ™
A f(Py)) s O. Let ¢ e C(f) nf(P,) ~f(P,). Now f7¢) -is connected and
s0 it must lie entirely in any component of X\ f~Y(y) that it intersects.
But fMe) P, #0 % PynfYe) and this contradiction implies that
X\f7y) has exactly two components. Then by Lemma 1, f is non-
alternating.

Ly 3. Let A and B be disjoint closed sets in X, let ' be a component
of A and let D be a component of B. There exist disjoint regions H and I
of X such that CCH, DCK, FrH = FK and FrH misses 4 v B.

Proof. Let T be any open set containing A such that ¥ ~ B = ¢
and let P he the component of X\FrW that contains . Let I De the
component of X\ P that contains D and let H De the component; of A\ K
that contains C. Then since X is locally connected, FrH = FrK and
since FrH C FrW, FrH misses 4 U B.

Lemya 4. Suppose that X is perfectly normal and let A and B be non-

empty disjoint closed subsets of X Then there exists a non-alternating mapping
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f: X=1 such that 0 e f(A), 1 ef(B) and f is not interior at any point of
f(4 v B).

Proof. We will use induction to construet a sequence {f,},.; of
mappings which converge uniformly to the desired map. To this end
let U and V be open sets containing A and B respectively such that
U~V =0. Let 4, be any component of U that meets 4 and let B, be
any component of ¥ that meets B. Finally let T = U v V. By Lemma 3
there exist disjoint regions H, , and K, , containing 4, and B, respectively
such that F, ; = FrH, ,=FrK,, and F;; n T = 0. Let f;: X=1I be any
mapping such:

(1) fi(4) = 0 and f,(B) =1,

(2) f700,1/2) = Hl,l and f;l(ll?" 1= K1,17

(8) X\(H,, v K, 1) = fi*(1/2).

Now suppose that for every positive integer » <{ k¥ we have chosen
a mapping fan: X =1 such that:

(a) faldo) = 0 and fa(B,) = 1. i

(b) For every integer m, 1 < m < 2™, there exist digjoint regions
H,, and K, , such that 4,CH,, and B,CK, , F,,=FrH,,
=FrK, , misses T, f;'[0,mj2")=H, , and f ' (m/2"]=K,,, and

(Hpp o Ko ) = F(m[2"). |
T e s = (27, 207, . (21 1),

(d) For every integer m, 1 < m < 2", f [ fata(m—1)/2", m/2"Y)]
= frl((m—1)]2""%, mf2=1).

We define fy,, as follows: Let 4,,= A4, and let By = B,. Now
for each m, 1< m < 2% H, ,is connected and since every component
of fr'(m/2") meets H,, 1, A, = H, v fr'(m/2¥) is a continuum. Like-
wise for each m, 1 <m <25 B, =K, ;v Fl(mi2") Is a continuum.
Furthermore for each m, 1<m <2% TnH, ,=TnH,, and B,;
are disjoint closed sets, T C (T » H,, ) v By i, and 4, ; ; is a component
of T ~nH,, . Similarly for m = 2%, B, , is a component of T ~ K, _; ;,
TC(PrnE, vy, and TnkK, ,; and 4, ,, are disjoint
closed sets. So that finally, by Lemma 3, for each m, 1 <m < 2% there
exist disjoint regions Hy,_j gy, and K., ;5. containing A, and
B,,.; respectively such that FrH,, ; gy = FrEy, ;50 204 FrHyp o g4
misses 7. Choose fy,,: X =1 to be any mapping such that for each m,
1< 2F,

() froafe [m—1)[2%, mj2¥] = [(m—1)J2%, m|2"],

(i) feiy((m—1)/2%) = f7*{(m—1)/2¥) and

(iii) ;}-1((27” _1)/2k+1) = NHom—1,x11 > Kop, 541
Note such a selection is possible since X is perfectly normal. Clearly Foa
50 chosen satisfies (a)-(d).

Now there exists a mapping f: X=1I such that {f,}a., converges
uniformly to f since for all integers p, #, m, where p = n >0 and 1 < m
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non-alternating let y « (0,1) and let {p,}, and {¢:}52, Le sequencey of

e - =1
positive integers such that for each 4, 1 < pi < 2% =1, Guy > ¢y Pof2% < y

and {p,/2%%2, is an increasing sequence which converges o 4. Then

70, y) = UST0, pf2%) = U0, p /2%
i=1 i=
gince -
J&'10, 24/2%) C 70, pyyy290) CF2210, i, /204

and since each of the sets f7'[0, p,/2%) = H, _ is connected, 0, y) is

. - i, Q4
connected. Similarly f~*(y,1] is connected and by Lemma 1, f is non-
alternating. l

Let ¢ (A B) and let Q be the component of 7' containing x. Let

{p37%, and {g}2, be sequence of positive integers such that 1 « I

<2%-1 and g¢;,, > ¢; and such that
flzy=nN (p,l/2q‘, (pi+1)/2“‘) .
i=1
Re(?a;ll thafc if. any component of 7' met a set of the form S (mf2™ it lieﬁ
-entirely within the set,-so that for each =1,

Q Cfa(0af2% (pi+1)/2%) C f[p 2%, (p,+1)j2 .
Hence f(Q) = f(#) and since int@ = @, f is not interior at fi)
T Remark 5. Wheg 4 and B are continua we need only assume that
1s normal and modify our congtruction slightly to obtain a non-alter-

nating map onto I separating 4 and B.

TEORE]}I 1. .Let X be a sepa abl b f b <
pay € d??d erfectl 2 { ( )
. P :‘/ normal Spa(e. ..[ nen X 18

Yy if for every non-aliernating map f: X =T » YT C(f).
K_P:oof of j;he necessity, Let ©ed(f) and let H = [0, 2) and
tha; ]; ) %96 g ll(i)z\g?) a;fﬁl;t tl;]alut f‘l(my). = Hn I? In order to see this suppose
A .th N there exists a region U c.on‘?z»ining # such that

1w en f(U)~[0,2) =0 and this is a contradiction

since f is interior at 2. Hence )= HA~ K d " is uni ;
and ¥ — F oo ]?, 2 CLpy (@) A K and since X is unicoherent

and %h: Euiflclfl%cy. Suppose X = H v I where I and X ave continua
map t};;t o f & separation. Let f: X =TI De a non-alternating
result of [10], th <f(4), 1 €f(l%’) and J(f) nf(A v B) = 0. By the main
romeciag T’h ere exists w e 3(f) and by owr hypothesis, f1(w) == (¢ is
bef (1) B ;nt O separates any aef=(0)~A from any point
BH AR wod Wb SInee @ ¢f(A v B), O is a subset of HNH K or
i and as such, € eannot separate o and b in X. This contradicti

mplies that X is unicoherent. ; radenon
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Exaveies (1). Let X = {{x,y) e B> (z—1/2)*+4*=1/4} and let
ez, y)= 2. Then f: X =1 is non-alternating, but C(f) = {0, 1}. However
X is not unicoherent.

(2). Let Y={z,y)eE: 0<o<]l and 0<y<1} and let X
= Y\{(0, 9): 1/4 <y < 3/4}. Define f: X =1 by f(x,y)=a. Then X is
unicoherent and f is interior at 0, but 0 ¢ C(f). Thus we can not enlarge
J(f) to include 0 or 1 in Theorem 1.

(8). Let ¥ beas in (2),let Z = {(x,y): 12 <x<1and 12 <y <1}
and let X= Y\(Zv {(1/2,): 12 < y < 3/4} and again let f(z,y)= =.
Then X is unicoherent and 1/2 ¢ C(f) so that our construction in Lemma 4
does not in general allow us to choose f to be monotone. However we
can prove the following:

COROLLARY (1.1). Let X be a separable and perfectly normal space.
Then X is unicoherent if and only if for every pair of disjoint non-empty
closed sets A and B of X, there exists a d-monotone map such that 0 € f(4),
1 ef(B) and C(f) ~ (INf(4 v B)) is dense in I.

Proof. The proof of the sufficiency is similar to that for Theorem 1.

The necessity. By Lemma 4, there exists a non-alternating map
f: X =1 such that 3(f) ~ f(4 v B) = & and by Whyburn’s result in [10],
J(f) is dense in I. It then follows from Theorem 1, that C(f) ~f(4 v B)
is dense in I.

COoROLLARY (1.2). If X is separable and unicoherent, then a mapping
I+ X =1 is non-alternating if and only if it is d-monolone.

This is a consequence of the fact that J(f) is dense in 1.

DEFINITION. We say that a subset 4 of X is C-separated provided
that there exists disjoint continua L and M of X such that 4 C(L v M)
and 4 nL # 0 5 A ~ M. We say that X has Property C provided that
every separated closed subset of X is C-separated.

Lemma 6. If X is normal, then X has Property C if and only if for
every pair of non-empty disjoint closed sets A and B of X there exists a non-
alternating map f: X =1 such that f(A v By= {0,1}.

Proof. Suppose that X has Property ¢ and let A and B be disjoint
closed subsets of X. Let L and M be disjoint continua such that (A v B)
C(LulM) and (AuB)nL 0= (4uvB)nM. By Remark 5 there
exists a non-alternating map f: X =I such that f(L) =0 and f(M)= 1.
Then f(4 v B)= {0, 1} as required.

The sufficiency. Let 4 be a separated closed subset of X, say
A= Hu K where H and K are disjoint closed sets. By our hypothesis
there exists a non-alternating map f: X =1I such that f(H v K) = {0,1}.
By Lemma 1, each of the sets f7'[0,1/4) and f~*(3/4,1] are connected
and so L= f0,1/4) and M = f~*(3/4,1] are the required continua.
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THREOREM 2. I f X is separable, normal and has Property O, then X 45
unteoherent if and only if every pair of disjoint n on-emply continua A and B
of X there ewists a d-monotone map f: X =1 such that f(A) = 0 and f (B) =

Proof of the sufficiency. Suppose that X = H o K where H
and K are continua and Hw K = 4 v B is a separation. Since X hag
Property 0, there exist disjoint continua L and M of X such that (4 B)
C(LvM) and (AwB)nL#@ # (Adv B)n M. By our hypothesis
there exists a d-monotone map f: X =1 such that (L) = 0 and (M) =1,
Let 2 ¢ (0,1) nC(f). Then f~(») must separate L and M. But it must
Lie entirely within H\(Lv M) or E\(Lv M) and cannot separate I
and M in X. Hence X is unicoherent. )

Proof of the necessity. Let 4 and B be disjoint subcontinug
of X. By Remark 5 there exists a non-alternating map f: X'=I such
that f(4) = 0 and f(B) = 1 and it follows from Corollary (1.1), that f ig
d-monotone.

CoROLLARY (2.1). If X is separable and normal, then X is unicoherent

and has Property € if and only if for every pair of non-empty disjoint closed .

sets A and B of X, there exists a d-monotone map f: X =T such that f(A w B)
= {0, 1} ‘

Prootf of the sufficiency. By Lemmas 2 and 7, X has Property ¢
and by Theorem 2, X is unicoherent.

The necessity follows from Corollary (1.1) and Lemma 6.

Levuia 7. If X is normal and has Property O, then X is unicoherent
if and only if every pair of disjoint continua can be separated by a continuum.

Proof. The necessity follows immediately from Theorem (4.7) of [11].

The sufficiency. Suppose that X = H w K where H and K are
continna and H ~n K =4 U B i a separation, Since X has Property C,
there exists disjoint continua I and M such that (4 v B)C(Lu M)
and (AU B)nL£0 s (Au B)~ M. By our hypothesis there exists
a continuum 7 such that 7' separates I and I in X. But then 7 would
be a subset of H\(4 u B) or E\(A v B) and thus could not separate L
and M. This contradiction implies that X is unicoherent.

. pEFINITmN. Let A and B non-empty subsets of X, We say that
a finite coll.ecﬁon of subsets of X, {8, &,, ..., Sul}, is a simple chain from A
t? B provided, A~ S, £ @+ B~ 8, and Sinf;#0 if and only if
[P—Jl < 1.
Leyma 8. If X 4s compact, X has Property (.
Proof. Let A be a separated closed set in X, say A = H o K, where

H anq K are non-empty and closed. Let P and Q De disjoint open sets
containing H and K respectively such that P~Q =@ and every com-

o
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ponent of Py @ meets A. Then since A is compact, P @ has- only
finitely many components, say C,, Cay .oy Cn. With loss of generality,
we may and do assume that (s~ C; =0 if 4  j. Let {W,}, a <, be an
open covering of X\ 4 by connected sets such that no W, intersects more
than one C;. Let % — {Ci}t, v {W,: a el Since X is connected, X con-
tains a simple chain § from ¢, to C,. Let 8, be the subchain of S such
that §, contains exactly one (; different than Gy, say C,. Now if ¢ de-
notes the closure of the union of the elements of 8, then {J{Ci: 121
and ¢+ s}v ¢ is a clogsed set with < (n—1) components. Clearly the
result now follows by induction.

LevMA 9. If f: X =T is closed and d-monotone, f is monotone.

Proof. Let y ¢ I and suppose that fy) = HU K is a separation.
Let U and ¥ be disjoint open sets containing H and K respectively and
let F'=TFr(Uw7V). Now R= INf(#) is an open set containing y. Let
Up=fYB)~ U and Vy=f"YR) ~V and let @, and Q, be components
of U, that meet H. Suppose that f(Q,) ~[0, %) = @ and (@) ~ (y,1] 0.
Let P be any component of 7, that meets K. Then fPy~[0, 1)+ 0O
or f(P)~(y,1] # 0. Suppose f(P)n (y,1]# B. Then f(Qy) ~f(P) + O
and in particular f(Q,) ~ f(P) contains a point ¢ e C( f). But then f(¢)
C(XINF) and f™¢) "U£D=fYe)nV. This contradicts the con-
nectedness of f~*(¢). Thus we must have that every component of U\H
maps into [0, y) or every component of UN\H maps into (y, 1]. Suppose
the latter case holds. Then by an argument similar to that above, we
must have that every component of V\K maps into [0, y). But then
X=[f70,y) v Vi]w [F Uy, 11w U,] is a separation of X and of conrse
this contradicts the connectedness of X. Therefore C(f)=X and f is
monotone.

COROLLARY (2.2). Suppose that X is compact, separable and normal.
Then the following are equivalent: -

(a) X is unicoherent.

(b) Buery pair of disjoint continua can be separated by a continuwum.

(e) For every pair disjoint non-empty continua A and B of X, there
exists a monotone map f: X =I such that f(4) = 0 and f(B)=1.

(0) For every pair of disjoint non-empty closed sets A and B of X
there exists a monotone map f: X =1 such that f(4 u B) = {0, 1%

Remarks. We do not know whether every locally connected, con-
nected normal space X has Property (, however we have shown that
every Lindelst, locally compact, locally connected, connected Hausdortf
space has Property C [4].

A. H. Stone has made the following conjecture: (a) Let X be a locally
connected, connected normal space and let » > 2 be an integer. If X is
not unicoherent, there exist continua 4,, 4,,..., 4, in X such that
3 — Fundamenta Mathematicae, T. LXXVII
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X= CJA“ A, ~A;# @ if and only if [i(modn) —j(modn)] <1 and no
three';% the Ag’s have a point in common. We have been able to show
that (a) (for n = 4) is equivalent to (b): Let X be a locally connected,

connected normal space. Then X is unicoherent if and only if for every ’

pair of disjoint subcontinua A and B of X there exists a sub-continuum ¢
of X such that C separates 4 and B in X [4].

A. H. Stone has proved (a) for n = 3 [6] and (b) is true whenever X
has Property €. The equivalence of (a) for n =3 and unicoherence for
compact metric eontinua is due to A.D. Wallace [7].

G. T. Whyburn proved that if X is a compact locally connected
metric continuum and J is an arc in X from « to b, then there exists a non-
alternating retraction f: X =J of X onto J which was also monotone
when X was unicoherent [9]. His proofs leaned heavily on cyclic element
theory for compact metric continua.

Related results. In [3] we defined a set X to be wealkly-unicoherent
provided that whenever X = H v K where H and K are continua and
K is compact H ~n K is a continuum. A set 4 CX is y-closed provided
it is closed and FrA is compact. In [2], we defined a set X to be y-uni-
coherent provided that whenever X = H v K where H and K are y-closed
and connected sets, H ~ K is connected and in [2] we showed that a locally
compact Hausdorff space is y-unicoherent if and only if it is weakly-
unicoherent, but in general the two concepts do not coincide. Finally
we say that a space X has the Complementation Property provided that
for every compact set K in X, X\K has exactly one component with
a, non-compact closure. In [3] we related the Complementation Property
to weak-unicoherence and characterized those spaces which enjoyed both
of these properties.

The following propositions can be proved by the techniques of this
paper: ‘,

TEEOREM 3. Let X be a separable and normal space. Then X 48 v - uni-
coherent if and only if for every pair of disjoint, non-empty y - closed subsets A
and B of X there exists a d-monotone map f: X =1 such that f(A v B)
=1{0,1}

TEEOREM 4. Let X be a locally compact, normal, separable Hausdorff
space. Then

(a) X has the Complementation Property if and only if for all compact
sets K in X there exists a non-allernating map f: X =1 such that f(I) = 0
and for all ¢e[0,1), 1[0, ¢] is compact.

(b) X is weakly-unicoherent and has the Complementation Property if
and only if for every pair of disjoint compact non-empty continua A and B
of X there exists a monotone map f: X =[0,1] such that f(4)=0 and
f(B)=1 and for all ¢€[0,1), f'[0,¢] is compact.
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