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Cardinalities of metric completions
by

Ronald C. Freiwald (St. Louis, Missouri)

Abstract. |4| denotes the cardinality of A. Suppose X is a metrizable space of
infinite weight % and that Xisa completion of X in some compatlble metrie. |X| can
only be & or k*. For ko > k , We discuss the possible values of |X| for different compa-
tible metrics on X. Since |X| must be %% if |X| >k, we also assume that | X]| = &.

Theorem. X has a completion of cardinality k* iff X contwins a closed discrete
subset of cardinality p, where p is the least infinite cardinal such that p*o = ko,

Theorem. X has a completion of cardinality I iff every nonempty set in X contains
a nonempty (relatively) open set of cardinality <p, where p is the least infinite cardinal
such that pto = k¥,

These theorems also obviously give characterizations of those spaces X which have
only completions of cardinality & or only completions of cardinality k*. In the latter case,
the theorem can be reformulated roughly as follows: X has every completion of cardin-
ality k% iff K, (X) # @, where K,(X) is a certain transfinitely defined “kernel” of X,
reducing, in the case & = ¥, to the ordinary perfect kernel of X.

1. Introduction and netation. All spaces considered here are metrizable.
We denote the weight of X (the minimal cardinality of a dense subset

of X) by w(X); |X| denotes the cardmahty of X. A “completion of X",
denoted X, means the metric completion (X', @) of (X, d), where d is some

kcompatlble metric on X.

If w(X) =k, then for any completion we clearly have k < < |1 X| < W,
Ouwr main purpose is to characterize the cardinalities of completions
of X in terms of topological properties of X. Since the case of & finite
or ¥ =k is trivial, & will hereafter denote, without further mention
except for special emphasis, an infinite cardinal satisfying &% > k. (There
are arbitrarily large cardinals with this property — for example, all se-
quential cardinals. On the generalized continunm hypothesis, if B>k
and % is infinite, then % is sequential.) Further, given &, p will always
denote the least infinite cardinal satisfying p®° = k.

It turns out, from known results, that if w(X) = &, then every com-
pletion of X has cardinality either % or 4%, never an intermediate value.
In section 2 we show that if w(X) = &, then X has a completion of cardin-
ality %% if and only if X has a closed discrete subset of cardinal p. This
of course also provides a characterization of those X for which every
completion is “small”. In section 3, we prove further that every com-
pletion of X has cardinality k™ if and only if a certain transfinitely defined
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“kernel” in X is non-empty. The kernel construction there is an instance
of the general kernel constructions discussed in [6]. .

For any infinite cardinal m, B(m) denotes the product of countably
many diserete spaces of cardinality m.

2. The existence of “large” completions. If w(X) =k, we first note
that for any completion, |X] is either k or k%. This is immediate from the
following theorem of Stone [5], applied to the absolute G, set X.
m denotes an infinite cardinal.

TeEEOREM 2.1. If Y is an absolute Borel set of weight << m and | Y| > m,
then Y] = m¥ and ¥ contains a closed subspace C, |C] = m¥, where C is
homeomorphic either to the Cantor set or some B(g).

In view of this theorem, it is also clear that if w(X) = &k and |X] > k,
then |X|= k% for every completion, so that our attention should foeus
on spaces of both weight and cardinality k.

There are spaces of weight k for which every completion has car-
dinality k— for example, the compact countable spaces. On the other
hand, every conipletion of @, the rational numbers, has cardinality e.
Indeed, if some ¢ were countable, then @ would be a @, in § and hence
be completely metrizable. Between these extremes lie, for example, the
discrete spaces, as Lemma 2.2 shows. The natural numbers, N, with
their usual metric, are complete; but if we view NV as the set of midpoints
of open intervals deleted in the construction of the Cantor set in [o, 13,
then N is the completion of N and has cardinality c.

Lemwa 2.2. Let Y be a discrete space of infinite cardinality m. Then
Y has a completion of cardinality m¥e,

Proof. Let T» be a discrete space of cardinality m, with 0,1¢T),.
Let T3 denote Tn— {1}. Metrize B(m)= [] T, with the (complete) “first

n=l .
difference metrie”, s (s(x,y) = 1/j if 2; # y; and x; =y, for all i< j).
For each n, let Ep,={reB(m): o, # 1, i = 1,00n 2y =1; =0,

izn+2} and ¥ = {JB,. Clearly, |Yi=m, and Y is discrete, since,
n=1

if y#2zeY and yeBy, then s(y,2) > 1j(n+1). Further, if wel] Tk,
. - n=1
then x is at distance 1/(n-1) from y = (®1y+ees 20, 1,0,0,..) € B,. Hence
—_— o0 p— —_—
YO[]T,, so |¥|=mh But (7,s) is the completion of (¥, s).
n=1

We can now characterize those spaces of weight % which have
a “large” completion in some metric.

f-[‘HEOREM 2.3. Suppose w(X)= |X| =k, where k% > & and p s the
l‘ea,st infinite cardinal such that p¥ = k%, X has a completion of cardinality kR°
V’lf and only if X contains a closed discrete subset of cardinality p.

v
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Proof. Suppose X containg such a set, D. Pick, using Lemma 2.2,
a metric @' for D so that |(D,d")| = p¥ = k%. Extend @' to a compatible
metric d on all of X (Hlausdorff, [1]). Clearly, |(¥, d)| = k¥,

Conversely, suppose X has a metric d whose completion, X‘, hag
cardinality &%. By Theorem 2.1, X contains a closed set C, of cardinality fXe,
homeomorphic to either the Cantor set or some space B(m). In the former
case, since X cannot be compact, X contains a closed discrete subset
of cardinal p = ry, and p¥ = ¢ = k¥ If O is B(m), let D be a closed
(in C, therefore in X) discrete set in B(m), of cardinality m > p. Use
Hausdorff’s theorem on extending metrics again to get a compatible
metric @ on X such that d'(x,y)=1 for z,y ¢.D. Then the d'-spheres
of radius 1/3 about points of D are disjoint and all meet the dense set X
Thus X contains a (relatively) closed discrete subset of cardinality m = p,

Assume X and % satisfy the hypotheses of Theorem 2.3. If k = x;, we
find that each non-compact countable space has a completion of car-
dinality ¢. We also remark that if % is non-sequential, then X contains
a cloged discrete subset of cardinality k (Stone, [4]) and therefore has
a completion of cardinality k™. Of course the preceding theorem also
provides a characterization of such spaces X with only “small” com-
pletions. :

We remark that a virtually identical proof shows that, under the
given hypotheses, X has a closed discrete subset of cardinality p if and
only if there exists an absolute Borel (or even ,-analytic) set ¥ of car-
dinality %% in which X is densely embedded.

If the generalized continuum hypothesis is assumed, p can be re-
placed by %k throughout.

3. Spaces with only “large” completions. There remains the problem of
characterizing those spaces of weight and cardinality ¥ whose every
completion has cardinality %¥. This question is a bit more delicate, and
some preliminary definitions and propositions are needed. The first of
these occurs in [8].

DEFINITION 3.1. Given an infinite cardinal m and a space ¥, let
Cn(Y)= | J{4 C¥: A is homeomorphic to B(m)}.

PrROPOSITION 8.2, On(Y) is a closed subset of Y.

Proof. We shall need the fact that B(m) is characterized as a com-
pletely metrizable, zero-dimensional space with a dense subset of car-
dinality m, and such that every non-empty open set contains & cloged
discrete subset of cardinality m ([5]). Let d be a compatible metric on Y

and assume y ¢ Op(Y) = C. Since any non-empty open set in B(m)
containg a copy of B(m), it is clear that for all 6 >0, there is a copy
of B(m), say B,, in S(y; 8). It y ¢ B, for some such B, then B,v {y} is
homeomorphic to B (m), so y e C. Tf no such § > 0 exists, pick a sequence By,
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)
of copies of B(m) such that each B,, is clopenin |_J B, and so that y e (] B,,.
i i=1

=1

b
Then {y}w By is homeomorphic to B(m), so y € C.
i=1

We next describe the construction of a “kernel” in X which generalizes
the ordinary perfect kernel; it is a particular case of the kernel con-
structions in [6].

Let m be an infinite eardinal. A point z in X is an m-limit point
of X if each neighborhood of # in X has cardinality > m. Let my(X) = X,
and assume my(X) has been defined for all ordinals < a. If o= g+1,
let m(X) be the set of m-limit points in my(X); if a is a limit ordinal,
let m,(X) = [ my(X). Note that m,(X) is the set of m-limit points of X.

B<a

It is clear that each m,(X) is closed in X and that, if o > §, then m,(X)
Cmy(X). For some ordinal & (not necessarily countable) we must have
me(X) = m,,(X). We define Kn(X)= m,(X)= the m-kernel of X.

Every point of K,(X) is an m-limit point of Kn(X), and Ku,(X) is
clearly the largest subset of X with this property.

With the usual assumptions on %k and p, we may describe K,(X) in
a slightly different way. A neighborhoed of x has cardinality <p if and
only if it has weight m < p, since m® < p. Hence Kp(X) is also the largest
subset of X in which every non-empty (relatively) open set has weight =p.
In the terminology of [6], K,(X) is the “non-locally of weight < p”
kernel of X.

It is clear that K,(X)=0 if and only if every non-empty set 4
in X has a non-empty relatively open set of weight (cardinality) < p.

Leyma 3.3. If X is dense in ¥ and w(X) = |X| =k, then Cp(¥)
~ X C py(X).

Proof. Let # ¢ X and suppose that U is an open set in ¥ contain-
ing » and sueh that |U n X|=m< p. Then |T] = |U n X| < m¥ < p¥o,
by definition of p. Hence U contains no copy of B(p), so U n Cy(¥) = 3.
Hence 2 ¢ Cp(Y).

We can now characterize those spaces whose every completion is
“l&rge))'

TeEOREM 3.4. Suppose w(X)={X|="F% >k, and let p be the
least infinite cardinal such thei p¥ = k¥, Bvery completion of X has
cardinality kX if and only if Kx(X) # @.

Proof. Assume every completion of X has cardinality &¥; let ¥ be
some completion. Define H, = ('p(X)— Pu(X). Assume that H, has been

defined for all ordinals B, 1 < f< a < & If a= B+1, let H, = C,fpy(X)|—

—pa(Xm). If ¢ is a limit ordinal, let H,= C,[") ps(X))— p,(X). Define
0.=X—p,X), 1<a<t P
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The 0,’s form an increasing well ordered family of open sets, and,

for 1< a<§ 0,— 10,2 H,. Since each H, iy an F, set in X, it follows
p<

(see, for exa:mgle, M011tg9mery, [2]) that H = | J{H,: 1 < a< & is also
an F, set in X. Hence X—H is completely metrizable.

We note next that H ~ X is empty, so X—H D X. The proof is by
iransfinite induction. By Lemma 3.3, Cp(X) N X C py(X), s0 Hy n X = 0.
Assume Hy ~ X =@ for all f<a. Suppose o= f-+1. Since py(X) is
dosed in X, Opps(X)) » X = Op(ps(X)) ~ py(X), which, by Lemma 3.3,
is o subset of p(X); 50 H,nX = 0. If « is a limit ordinal, then, for

each n< a,

and 80
M Ppr(X) = [} P X) = p(X) D C’p(ﬁlj X)X

n<a 7
Therefore H, n X = @. N N .
Let d be a complete metric on X— H. Then (X — H, d) is a completion
of X, so, by hypothesis, |X¥—H|= k¥. It follows from Theorem 2.1
that there is a subspace B of X— H homeomorphic to B(p). We claim

that B C p(X) for each a. This is trivial for a= 0; assume it for all

p<a<t T a=p+1, then BC Oypy(X)). Bub no point of B is in H,

so BCp(X). Similarly, if o is a limit ordinal, BC Op(ﬁo (X)) and,

ginee no point of B is in H,, B Cp,(X). o

Hence m # @ for each o< §; in particular pJX), and hence
P(X) = Kp(X), is non-empty. .

Conversely, suppose K = Kp(X) # O. It cleafly suffices t9 show
that any completion of K has cardinality 1¥, Let K be a Ncompletlon and
let m < k be the least cardinal of a non-empty open set in K. By a theorem
of Schmidt ([3]), m¥ = m. But every non-empty open set in K meets
K in > p points, so &% > m > p, and hence m = k%. Therefore |K| = e,

COROLLARY 3.5. Buery completion of a countable space X has cardinality
¢ if and only if the perfect kernel of X is mon-empty. Equivalently, some
completion is countable if and only if X is scatiered.

COROLLARY 8.6. For o completely melrizable space of weight and car-
dinality & (K% > k), Ky(X) = O.

As before, if the generalized continnum hypothesis is assumed, p may
be replaced by & throughout. ’

We have remarked that under our assumptions on k and p, Kp(X),
in the terminology of [6], is the “non-locally of weight < p” k.ernel of X.
In [6] (Theorem 4'), it is shown that if Kp(X) =@, then X is a count-


Artur


230 R. C. Freiwald
able union of closed subsets of local weight <<p. However even if X is
o-discrete, we need not have H,(X)= @, as Example 3.7 will show.
In the light of Theorem 2.1, and the remarks following Theorem 2.3,
one might ask whether, with the given assumptions on X, k, and p, the pre-
ceding theorem may be extended to say that K,(X) # 0 if and only if
every absolute Borel set' ¥ in which X is densely embedded has car-
dinality A%®. Example 3.7 also shows that this is false.
ExaupLr 3.7. This space was constructed in [7] for different, but
‘ related, purposes. With the usual assumptions on % and p, let T, be

a diserete space of cardinality k, and fix a, e T. In B(k) = [] T», with
' n=1

the “first difference metric”, let Dy = {& ¢ B(k): z;= a; if 1 >m}. Two
distinet points of Dy, are at distance at least 1/m, s0 Dy, is a closed discrete

subspace of B(k). It follows that D = { ] Dy is an absolute Borel (in fact,

n=1
absolute F,) set of weight and cardinal k. But every point of D is a k-limit
point of D, so Ky(X)D KyX) # 0.

Added in proof. Part of Theorem 2.8 occurs in Bel’'nov, On metric extensions,
Soviet Math. Dokl 13 (1972), pp. 220-224.
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Inducing approximations homotopic to maps
between inverse limits
by
J. W. Rogers, Jr. (Atlanta, Ga.)

Abstract, Fort, MeCord, J. 1. Rogers, and Tollefson have shown that maps between
the limit spaces of cértain types of inverse systems are s-homotopic to maps which
are induced by maps between the coordinate spaces of the inverse systems, for each
&> 0. This result is extended here to a much wider, but still restricted, class of inverse
systems, and an example is given to show the need of the remaining vestrictions.

1. Introduction. We denote an inverse system with directed set D,
coordinate spaces Xy, bonding maps f3: X,~X,, and projection maps
for XXy foralld and all ¢ < d in D, by (X, f, D). If 2 maps X, onto X;
for all 4 and all e < d in. D, then we call (X, f, D) a proper inverse sequence.
The reader is referred to [3] for definitions and basic properties of inverse
limits. If (P, g, N) is an inverse system such that N denotes the set of
all positive integers, and for each =, P, is a polyhedron with (finite)
triangulation Ky, and ¢+ is a simplicial map relative to (K,.,, Ky), then
(P,g,N) is called a wniformly simplicial inverse sequence, and is also
denoted by (P, K, g, N). Both the solenoidal sequences of [3] and the weak
solenoidal sequences of [7] are very restricted special cases of uniformly
simplicial inverse sequences.

It (X, f, D) and (Y, g, B) are inverse systems, and g: B> D is order
preserving, and for each ¢ in F there is a map g, 2 s~ Y, such that
for all i < ¢ in B, piffd = ¢%p,, then the map ¢: XY, defined by
the equations g¢,¢ = @,f,,, for all ¢ in B, is called an induced map. In
Theorem 4 we generalize the results of [3] and [7] by showing that if
(X,f, D) is an inverse system of compact Hausdorff spaces and
(P, K, g, N) is o uniformly simplicial inverse sequence, then every map
X P, is ¢-homotopic to an induced map for each ¢ > 0 (i.e. no point
is moved more than during the homotopy). An example in the last
section shows the theorem does noti hold if the assumption that (P, K, g, N)
is uniformly simplicial is dropped. Other results related to these may be
found in [6] and [7].

2. Preliminary theorems. For undefined terms and notation in this
section, refer to [3], Chapter IT. If K is a simplicial complex, a simple
subdivision of I is a complex K’ whose vertices consist of just one point
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