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else contains B. But each of these is impossible since d > 4¢ and by con-
dition (3), diaB > d and by (4), diaD > d. Hence for each 4, y; = g} and
thus ¥y = U; and dia Up<< 4e. For each 4, let U; be a neighborhood of
U;in & such that diaU;< 4e and U, ~(Bd4d oBdB)=J wJ".

Since there is a homeomorphism of 82 onto itself which takes J and J*
onto & pair of eoncentric circles and each a; onto a radial interval joining
these circles, it iy easily seen that for every neighborhood V of U in g,
there is an isotopy f: 82X I->8? such that f, = id, fi(J) = J’, and for each
tel, (i) f; is the identity on 82—V and (ii) for each 4, f(U;) C U;. Since
dia U} < 4¢, this last condition implies that for each i, f, is a 4e-homeo-
morphism. Since V' is an arbitrary neighborhood of U, V may be chosen
so that ¥ n(BdA wBdB)=dJ wJ' and V ~ (P, v Pyu ... u Py) = 0.

Repeating the entire construction for each pair of corresponding
boundary curves of A and B gives an isotopy ¢: 82x I— 82 such that
9o=1d, g;(Bd4) = Bd B, and for each fcI, g, is a 4s-homeomorphism
which is the identity on P; v ... v Py. Since ¢,(Bd4)= BdB and (A4)
does not intersect P; u ... u Py, it follows that g,(4) = B. Since each g is
& 4e-homeomorphism, it follows from condition (5) that.g,(A) e for
each ?¢I. By Lemma 4.2 of [1], there is an arc from 4 to B lying in
{g{4)| te I}, and hence there is an arc from 4 to B in U, as required.
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Embedding certain compactifications of a half-ray
by
Sam B. Nadler, Jr.(*) and J. Quinn (New Orleans, Louisiand)

Abstract. Two problems concerning embedding compactifications of a half-ray are
stated and partially answered. In our investigations of these problems, certain types
of continua are completely determined.

1. Introduction. Throughout this paper, continuum will mean a com-
pact connected metric space containing more than one point. The question
of what spaces can be remainders in compactifications of certain kinds
of spaces has been of interest (see, for example, [1], [7], [8], [13], [15],
and [16]). In [1], Aarts and Van Emde Boas showed that any eontinunm
can be the remainder in some compactification of a given locally compact.
non-compact separable metric space. This implies, of course, that any
confinuum can be the remainder in some compactification of a half-ray
(a half-ray is a topological space homeomorphic to [0, + oo)). Compactifi-
cations of a half-ray have been studied by D. Bellamy [2], M. E. Rudin [14],
Simon [15] (where the main aspect of a regult in [16] was proved for the
special case of a half-ray), and others. In [11, Lemma 5.6] we proved
a result, a very special case of which is

LevMma A. If X is an arcwise connected circle-like continuum (see [10]),
then any compactification of a half-ray with X as the remainder is embed-
dable in the plane.

This result and others mentioned above, as well as our theorem in
section 2 of this paper, raise for us the following questions.

ProBrEM 1. What continua K have the property that there is
a compactification of a half-ray, with K as the remainder, such that the
compactification is embeddable in R* (Euclidean n-space)? Clearly, such
continua are embeddable in R* and have dimension less than = [5], p. 44.

ProBLEM 2. What continua K have the property that

(en)  any compactification of a half-ray, with K as the remainder, is
embeddable in E"%

(*) The first author was partially supported by a Loyola Faculty Research Grant.
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In section 2 of this paper we show that if a continuum is embeddable
in B", then any compactification of a half-ray, with that eontinuum as
the remainder, is embeddable in R™*'. This shows that, for each =, the
problems above remain unsolved only for those continua of dimension
less than n which are not embeddable in R*"'. In section 3 we answer
a special case of Problem 2, namely the case when the continua are
assumed to be arewise connected and n = 2 (see Theorem 3 below). In
the process we determine (Theorem 2 below), for the first time as far
as we know, precisely those continua which are arcwise connected and
a-triodie (for the general definition of a-triodic, see [3]; actually, we use
a generally weaker form of a-triodicity, namely that of containing no
half-ray triod). .

We intend, in later papers, to consider Problem 1 and more general
aspects of Problem 2. In particular, we plan to investigate Problem 2
thoroughly for the case when n = 2 without the restriction of arcwise
connectedness on the continua. In this connection, note that there are
continug which are not arcwise connected and which satisfy («,). For
example, any chainable continuum satisfies (a,) because the compactifi-
cation is again chainable, hence embeddable in the plane [3].

In this paper we will use the terms simple closed curve and circle
interchangeably to mean a space homeomorphic to {z in the plane: |2/ = 1}.
By circle-like we mean a metric continuum which is an inverse limit of
circles with onto bonding maps (equivalently, a circularly chainable
continuum in the sense of [4]). The symbol “5” means the closure of S.

2. Embedding in R"**. In this section we prove the following

TuroreM 1. If K is a continuum which is embeddable in R", then any
compactification of a half-ray, with K as the remainder, is embeddable
in R**1,

Proof. Let K be a continnum which is embeddable in R* and let
K < H be a compactification of a half-ray H with K as the remainder.
Let h: [0, +00)>H be a homeomorphism of [0, 4 o) onto H and, for

each i=1,2, ..., let Di= {h(i—1) =}, af, ..., 2%, ,_, = h(i)} be a finite’

subset of A ([i—1,4]) such that A~'(z)) = i—1 < b o)) < ... < W@k y)

=i and such that the diameter of the arc in H with noncut points x;
and 7., 0 <j<m(i)—1, is less than 1/2%. Also for each i=1,2, ..,
let 2z}, 0 <j<m(i)—1, be a point of K nearest (with respect to the
metric for K v H) to #}. Assume 2i* =gzl , . for each i=1,2, ..
Let e: K— R" be an embedding of X in R For each i = 1,2,.., let v,

0 <j<m(i)—1, be the point in E™' of height - — —J !
(]

mE)—1 i-(i+1)

‘“aboxie” e(2)) (thus, the first = coordinates of yi are the same as
the first n coordinates of e(2;) and the (n-+1)-st coordinate of yi is

N
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i om()—1 i-(i+1)
< m(i)—1} and let f: K w X R""! be given by

). Let X = {f: i=1,2,... and, for each 7, 0<jJ

e e K
fw) = f.p)’ pes

Yi» p=i;.
We show that f is continuous. To see this (it suffices to) let {z{¥)} be
a sequence of points in X converging to a point z, ¢ K. It then follows
that {zi} also converges to z,. Thus, {e(2{¥)} converges to e(z,) which,
1 jm 1

k) m{Ek)—1 i(k)-(i(k)+1)

e(219), implies {yfi})} converges to e(z). This proves that {f(zXE)} con-
verges to f(z,). Therefore, we have shown that f is continuous (hence, by
compactness of K w X, uniformly continuous). Now let H' be the half-ray
in R™** defined by the homeomorphism %’: [0, +oc0)—>H', b’ given by:
Let s €[0, +o0). There is a unique natural number 4 such that
i—1 < s<< 4. Also, there is a unique j, 0 < j << m(i)=1, such that
Yol < s < hTY(w),,). Finally, there is a unique #, 0 <t<1, such
that s =t-h™" @)+ Q1—15)h Y(xl,,). Let h'(s)=¢-yi+(1—1)-yi,,. Define
g: Kw H>e(K)u H by

since yiB is only distance away from

(p) = e(p), pek,
9= RN p)), peH.

Note that g restricted to K « X agrees with f. It is easy to see that g is
one-to-one and onto ¢(K)w H'. The continuity of g follows from the uni-
form continuity of f. To see this, note that it suffices to take a sequence
{Pi}5, of points in H converging to a point 2, ¢ K and-show that {g(p,)}7=,
converges to g(2,). But each such p, is on an arc in H with noncut points
of the form ) and #{(3,,. Hence, g(p,) is on the convex arc AM®in H'
from yi# to {8, .. Note that the sequence {3} converges to z, (because
¥ is within 1/27® of p,, for each k). Thus, since %} is within 1/2°® of
o9 | and since f is uniformly continuous (so that the diameter of A
goes to zero as k goes to infinity), we have that {g(p,)}r-, converges to
9(2,)- This completes the proof of Theorem 1.

3. Property («,) for arcwise comnected contimna. In order to determine
those arcwise connected continua which satisfy (a,), we first prove the
following lemma.

Leymma 1. If a continuum satisfies (a,), then the continuum does not
contain a figure “T7 (a figure “T” is defined to be a space homeomorphic to

{(z,9)e R 2=0 and 0 <y < +1}v {(x,y) e B:
—1 << +1 and y= +1}).
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Proof. Let K be a continuum and assume K contains a figure “T7
which we denote by 7. We will construct a half-ray H in E? whose closure
in R® will be a compactification of H with K as the remainder such that
K o H is not embeddable in the plane. Without loss of generality we may
assume that K C {(«, ¥, 0): #,y ¢ B} C B*. Furthermore (see [12], p. 170;
we use this device here to simplify our notation), we may assume that
T = v y where § is the convex arc in R? with noneut points (—1, 0, 0)

and (1,0,0) and y is the convex arc in R3 with noncut points (0, 0, 0}
and (0, 1, 0). Let " be the figure “T” contained in T with noncut pomts :

(=1/2, 0, 0), (12,0, 0), and (0, 1/2, 0). For each n=1,2, ..., let P, be
the hyperplane in R® defined by Pn= {(#,y,1/n): z,y ¢ Rl} Some sub-
ares of the half-ray H will lie in the hyperplanes and other subarcs of I
will be convex ares joining points of consecutively indexed hyperplanes.
For each odd n=1,3,5, .., let T, be the subset of P, given by T,
={(z,¥,1/n): (®,y,0)eT"}. For each even n=2,4,6,..., let K, be
the subset of P, given by K, = {(=, ¥, 1/n): (#,¥,0) ¢ K}. Now, for each
n=1,2, .., choose J, to be a polygonal arc lying in P, such that

(1) J. has noncut points (—1/2,0,1/s) and (1/2,0,1/n)
and

(2) if » is odd, then o(Jn, Tp) < 1/n and, if n is even, then o(J,, Kna)
< 1/n, where p denotes the Hausdorff metric for the nonempty
compact subsets of R® [6], p. 131.

For n=1,2,.., let 1, be the convex arc in R?® with noncut points

((—l)n+1.1/2,0,1/n) and (( 12,0, +1>. Let H= |J(Juv dn).
n=1

It is easy to see that H is a half-ray and that K o H is a compactifi-
cation of H with K as the remainder. We now show that K v H is not
embeddable in the plane. Suppose that Ko H is embeddable in the
plane and let h: K v H—> R? be a planar embedding of KX « H. We may
assume (see [12], p. 170) that h(T)= g’ v y’, where g’ is the convex
arc in E? with noncut points (—1, 0) and (1, 0) and 9’ is the convex arc
in R®* with noncut points (0,0) and (0,1). Note that A(T') must be
a figure “T” eontained in h(7) and having noncut points of the form
(a,0), (b,0),and (0,¢) with ~1< a< 0< b< land 0<< c<C 1. Let D be
the region in the plane bounded by the quadrilateral whose vertices are
—1+a b+41

( 9+ ,0), ( ; (0 _c—|—_1)’ and (0, —1). Then, D is an open sub-

“

set of the plane contammg h(T') such that D—h(T) has exactly three
components. Since k is uniformly continuous and since o(Jy_,, T')—0
a8 k— - oo, we have that

() Q(h(Jzk—l)yh(T'))—>0 a8 k—-Joo.

icm®
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Hence, there exists N such that k > N implies h(J,;_ ;) CD—h(T). Hence,
for each k>N, h(J,._,) is contained in one of the three components
of D—h(T). This implies

Q(h(Jzk—l)y h(TI)) >min{—a,b,¢} >0,

a contradiction to (*). Lemma 1 is proved.

A half-ray triod [11] is defined to be a continwum which is the union
of a half-ray H and an arc A such that H ~ A = @ and H— H is a subarc
or a point of 4 which contains neither noncut point of A. The same
techniques used in the proof of Lemma 1 can be used to prove the following
slightly more general lemma.

LevmA 2. If @ continuwm saiisfies (w,), then the continuum does not
contain o half- -ray triod.

Next we determine those continua which are arcwise connected and
contain no half-ray triod (as we shall see, such continua are a-triodic
in the more general gense of [3]). First we prove a special case.

LeMMA 3. A continuum which is umquely arcwise connected and con-
tains mo half-ray triod is either

(1) an arc or
(2) an arowise connected circle-like continuum which is not a circle.

Proof. In what follows, X denotes a uniquely arcwise connected
continuum which contains no half-ray triod. For z, # #, in X, we leb
a(®,, x,) denote the unique are in X with noncut points #, and #,. We
will divide the proof into several parts.

Part (1). If « and § are any two arcs in X such that o~ g # @,
then o U § is an arc in X. To see this, just note that, since e v § is a locally
connected continnum containing no simple closed curve (by unique
arcwise connectivity), « v f must be a dendrite [17], p. 88. Hence, since
aw f does not contain a figure “T”, a v f must be an arc.

Part (2). I Y is any subspace of X which is arcwise connected
(hence, uniquely arcwise connected) and not contained in any arc in X,
then Y contains a one-to-one continuous image of [0, - oo) which is
also not contained in any arc in X. To prove this, let D= {d;, d,, ...}
be a countable dense subset of ¥ (with d; # d; for 4 # j). For each

n
, let on= | a(dy, &). By Part (1), each oy is an are. Let
i=2
& € 0,—{d,, d,}. Then, for each n>2, » divides o, into two subares oy,
and o,, with # a noncut point of each The primes are chosen so that

n=2,3,..

o0
2. If | o, were contained in an

n=2

’ ’ 1! 1 "
a, Copy, and o, Co,,, for each n>
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arc B’C X and L/ o, were contained in an arc B CZX, then ({ o]

n=2 n=2

w (oY) would be contained in the are B’ B (since @eB’'n B",
ns2

Part (1) can be applied to see that B' B’ ig an arc). Since D is a dense

subset of ¥ and DC( U ay) Uzr '), we can mnow conclude that

n=2 n=2

YCB v B”, a contradiction. Hence, without loss of generality, we may ,

assume U o, is not contained in an arc in X. It is easy to verify that U a,

n=32 n=2

is a one-to-one continuous image of [0, oo}, Whl(’h completes the proof k

of Part (2).
Part (3). If 4 = f([0, +c0)) is an image in X of [0, 4 c0), under
a one-to-one continuous function f, and if z # f(0) is a point in X, then
afz, f(0)) and A satisfy one of the following conditions:
alz, f(0))C 4,

a(m,f(O)) ~ 4 = {f(0)}, or

(c) 4 C afz, f(0)).

In addition: if (a) or (b) holds, then afx,f(0)}w A is itself a one-
to-one continuous image of [0, 4 oc). To see that (a), (b), or (¢) must
hold, first note that if e A with = f(t), then the uniqueness of arcs
gives us that afz, f(0)) = f([0, t]) C 4, ie., (a) holds. Thus, we may now
assume that x ¢ A. Also, assume (b) does not hold. Then there exists
a f, > 0 such that f(4,) e a(z, f(0)). Since f(0) is a noncut point of afw, £(0))
and since z¢ 4, {t: f(t) eafr, f(0))} is not bounded above (if it were
bounded above, then a{z, f(0))w 4 would contain a figure “T”). From
the uniqueness of arcs we also have that if f(s) and f(¢), s <, are
each in a(z, f(0)), then f([s,#])C a(z, f(0)). It now follows easily that
ACalr, f(0)). This completes the proof that afz, f(0)) and A4 ‘satisfy
(a), (b), or (c). The proof that if (a) or (b) holds, then afz,f(0))w

is itself a one-to-one continuous image of [0, +oo) is trivial and is
omitted.

Part (4). I G = g(R") is an image in X of R' under a one-to-one
continuous function g, then g{(— oo ,0]) is contained in an arc in X or
g{{0, +co)} is contained in an arc in X. To establigh this, we first note
that & # X, for otherwise X would be a real curve [11] and would have
to contain a half-ray triod. Thus, let z ¢ X—g(R?) and consider a( g(0 ))
By virtue of Part (3) and the fact that x ¢ @, we will be done if vzfe can
show that either a(z, g(0)) ~ g([0, —hoo)) # {g(0)} or afz, g(0))
"~ gl(—o0, 0 # {g(0)). But it afz, g(0) ~ ([0, +o0)) = {g(0)} and
afz, g(0)) ~ g{(— o0, 0]) = {¢(0)}, then 7T — a(w,g(O))Qg([——l,l]) would
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be a figure “T'” in X, which is a contradiction to X not containing a hali-
ray triod. This proves Part (4).

Part (5). Given two disjoint one-to-one continuous images of [0, oo}
in X, one or the other of them is contained in an are in X. To prove this,
let 4, = £{[0, +o0) and A4,=f,([0, +o0)) be two disjoint images in X
of [0, +oco) under one-to-one continuous funetions f; and f, respectively.
Since 4, n 4, =@, (a) of Part (3) can not hold for a{f,(0),/(0)) and
either of A, or 4,. If (c) of Part (3) holds for a(f,(0), f»(0)) and some 4,
i=1 or i = 2, then we are done. Therefore, we may assume

a(f2(0), £o(0)) ~ A¢ = {f(0)}
for each 4= 1,2. But, under these assumptions, «(f,(0), f{0))w 4, v 4,
is easily seen to be a one-to-one continuous image of E! and the desired
conclusion is a consequence of Part (4). This proves Part (5).

Part (6). We now complete the proof of Lemma 3. Assume that X is
not an are, i.e., does not satisfy (1) in the statement of Lemma 3. Then
we may apply Part (2), with ¥ = X, to see that X contains an image
S = g([O, +oo)) of [0, -+ oo), under a one-to-one continuous function g,
such that § is not contained in any arc in X. Using Part (3) and the fact
that S is not contained in any arc in X, we can establish that if x,,
¢ (X—48), then a(m,z,) ~S=0 (here we apply Part (3) to afz:, g(t)),
i=1 and 2, and g([t —+.00)) if g(t) € a(2, 2,)). Note that X— 8 can not
be a single pom‘n p; if so, then Part (3) and the fact that § is not contained
in an arc would 1mp1y that a(p, g(0)) ~ 8 = {g(0)}, a contradiction.
Thus, X— & is an arcwise connected subspace of X or X —§ = @. But
now we can conclude that X — 8 is contained in an are in X; otherwise,
we could apply Part (2) to X — § to obtain a one-to-one continuous image B
of [0, +c0) in X — &8 such that F is also not eontained in any arc in X
(since B ~ § = @, this would contradict Part (5)). So, let a(z, 2,) be an
arc in X such that X— 8 C a(z,, 2,). Note that (¥) Sv a(z,2)=X. We
consider two cases involving z,, 2,, and 8. First, assume one of the points,
2, or 2,, is not in §; without loss of generality, we assume 2 ¢ 8. Then,
applying Part (3) to afz,g(0)) and §, we obtain that alzy, gO) n 8
= {g(0)}. Hence, by Part (3), a(z, g(0)) v § is itself a one-to-one continu-
ous image of [0, 4-co) under a funetion k (note that k(0) = z,). We also
have afz, g(0)) v 8 = X because, if not, then (by (*)) % ¢ (alz, g(0)) v 8)
and thus, applying Part (3) to afz, %(0)) and k{[0, +c0)), we see that

alzr, g(0) ~ al2, 2) = {z}, a contradiction to (x) since 2 # g{0). Thus,
X is a one-to-one continuous image of [0, 4 o0). Next, assume ze8
and Z, e S. Then, a(z, &) C S which implies X— 8§ =0, ie, X= S and
again X is a one-to-one continuous image of [0, 4 oa). Therefore, we
have shown (in either case) that X is a continuum which is a one-to-one
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continuous image of [0, +oo). Since X containg no half-ray triod, we
can now conclude from the Structure Theorem in [9] that X must be
an arcwise connected circle-like continuum. Since X is uniquely arcwise
connected, X is not a circle. This completes the proof of Lemma 3.

THEOREM 2. A continuum X is arcwise commnected and contains no
half-ray triod if and only if X is either

(1) an arc or

(2) an arcwise comnected circle-like continuum.

Proof. Let X be an arcwise connected continuum which contains
no half-ray triod. Assume X contains a simple closed curve . If there
is a point p ¢ (X— C), then let y be an arc in X with p and some point
of ¢ as its two noncut points. Clearly, € v » contains a figure “T”, which
contradicts that X contains no half-ray triod. Thus, ¢ = X. Next ag-
gsume X does not contain a simple closed curve. Then X is uniquely
arcwise connected and Lemma 3 applies. The other half of Theorem 2
is a consequence of the well-known fact that a circle-like continuum
is a-triodic [4].

Remark. In particular, Theorem 2 above amd a result in [10] show
that an arcwise connected continuum which containg no half-ray triod
is embeddable in the plane. Particularly nice embeddings of such continua
can be obtained using results in [9] and [11]. )

Now we answer Problem 2 for the case of arcwise connected continua
and n=2.

THEOREM 3. An arcwise connected continuum satisfies («p) if and only
if it 98 an arc or an arcwise connected civcle-like continuum.

Proof. Half of the theorem follows from Lemma 2 and Theorem 2.
The other half of the theorem is a consequence of Lemma A and Theorem 1

of section 2 (or the statement in the introduction that any chainable
continumm, hence an’ are, satisfies («,)).

CorOLLARY 1. A locally conmecied continuum satisfies (ap) if and only
if it is an are or a simple closed curve.
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