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On the integration of set-valued mappings
in a Banach space

by A
Richard Datko (Washington, D. C.)

Abstract. Let 7 be a locally compaet Polish space with a finite nonatomic measure I
defined on it and X a real separable reflexive Banach space. If P is an integrably
bounded set-valued mapping from T to X and o P(t) denotes the closed convex hull
of P(t), then the equality

cl(TfPa)dp(t)) =szap(z)dy(t)
holds.

Let T and X be two point sets. A mapping P from 7T into the sub-
sets of X is called & set-valued mapping if to every ¢ in T the mapping P
associates a definite subset of X. For such mappings various notions
of measurability, continuity and differentiability have been defined and
a Caleulus and Measure Theory have been developed. In this note
a generalization of Lemma 7 from [4] and Theorem 4 from [1] will be
proved.

X will denote a separable reflexive Banach space over the real
numbers B and X' its topological dual. The norm in X and X’ will be
denoted by |I-||. The symbol 2% will denote the family of all subsets of X
and K(X) will denote the family of all closed bounded nonempty subsets
of X. If PC X then coP will stand for the convex hull of P, co P the
closed convex hull of P and cl(P) the closure of P in the normed topology.
The symbol x will denote a nonatomie positive Borel measure on a locally
compact Polish space T' with 4 (T) < oo. The symbol L(T, X) will stand
for the Banach space of all X-valued functions Bochner integrable with
respect to u.

DEFINITION 1. A set-valued mapping P: T—2% is said to be measur-
able if for each closed subset A C X the set P~(4) = {te T: P(}) n 4 # B}
is measurable.

DEFINITION 2. A set-valued mapping P: 7—2% is said to be inte-
grably bounded if there exists g e L(T, R) such that sup{ljafl: = P(t)}
<g(t) ae. on T.
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DEFINITION 3. A measurable mapping o: T—X is ealled a measurable
cross section of P: T—>2% if ¢(t) e P(i) a.e. on 7. Let 7 denote the family
of all measurable cross sections of P, The integral of a set-valued mapping
P is defined for any measurable set 4 C T by the expressionélf P(t)ydu(t)
= {jf o{t)du(t): o eTF}.

Remark 1. The measurability used in Definition 3 is that with
respect to the Borel subsets of X. However sinee X is a separable Bapach
space this notion coincides with the notions of strong and weak measur-
ability. The integral used throughout is the Bochner integral.

The following lemma is & version of a result due to C. Castaing ([3],
Theorem 2). However, due to the fact that Castaing’s result is not gener-
ally known and is not stated in exaectly the manner in which we wish to
apply it, the proof will be given.

LeMMA. For every g e L(T, R) the set {f e L(T, X): | f(t)l < g(¥) for
te T} is compact in the weak topology of L(T, X).

Proof. Let L®(T, X) denote the Banach space of all essentially
bounded measurable mappings from 7 into X. Since X is reflexive and
#(T)< oo the strong dual of L(T, X) is isomorphic to L*™(T, X'} and
that of L(T, X') to LT, X) (see e.g. [5], p. 590).

If we consider the weak™ topology ¢(L*(T, X), L(T, X")} on L®(T, X)
and the weak topology a’(L(T, X), L™(T, X’)) on L(T,X), then in
terms of these topologies the mapping ¢:- L*(T, X)—~L(T,X) defined
by ¢(f) = gf is continuous. Thus the image of the unit ball of L*(T, X)
under ¢ is weakly compact in L(T, X). However this set is identical
with the set in the statement of the Lemma.

THEOREM. Let P: T—K(X) be an integrably bounded measurable
set-valued mapping. Then for any measurable set A CT the equation

el([ P(1)du(t) = [ coP(t)du(t) holds. Moreover the set [ coP(t)du(t) is
4 A 4

closed bounded and convex.

Remark 2. If P is as in the Theorem, then for any measurable set 4
the set [ P(¢)du(?) is nonempty (see e.g. Remark 1 in [4]). The measur-
A

ability of P implies the measurabﬂitj of the set-valued mapping ¢— coP (t)
(see e.g. Lemma 7 in [4]).

Proof of the Theorem. Clearly [ coP(f)du(t) is convex and
4 A

bounded. We shali show it is also closed. From this fact the inclusion
elg [ P()du(®)C [ co P(t)du(t) follows immediately. Let {r,} C [coP(t)du(d)
4 4

be a Cauchy sequence. Then there exists {a,} C co P such that for each n
Ty =‘_f on(t)dp(f). By a theorem due to Smulian (see e.g. [5], Theo-
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rem 8.12.1) and the Lemma there exists a subsequence {o;} C {os} and
a mapping o¢eL(T,X) such that {o}->o0 weakly. Henece limr,

= hmf og(t) dp(t) = fa(t)d,u(t) and o(t) ecoP(#) a.e. on T. The las% is
g 4d A4

because some sequence of convex combinations of {o,} converges strongly
to o (see e.g. [5], Theorem 2.3.1).

We next show that cl{ { P({)du(t)) is convex. Let a e[0,1] and ¢>0
A

be given. Let g be as in Definition 2. Since g is integrable there exists
a measurable set 4, C A and a positive constant M such that [ g(z)du(t)

—Ay

< te and ‘g(t) < M on A,. Let o, and o, be measurable cross sections
of P such that ri = [ o4(t)du(t), i = 1, 2. We can apply Property 1 of [3]
p-

to the family of all measurable cross sections of P restricted to 4, and
find a measurable cross section o of P restricted to 4, such that

|a [ ethanty+1—o) [ ayauo— [ s0au)] < e.
Az Ay Ay !
Let o(f)=o(f) for ted, and o(t) = oyf) for te A—A,. Clearly o is
a measurable cross section of P and

e+ (= ayrs— [ o () au ()|
4

<|a [ eatant)+1—a) [ amaun— [ s0au|+
A Ay 4y

[ aaun+a-a) [ adu®— [ amduo)|

A—4; A—4dy A—Ay

He
<te+(-a| [ amdu@|+] [ andum]<e.
A=A A4

The convexity of cl [ P(t)du(t) now follows by a proof analogous to that
A

of Theorem 1 in [3], p. 209.

In view of Remark 2 the convexity of cl([ P(¢)du(t) allows us to
4
apply the same argument as in [4] (see the proof of Lemma 7, p. 233)

to obtain the inclusion. This completes the proof of the theorem.
The author would like to acknowledge the many useful suggestions
of the referee, particularly the improved version of the Lemma.
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Spaces of ANR’s. II

by
B. J. Ball (Athens, Georgia) and Jo Ford (Auburn, Alabama)

Abstract. It was shown by K. Borsuk [2] that the set of all ANR’s lying in a com-

pactum X can be metrized in such a way that the resulting space, denoted by 2;{,
is separable and complete, and reflects the homotopy character of the ANRs in X,
in the sense that if 4 « 2;‘?, then all ANR’s sufficiently close to 4 in 2,,x are homotopically
equivalent to 4. In a previous paper [1], the authors considered a number of topological
properties of these hyperspaces and proved, in particular, that every two homotopically
equivalent connected ANR’s in the 2-sphere S* can Dbe joined by an arc in 2}9,2. In the
present note, this result is improved by showing that the space Zf’ is in fact locally

connected. (It was shown in [1] that in general 25 need not be locally connected, even
if X is an absolute retract.)

Tt was shown by K. Borsuk [2] that the set of all ANR’s lying in
a finite dimensional compactum X can be metrized in such a way that
the resulting space, 2%, is separable and complete, and reflects the
homotopy character of the ANR’s in X (in the sense that if A is any
ANR in X, then all ANR’s sufficiently close to 4 in 2% are homotopically
equivalent to 4). In a previous paper [1], the authors studied a number
of topological properties of these hyperspaces; in particular, an example
was given of a 2-dimensional absolute retract X such that 2% is not locally
connected, and it was shown that if € denotes the (open and closed) sub-
space of 25 consisting of all connected ANR’s in 8%, then every com-
ponent of € is arcwise connected. It is the aim of the present paper to
improve this latter result by showing that 25 is in fact locally connected.

1. Definitions and notations. If X is a compactum with metric ¢ and 4
and B are closed subsets of X, we will, following Borsuk, denote the
Hausdorff distance between A and B by o4, B), and will let (4, B)
denote the greatest lower bound of the set of all positive numbers & such
that each of A and B can be mapped into the other by an ¢ map (i.e.,
a continuous function which moves no point a distance ¢ or more). The
homotopy metrie, g, which determines the space 2%, is defined only
in case A and B are locally contractible; in this case, g;(4, B) = o4, B)+
+y(4, B), where p(4, B) is a non-negative function, defined in [2],
whose precise nature does not concern us here. We will, however, need
15 — Fundamenta Mathematicae, T. LXXVIII
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