a Cauchy filter relative to d. Thus, F^d is real. Now $P(X) \neq P^d(X)$, and by Theorem 3.2, every member of $P(X)$ may be extended to a member of $\mathcal{O}(X)$. However, the function $f(x, y) = \sin(y^{-1})$ belongs to $C^\omega(X)$, but clearly has no continuous extension to T. Thus X is not C^ω-embedded in T. We also observe that there is no compatible proximity on T for which (X, δ) is a p-subspace of T. (See Example 1 of [7].)

References

A remark on the independence of a basis hypothesis

by

Wojciech Guzicki (Warszawa)

Abstract. In the paper we prove the independence of a basis hypothesis used by Enderton and Friedman in the proof of the existence of a minimal β_n-model for analysis. The main result is the consistency of ZFC with the axiom

$$\text{(BH)}: \text{Let } a \subseteq \omega \text{ and } R \text{ be a class of subsets of } \omega, \text{ defined by a } \Sigma_1^0 \text{ formula with parameter } a. \text{ Then there exists a subset } x \subseteq \omega \text{ defined simultaneously by the formulae } \Sigma_1^0 \text{ and } \Pi_1^1, \text{ such that } w \in R.$$

This is exactly the formulation of the fact that $\Delta_2^n[a]$ is a basis for $\Sigma_2^n[a]$. It is well known that (BH) is a theorem of ZF (Zermelo–Fraenkel set theory). Addison proved that the axiom of constructibility implies (BH) for every natural $n \geq 2$. Using the axiom of projective determinateness, Martin and Solovay proved that for an odd n, (BH) does not hold. Their conjecture is that under the same assumption (BH) holds for every n. Solovay proved that (BH) is consistent with the existence of a measurable cardinal. For references see [1].

In the present paper we prove that assuming the consistency of ZF, the theory ZF with an additional axiom "(BH) does not hold" is consistent. Namely, our theorem is

Theorem 1. If M is a countable standard model for $\text{ZF} + \forall \alpha \exists R \in M$, then there exists a model $N \supseteq M$ for ZFC, satisfying the following sentence: for every $a \subseteq \omega$ there exists a class R_a of subsets of ω, $R_a \in H_0[\alpha]$ such that no element of R_a is ordinal definable from a.

In the proof we use the method of forcing, so by the well known reasoning one can obtain the following consistency results:

Corollary 2.

$$\text{Con(}\text{ZF}\text{)} \to \text{Con(}\text{ZFC}+\text{(BH)}\text{)} \forall a \in R \in H_0[\alpha] \text{ & } R \cap \text{HOD}[\alpha] = 0\).$$
Corollary 3. $\text{Con}(\text{ZF}) \rightarrow \text{Con}(\text{ZF} + \{\forall x \exists y \exists z (y \neq z)\})$.

Now we turn to the proof of theorem. Let M be a countable standard model for $\text{ZF} + V = L$. We define the notion of forcing P as follows:

$$P = \{ f : M \mid \text{Func}(f) \land \text{dom}(f) \subseteq \omega^M \land \forall x \in \omega^M \land \forall y \in \text{dom}(f)^M \land x \subseteq y \}.$$

The ordering of P is the reverse inclusion. For any $A \subseteq \omega^M$, let $P_A = \{ f : M \mid \text{dom}(f) \subseteq A \times \omega \}$. If $G \subseteq P$ is P-generic over M, then

$$G_A = G \cap P_A.$$

Lemma 4. If $a \subseteq \omega$ and $a \in M[G]$, then there exists a subset A of ω^M countable in M and such that $a \in M[G_A]$.

For a proof see [3].

Let us denote by Q the following notion of forcing:

$$Q = \{ f : M \mid \text{Func}(f) \land \text{dom}(f) \subseteq \omega \land \exists x \subseteq \omega \land (\text{dom}(f) = M[x]) \}.$$

Lemma 5. If $x, y, t \subseteq \omega$, x is Q-generic over M, y is Q-generic over $M[x]$, and $t \in M[x]$, then there exists a $z \subseteq \omega$, z being Q-generic over $M[t]$ such that $M[x][y] = M[t][z]$.

For a proof see [5].

Let us suppose that $G \subseteq P$, G is P-generic over M, $N = M[G]$, $a \subseteq \omega$ and $a \in N$. Let us take $A \subseteq \omega^M$ as in Lemma 4. We may assume that A is an ordinal, say $A = \xi$. It is easily seen that P_A and $P_{\xi[A]}$ are isomorphic to dense subsets of Q, and so there exists a $b \subseteq \omega$, Q-generic over M and such that $M[b] = M[G_A]$. By Lemma 5 we can find a $c \subseteq \omega$, Q-generic over $M[a]$ and such that $M[a][c] = M[b][G_{\xi[A]}]$. Hence $M[G] = M[a][G_{\xi[A]}]$.

Note that $Q \times P_{\xi[A]}$ is a homogeneous notion of forcing in $M[a]$ (the definition should be observed here that the definitions of P, P_A and Q are absolute because of the finiteness of conditions). Thus we have proved that $M[G]$ can be obtained as a generic extension of $M[a]$, where the notion of forcing is homogeneous.

Lemma 6. If G is a homogeneous notion of forcing in M, $y \in M$ and x is hereditarily ordinal definable from y in the sense of $M[G]$ (G being G-generic over M), then $x \in M$ (Lévy [3]).

By Lemma 6 all sets which are hereditarily ordinal definable from a in the sense of $N = M[G]$ belong to $M[a]$ and hence are constructible from a in N. For every $a \subseteq \omega$, $a \in N$ define

$$R_a = \{ x \in N \mid x \subseteq a \land N \models x \neq L[a] \}.$$

Then $R_a \cap P_{\xi[A]}[a]$ and $R_a \cap \text{HOD}[a] = 0$, Q.E.D.

The same result can be proved under the assumption that M is a model for ZF^- (ZF set theory without the power set axiom but with an axiom scheme of choice). Then P may happen to be a proper class and

References